当前位置:文档之家› 内支撑结构设计

内支撑结构设计

内支撑结构设计
内支撑结构设计

、内支撑结构可选用钢支撑、混凝土支撑、钢与混凝土的混合支撑。

二、内支撑结构选型应符合下列原则:

1、宜采用受力明确、连接可靠、施工方便的结构形式;

2、宜采用对称平衡性、整体性强结构形式;

3、应与主体地下结构的结构形式、施工顺序协调,应便于主体结构施工;

4、应利于基坑方开挖和运输;

5、需要时,可考虑内摘除结构作为施工平台。

三、内支撑结构应综合考虑基坑平面形状及尺寸、开挖深度、周边环境条件、主体结构形式等因素,选用有立柱或无立柱的下列内支撑形式:

1、水平对支撑或斜撑,可采用单杆、桁架、八字形支撑;

2、正交或斜交的平面杆系支撑;

3、环形杆或环形板系支撑;

4、坚向斜撑。

四、内支撑结构宜采用超静定结构。对个别次要构件失效会引起结构整体破坏的部位宜设置冗余约束。内支撑结构的设计应考虑地质和环境条件的复杂性、基坑开挖步序的偶然变化的影响。

五、内支撑结构分析应符合下列原则:

1、水平对撑与水平斜撑,应按偏心压力国建进行计算;支撑的轴向压力其支撑间距N

倍挡土构件的支点力之和;腰梁或冠梁应按宜支撑我支座的多跨连续梁计算,计算跨度可取

相邻支撑点的中距;

2、矩形基坑支护的正交平面杆系支撑,可分解为纵横两个方向的结构单元,并分按偏心受压构件进行计算;

3、平面杆系支撑、环形杆系支撑,可按平面杆系结构采用平面有限元法进行计算;计

算时应考虑基坑不同方向上的荷载不均匀性;建立的计算模型中,约束支座的设置应与支护结构实际位移状态相符,内支撑结构边界向基坑外应设置弹性约束支座,向基坑内位移处不应设置支座,与边界平行方向应根据支护结构实际位移状态设置支座;

4、内支撑结构应进行坚向荷载作用下的结构分析;设有立柱时,在坚向荷载作用下内

支撑结构宜按空间框架计算,当作用在内支撑结构上的坚向荷载较小时,内支撑结构的水

平构件和按连续梁计算,计算跨度可取相邻立柱的中法,对支撑、腰梁与冠梁、挡土构件进行整体分析。

六、内支撑结构分析时,应同时考虑下列作用:

1、有挡土都建传至内支撑结构的水平荷载;

2、支撑结构自重;当支撑作为施工平台时,尚应考虑施工荷载;

3、当温度改变引起的支撑结构内力不可忽略不计时,应考虑温度应力;

4、当支撑立柱下沉或隆起量较大时,应考虑支撑立柱与挡土构件之间差异沉降产生的作用。

七、混凝土支撑构件及其连接的受压、受弯、受剪承载力计算应符合现行国家标准《混凝土结构设计规范》GB50010水位规定;钢支撑结构构件及其连接受压、受弯、受剪承载力

及各类稳定性计算应符合现行国家标准《钢结构设计规范》GB50017的规定。支撑的承载力

计算应考虑施工偏心误差的影响,偏心距取值不宜小于支撑计算长度的1/1000 ,且对混凝

土办职称不宜小于20mm对钢支撑不宜小于40mm

八、支撑构件的受压计算长度应按下列规定确定:

1、水平支撑在坚向平面内的受压计算长度,不设置立柱时,应取支撑的实际长度;设

置立柱时,应取相邻立柱的中心距;

2、水平支撑在水平平面内的受压计算长度,对无水平支撑杆件交汇的支撑,应取与支

撑相交的相邻水平支撑杆件的中心距;当水平支撑杆件的交汇点不子啊同一水平面内时,水平平面内的受压计算长度宜取与支撑相交的相邻水平支撑杆件中心距的倍;

3、对坚向斜撑,应按条第1、2款的规定确定受压计算长度。

九、预加轴向压力的支撑,预加力值宜取支撑轴向压力标准值的(~)倍,且应与本规

程中的支撑预加轴向压力一致。

十、立柱的受压承载力金额按下列规定计算:

内支撑结构设计

1、在坚向荷载作用下,内支撑结构按框架计算时,立柱应按偏心受压构件计算;内支

撑结构的水平构件按连续梁计算时,立柱可按轴心受压构件计算;

2、立柱的受压计算长度应按下列规定确定:1)单层支撑的立柱、多层支撑底层立柱的

受压计算长度应取底层支撑至基坑底面的净高度与立柱直径或边长的5倍之和;2)相邻两

层水平支撑间的立柱受压计算长度应取此两层水平支撑的中心距;

3、立柱的基础应满足抗压和抗拔的要求。

十^一、内支撑的平面布置应符合下列规定:

1、内支撑的布置应满足主体结构的施工要求,宜避开地下主体结构的墙、柱;

2、相邻支撑的水平间距应满足开挖的施工要求;采用机械挖土时,应满足挖土机械作

业的空间要求,且不宜小于4m

3、基坑支护形状支撑时,阳角处的支撑应在两边同时设置;

4、当采用环形支撑时,环梁宜采用圆形、椭圆形等封闭曲线形式,并应按使环梁弯矩、

剪力最小的原则布置辐射支撑;环形支撑宜采用与腰梁或冠梁相切的布置形式;

5、水平支撑与挡土构件之间应设置连接腰梁;当支撑设置在挡土构件顶部时,水平支

撑应与冠梁连接;在腰梁或冠梁上支撑点的间距,对钢腰梁不宜大于4mm对混凝土梁不宜

大于9 m;

6、当需要采用较大水平间距的支撑时,宜根据支撑冠梁、腰梁的受力和承载力要求,

在支撑端部两侧设置八字斜撑杆与冠梁、腰梁连接,八字斜撑杆宜在主撑两侧对称布置,且斜撑杆的长度不宜大于9m,斜撑杆与冠梁、腰梁之间的夹角宜取45° ~60°;

7、当设置支撑立柱时,临时立柱应避开立柱结构的梁、柱及承重墙;对纵横双向交叉

的支撑结构,立柱宜设置在支撑的交汇处;对用作主体结构柱的立柱,立柱在基坑支护阶段的负荷不得超过主体结构的设计要求;立柱与支撑端部及立柱之间的间距应根据支撑构件的

稳定要求和坚向荷载的大小确定,且对混凝土支撑不宜大于15m,对钢支撑不宜大于20m

8、当采用坚向斜撑时,应设置斜撑基础,且应考虑与主体结构底板施工的关系。

十二、支撑的坚向布置应符合下列规定:

1、支撑预挡土构件连接处不应出现拉力;

2、支撑应避开主体地下结构底板和楼板的位置,并应满足主体地下结构施工对墙、柱

钢筋连接长度的要求;当支撑下方的主体结构楼板在支撑拆除前施工时,支撑地面与下方主体结构楼板坚的净距不宜小于700mm

3、支撑至坑底的净高3m

4、采用多层水平支撑时,各层水平支撑宜布置在同一坚向平面内,层间净高不宜小于

3m>

十三、混凝土支撑的构造应符合下列规定:

1、混凝土的强度等级不应低于C25;

2、支撑构件的截面高度不宜小于其坚向平面内计算长度的1/20 ;腰梁的截面高度(水平尺寸)不宜小于其水平方向计算跨度的1/10 ;截面宽度(坚向尺寸)不应小于支撑的截

面咼度;

3、支撑构件的纵向钢筋直径不宜小于16mm沿截面周边的间距不宜大于200mm箍筋的直径不宜小于8mm间距不宜大于250mm

十四、钢支撑的构造应符合下列规定:

1、钢支撑构件可采用钢管、型钢及组合截面;

2、钢支撑受压力杆件的细比不应大于150,受拉杆件长细比不应大于200;

3、钢支撑连接宜采用螺栓连接,必要时采用焊接连接;

4、当水平支撑预腰梁斜交时,腰梁上应设置牛腿或采用其他够承受剪力的连接措施;

5、采用坚向斜撑时,腰梁和支撑基础上应设置牛腿或采用其他能够承受剪力的连接措

施;腰梁与挡土构件之间采用能够承受剪力的连接措施,斜撑基础应满足坚向承载力和水平

承载力要求。

十五、立柱的构造应符合下列规定:

1、立柱可采用钢格构、钢管、型钢或钢管混凝土等形式;

2、当采用灌注桩作为立柱基础时,钢立柱锚入桩内的长度不宜小于立柱长边或直径的4 倍;

3、立柱长细比不宜大于25;

4、立柱与水平支撑的连接可采用铰接;

5、立柱穿过主体结构底板的部位,应有效的止水措施。

十六、混凝土支撑构件的构造,应符合现行国家标准《混凝土结构设计规范》GB50010的规定。钢支撑构件的构造,应符合现行国家标准《钢结构设计规范》GB50017的有关规定。

深基坑内支撑梁施工工艺

深基坑内支撑梁施工工艺 一、支撑施工总体原则 本工程采用钢筋混凝土结构作为水平支撑,土方开挖的顺序、方法必须与设计工况一致,并遵循“先撑后挖、限时支撑、分层开挖、严禁超挖”的原则进行施工,尽量减小基坑无支撑暴露时间和空间。同时应根据基坑工程等级、支撑形式、场内条件等因素,确定基坑开挖的分区及其顺序。宜先开挖周边环境要求较低的一侧土方,并及时设置支撑。环境要求较高一侧的土方开挖,宜采用抽条对称开挖、限时完成支撑或垫层的方式。 基坑开挖应按支护结构设计,降排水要求等确定开挖方案,开挖过程中应分段、分层、随挖随撑、按规定时限完成支撑的施工,作好基坑排水,减少基坑暴露时间。基坑开挖过程中,应采取措施防止碰撞支护结构、工程桩或扰动原状土。支撑的拆除过程时,必须遵循“先换撑、后拆除”的原则进行施工。 二、技术参数 该项目基坑面积约33000㎡,周长810m,深度23~25m,基坑围护体采用地下连续墙作为围护体,基坑竖向设置四道钢筋混凝土支撑,支撑采用圆环支撑平面布置形式,支撑信息图表所示: 表一支撑信息一览表

并结合对称和角撑,截面尺寸详见支撑平面布置图; (2)、支撑梁混凝土强度等级(除第二~四道环撑为C40外)为C35,主筋保护层:30mm; (3)、支撑梁采用两侧支模浇筑,并在支撑梁底设置隔离膜,混凝土应整体浇筑,在冠梁、支撑腰梁施工前需将支护桩表面附着物完

全清除;、 (4)、主筋连接采用搭接焊接,单面焊10d,接头在同一截面处数量应不超过50%; 三、施工流程 四、施工方法 混凝土支撑首先进行施工分区和流程的划分,支撑的分区一般结合土方开挖方案,按照盆式开挖、“分区、分块、对称”的原则确定,随着土方开挖的进度及时跟进支撑的施工,尽可能减少围护体侧开挖

内支撑结构设计

一、内支撑结构可选用钢支撑、混凝土支撑、钢与混凝土的混合支撑。 二、内支撑结构选型应符合下列原则: 1、宜采用受力明确、连接可靠、施工方便的结构形式; 2、宜采用对称平衡性、整体性强结构形式; 3、应与主体地下结构的结构形式、施工顺序协调,应便于主体结构施工; 4、应利于基坑方开挖和运输; 5、需要时,可考虑内摘除结构作为施工平台。 三、内支撑结构应综合考虑基坑平面形状及尺寸、开挖深度、周边环境条件、主体结构形式等因素,选用有立柱或无立柱的下列内支撑形式: 1、水平对支撑或斜撑,可采用单杆、桁架、八字形支撑; 2、正交或斜交的平面杆系支撑; 3、环形杆或环形板系支撑; 4、坚向斜撑。 四、内支撑结构宜采用超静定结构。对个别次要构件失效会引起结构整体破坏的部位宜设置冗余约束。内支撑结构的设计应考虑地质和环境条件的复杂性、基坑开挖步序的偶然变化的影响。 五、内支撑结构分析应符合下列原则: 1、水平对撑与水平斜撑,应按偏心压力国建进行计算;支撑的轴向压力其支撑间距N 倍挡土构件的支点力之和;腰梁或冠梁应按宜支撑我支座的多跨连续梁计算,计算跨度可取相邻支撑点的中距; 2、矩形基坑支护的正交平面杆系支撑,可分解为纵横两个方向的结构单元,并分按偏心受压构件进行计算; 3、平面杆系支撑、环形杆系支撑,可按平面杆系结构采用平面有限元法进行计算;计算时应考虑基坑不同方向上的荷载不均匀性;建立的计算模型中,约束支座的设置应与支护结构实际位移状态相符,内支撑结构边界向基坑外应设置弹性约束支座,向基坑内位移处不应设置支座,与边界平行方向应根据支护结构实际位移状态设置支座;

4、内支撑结构应进行坚向荷载作用下的结构分析;设有立柱时,在坚向荷载作用下内支撑结构宜按空间框架计算,当作用在内支撑结构上的坚向荷载较小时,内支撑结构的水平构件和按连续梁计算,计算跨度可取相邻立柱的中法,对支撑、腰梁与冠梁、挡土构件进行整体分析。 六、内支撑结构分析时,应同时考虑下列作用: 1、有挡土都建传至内支撑结构的水平荷载; 2、支撑结构自重;当支撑作为施工平台时,尚应考虑施工荷载; 3、当温度改变引起的支撑结构内力不可忽略不计时,应考虑温度应力; 4、当支撑立柱下沉或隆起量较大时,应考虑支撑立柱与挡土构件之间差异沉降产生的作用。 七、混凝土支撑构件及其连接的受压、受弯、受剪承载力计算应符合现行国家标准《混凝土结构设计规范》GB50010水位规定;钢支撑结构构件及其连接受压、受弯、受剪承载力及各类稳定性计算应符合现行国家标准《钢结构设计规范》GB50017的规定。支撑的承载力计算应考虑施工偏心误差的影响,偏心距取值不宜小于支撑计算长度的1/1000,且对混凝土办职称不宜小于20mm,对钢支撑不宜小于40mm。 八、支撑构件的受压计算长度应按下列规定确定: 1、水平支撑在坚向平面内的受压计算长度,不设置立柱时,应取支撑的实际长度;设置立柱时,应取相邻立柱的中心距; 2、水平支撑在水平平面内的受压计算长度,对无水平支撑杆件交汇的支撑,应取与支撑相交的相邻水平支撑杆件的中心距;当水平支撑杆件的交汇点不子啊同一水平面内时,水平平面内的受压计算长度宜取与支撑相交的相邻水平支撑杆件中心距的1.5倍; 3、对坚向斜撑,应按条第1、2款的规定确定受压计算长度。 九、预加轴向压力的支撑,预加力值宜取支撑轴向压力标准值的(0.5~0.8)倍,且应与本规程中的支撑预加轴向压力一致。 十、立柱的受压承载力金额按下列规定计算:

内支撑结构(DOC)

第一章工程概况 一、编制依据 1、昆铁家园小区基坑支护工程施工设计图。 2、采用规范、标准: 《建筑地基基础工程施工质量验收规范》(GB50202—2002) 《建筑工程施工质量验收统一标准》(GB50300—2001) 《钢结构工程施工质量验收规范》GB50205-2001) 《建筑施工安全检查标准》 其他有关现行国家标准及规范、规程。 二、工程概况 本工程支撑结构格构柱,格构柱主要包括格构柱和立柱桩两部分,上部格构柱为钢构件,下部立柱桩为钢筋混凝土钻孔灌注桩基础,部分为利用工程桩作为立柱桩。立柱桩共计60颗,利用工程桩作为立柱桩40颗。工程桩桩径为A800mm,立桩桩桩径为A1000mm,东西栈桥区域格构柱共9颗,尺寸为600×600mm,非栈桥区域格构柱91颗,尺寸460×460mm。桩身砼强度等级为C30水下混凝土。 三、地质、水文条件 根据甲方提供的岩土勘察报告,拟建场地地质分布为: (一)第四系人工活动层(Qml) ①1杂填土:杂色,中压缩性(a1-2=0.40MPa-1)土体结构松散、欠压实,含大量建筑垃圾及砖、瓦碎片等,局部地段上部为混凝土路面。该层填土为原有房屋建筑时回填土,属新近填土,厚度0.50~

9.70m,平均3.77m,整个场地均有分布。 ①2素填土:褐黄、褐红色,中压缩性(a1-2=0.35MPa-1)。主要由粘性土组成,局部地段为粉土。属新近填土,顶板埋深0.50~5.70m,厚度1.10~6.10m,平均3.44m,整个场地大部分地段均有分布。 (二)第四系冲洪积层(Qal+pl) ②粉质粘土:褐、褐黄色,可塑~硬塑状,中压缩性 (a1-2=0.48MPa-1)。切面稍有光泽,韧性中等,干强度中等,顶板埋深1.80~9.70m,厚度0.50~3.40m,平均1.68m,场地的大部分地段有分布。 (三)第四系冲积层(Qal) ③1圆砾:褐黄色,稍密~中密,砾石磨圆中等,粒径1~30mm,成份为砂岩、石英砂岩、灰岩,其成分较杂,由粉质粘土、砾砂充填,级配较为均匀;顶板埋深1.90~11.80m,厚度0.50~6.80m,平均2.88m,整个场地均有分布。 ③a1粉质粘土:灰、深褐灰色,可塑~硬塑状,中压缩性 (a1-2=0.37MPa-1)。切面稍有光泽,韧性中等,干强度低,顶板埋深6.80~9.20m,厚度0.60~4.80m,平均1.93m,呈透镜体分布于③1圆砾中。 ③2圆砾:兰灰色,稍密~中密,砾石磨圆中等,粒径3~40mm,成份为砂岩、石英砂岩、灰岩,由粗中砂充填,级配较为均匀;顶板埋深3.50~20.00m,厚度1.00~14.20m,平均7.60m,整个场地均有分布。

钢框架支撑结构设计实例(书稿例题)

钢框架-支撑结构设计实例 4.10.1 工程设计概况 本建筑为某公司办公楼,位于沈阳市区,共七层。总建筑面积约59002m ,总高度30.6m ,室内外高差0.600m ;底层层高4.5m ,顶层层高4.5m ,其余层均为4.2m 。设两部楼梯和两部电梯。墙体采用聚氨酯PU 夹芯墙板。屋面为不上人屋面。 结构形式为钢框架—支撑体系。设计基准期50年,雪荷载0.502 m kN ,基本风压:0.552 m kN 。抗震设防烈度为7度,设计基本加速度为0.1g ,结构抗震等级四级。结构设计基准期50年。 地质条件:拟建场地地形平坦,地下稳定水位距地坪-9.0m 以下,冰冻深度-1.20m ,地质条件见表4-24,Ⅱ类场地。 4.10.2 方案设计 1.建筑方案概述 1)设计依据 《民用建筑设计通则》GB50352-2005 《办公建筑设计规范》JGJ67-2006 《建筑设计防火规范》GB50016-2006 2)设计说明 (1)屋面(不上人屋面) 防水层:SBS 改性沥青卷材(带保护层); 40mm 厚1:3水泥沙浆找平层; 70mm 厚挤塑板保温层; 1:6水泥炉渣找坡(最薄处30mm,坡度2%); 压型钢板混凝土组合板(结构层折算厚度100mm ); 轻钢龙骨吊顶。 (2)楼面: 20mm 厚大理石面层; 20mm 厚1:3干硬性水泥沙浆找平层; 压型钢板混凝土组合(结构层折算厚度100mm ); 轻钢龙骨吊顶。 (3)门窗 本工程采用实木门和塑钢玻璃窗。 (4)墙体 外墙为双层聚氨酯PU 夹芯墙板300mm (内塞岩棉); 内墙为双层聚氨酯PU 夹芯墙板180mm 厚聚氨酯PU 夹芯墙板; 2. 结构方案概述 1)设计依据 本设计主要依据以下现行国家规范及规程设计: 《建筑结构荷载规范》(GB50009-2001)(2006版) 《钢结构设计规范》(GBJ50017-2003) 《建筑抗震设计规范》(GB50011-2010) 《混凝土结构设计规范》(GB50010-2002)

内支撑式支护技术

内支撑式支护技术 一、原理: 内支撑式支护是由内支撑系统和挡土结构两个部分组成,基坑开挖所产生 的土压力和水压力主要是由挡土结构来承担,同时也是由挡土结构来将这两部 分侧向压力传递给内支撑,有地下水时也可防止地下水渗漏,是稳定基坑的一 种临时支挡方式。一般情况下,支撑结构的布置形式有水平支撑体系和竖向支 撑体系两种。 二、支撑的结构型式(支撑材料的选择) 1)支撑结构可采用钢支撑; 优点:自重轻、安装和拆除方便、施工速度快、可以重复利用(环保、绿色)。且安装后能立即发挥支撑作用,减少由于时间效应而增加的基坑位移是十分有 效的。 缺点:节点构造和安装相对比较复杂,施工质量和水平要求较高。适用于对撑、角撑等平面形状简单的基坑。 2)支撑结构可采用钢筋混凝土支撑; 优点:刚度大,整体性好,布置灵活,适应于不同形状的基坑,而且不会因节 点松动而引起基坑位移,施工质量容易得到保证。 缺点:现场制作和养护时间较长,拆除工程量大,支撑材料不能重复利用。 3)支撑结构可采用钢支撑与钢筋混凝土支撑的组合; 4)选型时应考虑的因素:

基坑的平面形状、尺寸和开挖深度;基坑周边环境条件;围护结构(桩、墙)的型式;土方开挖与支撑安装工序;支撑拆除方式;主体结构的设计与施工要求。 三、施工流程: 第一层土方开挖→人工修底→安装第一道腰梁、内支撑梁底模板→绑扎第一道腰梁、支撑梁钢筋→安装梁侧模→浇筑混凝土→养护→第二层土方开挖→人工修底→安装第二道支撑、腰梁底模板→绑扎支撑、腰梁钢筋→安装支撑、腰梁侧模→凝土浇筑→砼养护→开挖第三层基坑土方→人工修底平整、做坑底排水明沟。 四、工程案例: 1、工程概况 某工程建筑总面积96157m2,其中地下室面积11828m2,地下室3层,局部设夹层,埋深12.8-16.3m,地下室平时作为车库使用。本工程为深基坑施工工程,基坑呈矩形,平面尺寸为111.5×44.5m,设二道钢筋砼支撑,相对标高分别为-6m 和-10.5m,设计主要采用人工挖孔桩垂直支护档土,桩顶设圈梁一道,基坑内设钢筋混凝土内支撑梁、腰梁两道,梁顶标高分别为-5.55m及-10.05m,每道支撑由腰梁、角撑、对撑和支顶柱组成。腰梁沿基坑周边布置,基坑四角各设二条斜角撑,基坑中部均匀布设三根对撑。对撑和角撑下共设10个钢格构支柱。腰梁截面尺寸1000×900mm,配筋40φ25+8φ20 2、工程地质情况分析 本工程地处建筑物密集地区, 工程周围环境较为复杂。根据地质勘测报告反映, 场地土质分布为人工填土、冲洪积层、残积层及白垩统砂岩组成, 按工程地质自上而下分布为四个大层, 层序号为a、b、c、d四层。a、b层为人工填土层和冲洪积层;c层为风化残积土,多为紫红色粉质粘土,总的状态趋势上部为可塑一一硬可塑,下部硬可塑一坚硬。近底部夹强风化残留岩块, 岩块厚度分别为0.7m,1.4m,0.8m,本层顶板埋深 5.2~7.1m,平均6.04m , 厚度2.8~12.8m,平均厚度8.56m。d层为上白垩统砂岩, 由紫红色泥质粉砂岩、砂岩、砂砾岩组成,形成了强度各异的岩石, 如强风化岩、中风化岩及微风化岩, 按场地内风化岩石分布及组合特点,自上而下分为两个岩带,即混合风化岩带和微风化岩带。平均厚度6.04m,岩性为紫红色粉砂岩, 砂岩为主夹砂砾岩、岩石呈厚层状, 坚硬、完整。场地地下水较贫乏,地下水水位根据测孔测得有混合地下水位为0.4~7.0m之间。 3、施工流程 第一层土方开挖→人工修底→安装第一道腰梁、内支撑梁底模板→绑扎第一道腰梁、支撑梁钢筋→安装梁侧模→浇筑混凝土→养护→第二层土方开挖→人工修底→安装第二道支撑、腰梁底模板→绑扎支撑、腰梁钢筋→安装支撑、腰梁侧模→凝土浇筑→砼养护→开挖第三层基坑土方→人工修底平整、做坑底排水明沟

第三章支撑结构设计计算

第三章支撑结构设计计算 本方案第一层和第二层支撑均采用钢筋砼支撑结构,现计算如下: 3.1 第一层钢筋砼支撑结构设计计算 根据上述计算和支撑设计平面布置,R=141.48kN/m,对撑间距为9.5米,角支撑间距为7米,最大间距为10米,立柱桩间距10米。 支撑梁截面为500×600,砼等级为C30,受力筋采用HRB335,箍筋采用HPB235。 3.1.1 支撑轴力计算 角撑:N=141.48×10×1.25×1.0/sin45o =2501 kN 对撑:N=141.48×9.5×1.25×1.0 =1680.1kN 3.1.2 支撑弯矩计算 ①第一类支撑配筋计算(角撑) (1)1.支撑梁自重产生的弯矩: q=1.25×0.5×0.6×25=9.375 kN/m M1=1/10×9.375×102=93.75 kNm/m 2.支撑梁上施工荷载产生的弯矩:取q=10.0 kN/m M2=1/10×10×102=100 kN-m/m 3.支撑安装偏心产生的弯矩: M3=N×e=2501×10×3‰=75.03 kNm 则支撑弯矩为:M=93.75+100+75.03=268.78 kNm

(2)初始偏心距e i e0 =M/N=268.78×103/2501=107.5mm 取e a =h/30=20 mm 则e i= e0+e a=107.5+20=127.5 mm (3)是否考虑偏心距增大系数η ∵l0/h=10/0.6=16.7>8.0 ∴要考虑 由η=1+1 1400e i h0(l0 h ) 2 ζ 1 ζ 2 ζ1=0.5×f c×A N =0.5×14.3×500×600 2501×103 =0.857 ζ 2 =1.15?0.01×l0=1.15?0.01×10=0.983 η=1+1 1400×127.5 565 16.72×0.857×0.983=1.74 e=ηe i+h/2-a s=1.74×127.5+600/2-35=486.85mm (4)配筋计算: ηe i =1.74×127.5=221.85>0.32h0=180.8 属于大偏心受压 x=N ?f c b = 2501000 14.3 500 =349.8mm A s=A s′=Ne??f c bx(h0?0.5x) f y′(h0?a′) =2501×103×486.85?1×14.3×500×349.8×(565?0.5×349.8) =1521.6mm ρmin =0.45f t f y =0.45×1.43×300=2.145×10?3 A s=A s′=1521.6mm2>ρ min bh=643mm2 实配:上下均为5Φ20,As=A s’=1570mm2 20

内支撑结构设计

、内支撑结构可选用钢支撑、混凝土支撑、钢与混凝土的混合支撑。 二、内支撑结构选型应符合下列原则: 1、宜采用受力明确、连接可靠、施工方便的结构形式; 2、宜采用对称平衡性、整体性强结构形式; 3、应与主体地下结构的结构形式、施工顺序协调,应便于主体结构施工; 4、应利于基坑方开挖和运输; 5、需要时,可考虑内摘除结构作为施工平台。 三、内支撑结构应综合考虑基坑平面形状及尺寸、开挖深度、周边环境条件、主体结构形式等因素,选用有立柱或无立柱的下列内支撑形式: 1、水平对支撑或斜撑,可采用单杆、桁架、八字形支撑; 2、正交或斜交的平面杆系支撑; 3、环形杆或环形板系支撑; 4、坚向斜撑。 四、内支撑结构宜采用超静定结构。对个别次要构件失效会引起结构整体破坏的部位宜设置冗余约束。内支撑结构的设计应考虑地质和环境条件的复杂性、基坑开挖步序的偶然变化的影响。 五、内支撑结构分析应符合下列原则: 1、水平对撑与水平斜撑,应按偏心压力国建进行计算;支撑的轴向压力其支撑间距N 倍挡土构件的支点力之和;腰梁或冠梁应按宜支撑我支座的多跨连续梁计算,计算跨度可取 相邻支撑点的中距; 2、矩形基坑支护的正交平面杆系支撑,可分解为纵横两个方向的结构单元,并分按偏心受压构件进行计算; 3、平面杆系支撑、环形杆系支撑,可按平面杆系结构采用平面有限元法进行计算;计 算时应考虑基坑不同方向上的荷载不均匀性;建立的计算模型中,约束支座的设置应与支护结构实际位移状态相符,内支撑结构边界向基坑外应设置弹性约束支座,向基坑内位移处不应设置支座,与边界平行方向应根据支护结构实际位移状态设置支座;

4、内支撑结构应进行坚向荷载作用下的结构分析;设有立柱时,在坚向荷载作用下内 支撑结构宜按空间框架计算,当作用在内支撑结构上的坚向荷载较小时,内支撑结构的水 平构件和按连续梁计算,计算跨度可取相邻立柱的中法,对支撑、腰梁与冠梁、挡土构件进行整体分析。 六、内支撑结构分析时,应同时考虑下列作用: 1、有挡土都建传至内支撑结构的水平荷载; 2、支撑结构自重;当支撑作为施工平台时,尚应考虑施工荷载; 3、当温度改变引起的支撑结构内力不可忽略不计时,应考虑温度应力; 4、当支撑立柱下沉或隆起量较大时,应考虑支撑立柱与挡土构件之间差异沉降产生的作用。 七、混凝土支撑构件及其连接的受压、受弯、受剪承载力计算应符合现行国家标准《混凝土结构设计规范》GB50010水位规定;钢支撑结构构件及其连接受压、受弯、受剪承载力 及各类稳定性计算应符合现行国家标准《钢结构设计规范》GB50017的规定。支撑的承载力 计算应考虑施工偏心误差的影响,偏心距取值不宜小于支撑计算长度的1/1000 ,且对混凝 土办职称不宜小于20mm对钢支撑不宜小于40mm 八、支撑构件的受压计算长度应按下列规定确定: 1、水平支撑在坚向平面内的受压计算长度,不设置立柱时,应取支撑的实际长度;设 置立柱时,应取相邻立柱的中心距; 2、水平支撑在水平平面内的受压计算长度,对无水平支撑杆件交汇的支撑,应取与支 撑相交的相邻水平支撑杆件的中心距;当水平支撑杆件的交汇点不子啊同一水平面内时,水平平面内的受压计算长度宜取与支撑相交的相邻水平支撑杆件中心距的倍; 3、对坚向斜撑,应按条第1、2款的规定确定受压计算长度。 九、预加轴向压力的支撑,预加力值宜取支撑轴向压力标准值的(~)倍,且应与本规 程中的支撑预加轴向压力一致。 十、立柱的受压承载力金额按下列规定计算: 内支撑结构设计 1、在坚向荷载作用下,内支撑结构按框架计算时,立柱应按偏心受压构件计算;内支

钢框架-中心支撑结构体系设计浅析

钢框架-中心支撑结构体系设计浅析 摘要:通过具体工程实例对钢框架-中心支撑结构体系进行分析,并进一步探讨钢框架-中心支撑结构体系的结构布置、结构分析、特殊构件与节点设计,以供设计参考。 关键词:钢框架-中心支撑;弹性时程分析;支撑与梁柱节点 1工程概况 某管理中心办公楼,地下1层,地上17层,建筑高度69.3m,标准层层高3.9m,总建筑面积44440m2。地下一层为车库及设备用房,地上部分主要功能为办公及会议,标准层结构平面布置见图1。 图1标准层结构平面布置图 工程抗震设防烈度6度,设计基本地震加速度0.05g,II类场地。按百年一遇风荷载取值,基本风压0.45kN/m2,地面粗糙度B类。 2结构体系与布置 主体结构采用钢框架-中心支撑体系,方(或矩形)钢管混凝土柱、H型钢梁及H型钢支撑。地下一层钢框架外包混凝土形成钢骨混凝土结构,支撑下部的地下室部分改为钢筋混凝土剪力墙,基础采用独立基础加防水板。 建筑标准层平面长82m,宽28.2m,长宽比约为2.9,长宽比相对较大。中部为公用区域,左右两边各有一个采光天井,天井外侧仅有3.2m宽楼板相连。根据建筑平面,最终确定的标准层结构平面布置见图1。利用中部公用区域布置六榀、组合成两个槽型的支撑框架(位置见图1中的ZC-1、ZC-2)。考虑到建筑平面两侧楼板透空,仅在端部有部分楼板相连,使得部分框架不能连成整体,以致结构两侧刚度大大降低,扭转效应显著,在③、轴布置两榀混合支撑框架(位置见图1中的ZC-3),以提高结构两端的刚度。各榀支撑框架立面见图2。结合建筑门洞口位置,ZC-1、ZC-2分别采用人字形支撑和V字形支撑。ZC-3上部为迭层混合空腹桁架;为满足建筑使用功能,支撑在五层向两侧框架进行转换,且转换后采用越层单斜杆支撑。为实现建筑主入口处门厅大空间要求,⑦、⑧轴框架局部抽柱并采用转换桁架进行托柱转换,⑦、⑧轴框架立面简图见图3。中部公用区域在、轴和、轴之间因设备管线布置及建筑净高要求,除个别楼层外无法设置钢梁(见图1、3),为更好地协调各部分框架协同受力,增加结构整体性,楼板厚度设计为140mm,并采用双层双向配筋,同时在建筑端部透空楼板外的相连部分板中设斜向抗剪钢筋以增强其受力性能。

支护、支撑系统的结构设计

支护、支撑系统的结构设计 一、支护、支撑结构选型 根据岩土工程勘察报告,本工程基坑开挖深度范围的土层主要为填土和淤泥,地质条件差,同时管道基坑深度较大,且不同地段管道基坑底的地质条件不同,需根据不同的形式采用相应的支护方式。本工程根据基坑开挖深度,管道地基处理方式,以及内支撑的不同采用了四种不同的支护方式。 (一)管道基坑支护形式 1、管道基坑支护方式一 基坑深度<3000㎜,采用6米长III型拉森钢板桩加一道内支撑进行基坑支护,钢板桩之间采用HW250*250*11*11围檩进行连接,直径DN300*10的钢管进行内支撑,支撑距地面1000㎜。 2、管道基坑支护方式二 基坑深度<6000㎜,基坑深度5000㎜的情况。采用9米长III型拉森钢板桩加二道内支撑进行基坑支护,钢板桩之间采用HW250*250*11*11围檩进行连接,直径DN300*10的钢管进行内支撑。第一道支撑距地面1000㎜,第二道支撑距第二道支撑2000㎜。 3、管道基坑支护方式三 基坑深度H<2000㎜的过河钢管的情况。过丹山河围堰截流,采用12米长III型拉森钢板桩加二道内支撑进行基坑支护,钢板桩之间采用HW250*250*11*11围檩进行连接,直径DN300*10的钢管进行内支撑,第一道支撑距地面1000㎜,第二道支撑距钢管顶面500㎜。 4、管道基坑支护方式四 基坑深度H<3500㎜。高压旋喷桩采用双重管法施工,桩径为D500,桩距为30cm,浆液主要材料为32.5R普通硅酸盐水泥,每延米300Kg水泥用量,水灰比为1:1,喷嘴压力大于等于24Mpa,速凝剂水玻璃按水泥用量的2%投加,空压机的压力大于等于0.6 Mpa。 (二)、管道基坑支护图

支撑结构设计施工方法

支撑结构设计施工方法 1.1支撑方式和支撑点选择 由于相机采用全反射光学系统,反射镜的背部不参与光束传输,因此,常采用刚度较高的背部支撑方式。 1.2柔性支撑结构设计 在主镜支撑结构上减弱了个别方向上的刚度,引入了一定的柔性,以此来抵消反射镜由于温度变化产生的热应力和微小变形。柔性铰链被广泛应用于支撑结构的柔性设计领域,其具有无机械摩擦、结构简单、释放自由度和灵敏度高等特点。 柔性铰链通过在某一方向上切开一个柔性槽,以降低该方向上的刚度,体现其柔性,使其能够产生微小变形,释放热应力,只存在一个柔性槽的柔性铰链被称为单向柔性铰链,而在一般情况下,往往将多个柔性槽成组使用,即可实现在多方向上的柔性,达到释放多个自由度的目的,将其称之为多层柔性铰链。 由于主镜采用背部3点支撑方式,在反射镜长度方向上对称分布支撑点位置,基于半运动学安装定位原理,每个柔性支撑结构需要约束两个方向的自由度,因此,采用3层组合式柔性铰链,释放4个方向的自由度,参考Bipod双脚架设计原理,设计柔性支撑结构,其分为两个部分,上部分与反射镜支撑孔粘接,下部分与支撑背板连接,上下两部分通

过螺钉连接。 3个柔性铰链对心安装,便可以恰好约束镜体6个方向的自由度,又不会因为过定位产生装配应力。支撑背板的作用是固定连接3个柔性支撑结构,将反射镜固定安装在框架指定位置,因此采用高强度的加强筋与薄壁组合的结构形式,组成多个结构封闭的四边形单元,以达到支撑背板高刚度的的要求。 对比材料各项性能指标,综合考虑力学性能、热性能、对空间环境的适应性以及加工工艺性等因素,选用线胀系数经过特殊匹配的Invar作为反射镜柔性支撑结构的材料,采用比刚度高、导热性好、线胀系数低的高体份SiC/Al复合材料作为支撑背板的材料。 2镜体轻量化设计 在反射镜背部,布置一系列形状规则的三角形轻量化孔,具有轻量化率较高、刚度好、“网格效应”低、加工制造工艺成熟等优点。为确定主镜镜体最优的结构尺寸,在反射镜刚度最大和质量最小之间取得最佳平衡,需要对镜体进行优化设计。 首先建立反射镜的有限元模型,分析其在1g重力作用下的变形,并提取镜面最大变形结果,生成优化过程中所需要的分析文件,然后,选择优化处理器,确定目标函数为反射镜质量最小,状态变量为1g重力作用下的镜面最大变形

内支撑结构设计

一、内支撑结构可选用钢支撑、混凝土支撑、钢与混凝土得混合支撑。 二、内支撑结构选型应符合下列原则: 1、宜采用受力明确、连接可靠、施工方便得结构形式; 2、宜采用对称平衡性、整体性强结构形式; 3、应与主体地下结构得结构形式、施工顺序协调,应便于主体结构施工; 4、应利于基坑方开挖与运输; 5、需要时,可考虑内摘除结构作为施工平台。 三、内支撑结构应综合考虑基坑平面形状及尺寸、开挖深度、周边环境条件、主体结构形式等因素,选用有立柱或无立柱得下列内支撑形式: 1、水平对支撑或斜撑,可采用单杆、桁架、八字形支撑; 2、正交或斜交得平面杆系支撑; 3、环形杆或环形板系支撑; 4、坚向斜撑。 四、内支撑结构宜采用超静定结构。对个别次要构件失效会引起结构整体破坏得部位宜设置冗余约束。内支撑结构得设计应考虑地质与环境条件得复杂性、基坑开挖步序得偶然变化得影响。 五、内支撑结构分析应符合下列原则: 1、水平对撑与水平斜撑,应按偏心压力国建进行计算;支撑得轴向压力其支撑间距N倍挡土构件得支点力之与;腰梁或冠梁应按宜支撑我支座得多跨连续梁计算,计算跨度可取相邻支撑点得中距; 2、矩形基坑支护得正交平面杆系支撑,可分解为纵横两个方向得结构单元,并分按偏心受压构件进行计算; 3、平面杆系支撑、环形杆系支撑,可按平面杆系结构采用平面有限元法进行计算;计算时应考虑基坑不同方向上得荷载不均匀性;建立得计算模型中,约束支座得设置应与支护结构实际位移状态相符,内支撑结构边界向基坑外应设置弹性约束支座,向基坑内位移处不应设置支座,与边界平行方向应根据支护结构实际位移状态设置支座;

4、内支撑结构应进行坚向荷载作用下得结构分析;设有立柱时,在坚向荷载作用下内支撑结构宜按空间框架计算,当作用在内支撑结构上得坚向荷载较小时,内支撑结构得水平构件与按连续梁计算,计算跨度可取相邻立柱得中法,对支撑、腰梁与冠梁、挡土构件进行整体分析。 六、内支撑结构分析时,应同时考虑下列作用: 1、有挡土都建传至内支撑结构得水平荷载; 2、支撑结构自重;当支撑作为施工平台时,尚应考虑施工荷载; 3、当温度改变引起得支撑结构内力不可忽略不计时,应考虑温度应力; 4、当支撑立柱下沉或隆起量较大时,应考虑支撑立柱与挡土构件之间差异沉降产生得作用。 七、混凝土支撑构件及其连接得受压、受弯、受剪承载力计算应符合现行国家标准《混凝土结构设计规范》GB50010水位规定;钢支撑结构构件及其连接受压、受弯、受剪承载力及各类稳定性计算应符合现行国家标准《钢结构设计规范》GB50017得规定。支撑得承载力计算应考虑施工偏心误差得影响,偏心距取值不宜小于支撑计算长度得1/1000,且对混凝土办职称不宜小于20mm,对钢支撑不宜小于40mm。 八、支撑构件得受压计算长度应按下列规定确定: 1、水平支撑在坚向平面内得受压计算长度,不设置立柱时,应取支撑得实际长度;设置立柱时,应取相邻立柱得中心距; 2、水平支撑在水平平面内得受压计算长度,对无水平支撑杆件交汇得支撑,应取与支撑相交得相邻水平支撑杆件得中心距;当水平支撑杆件得交汇点不子啊同一水平面内时,水平平面内得受压计算长度宜取与支撑相交得相邻水平支撑杆件中心距得1、5倍; 3、对坚向斜撑,应按条第1、2款得规定确定受压计算长度。 九、预加轴向压力得支撑,预加力值宜取支撑轴向压力标准值得(0、5~0、8)倍,且应与本规程中得支撑预加轴向压力一致。 十、立柱得受压承载力金额按下列规定计算: 内支撑结构设计

支撑设计

在框架-支撑结构体系中,支撑构件是作为结构主要的抗侧力构件,因此其与梁柱的连接应能充分传递支撑杆件的内力,同时尚应保留一定的富余量。采用双角钢或双槽钢组合截面的支撑,一般是通过节点板与梁柱连接;对侧向刚度要求较高的构件或大型重要结构,往往采用抗压性能好的H形和箱型截面,这时支撑和梁柱的连接,通常时借助相同截面的悬伸支撑杆来实现,支撑杆本身则需采用拼接连接。 1.中心支撑与梁柱的连接: 中心支撑的重心线应与梁柱重心线三者汇交于一点,否则应考虑由于偏心产生的附加弯矩的影响,为便于节点的构造处理,带支撑的梁柱节点通常采用柱外带悬臂梁段的形式,使梁柱接头与支撑节点错开。支撑翼缘与梁和柱连接时,在连接处梁、柱均应设置加劲肋,以承受支撑轴心力对梁或柱的竖向或水平分力。支撑翼缘与箱形柱连接时,在柱壁板内的相应位置应放着水平加劲隔板。 2.偏心支撑与梁的连接 偏心支撑的轴线与耗能梁段轴线的交点宜位于耗能梁段的端点;也可位于耗能梁段内,这样支撑的连接设计会更灵活些;但不得将交点设置于耗能梁段外。根据偏心支撑框架的设计要求,支撑端将承受相当大的弯矩,因此,支撑与梁的连接应为刚性连接,支撑直接焊于梁段的节点连接最有效。 支撑设置 钢结构门式钢架轻钢厂房的每个温度区段或分期建设的区段均应分别设置能 独立构成空间稳定结构的支撑体系。而且要遵守一定的原则,现总结原则如下:(1)在门式刚架轻型钢厂房中,可采用十字交叉圆钢作为柱间支撑和屋盖支撑,圆钢应设张紧螺栓,施工中对支撑圆钢进行张紧处理。圆钢与构件间的夹角宜在30°-60° 间,以接近45°为佳。 (2)为增加厂房的整体性,使厂房结构形成空间几何不变体系,在设置了柱间支撑的开间应同时设置屋盖横向支撑。 (3)屋盖的横向支撑一般设在温度区段端部第一或第二开间。当端部支撑设在第二个开间时,第一个开间的相应位置应设刚性系杆。 (4)在钢架的转折处,如单跨钢架的柱顶和屋脊处以及多跨刚架的某些中间柱的柱顶和屋脊处,应沿厂房长度设置刚性系杆。 (5)当刚架柱的高度相对于柱间距较大时,柱间支撑可分层设置。如厂房内有不小于5t的桥式吊车时,柱间支撑宜采用型钢支撑,但为了使温度区段内发生温度变形时在端部不受约束,在温度区段端部吊车梁以下的柱间不宜设置支撑。 (6)支撑的间距应根据厂房纵向柱距、受力情况以及安装条件确定。厂房无吊车时柱间支撑间距宜取30-45m;厂房有吊车时柱间支撑宜设在温度区段的中部,温度区段较长时可设在温度区段的三分点处,且间距不宜大于60m. (7)当厂房的宽度大于60m时,柱内列应适当增加柱间支撑。 (8)当设有带驾驶室且起重量大于15t桥式吊车的跨间,应在屋盖边缘设置纵向支撑体系。 (9)在不允许设置交叉柱间支撑时,可设置其他如门式等形式的柱间支撑。当不允许设置任何支撑时,可通过设置纵向刚架或桁架来代替柱间支撑。 (10)刚架横梁的截面刚架横梁下翼缘和刚架柱内侧翼缘在刚架平面外的稳定可通过与檩条或墙梁相连接的隅撑来保证。

轴支承结构设计

轴支撑结构设计准则 课程名称:结构设计 学院:机械工程与自动化 专业:材料成型及控制工程 班级:材料成控091 学生姓名:关涛(01)林骏(29) 指导教师:陶学恒

轴支撑结构设计准则 1 引言 旋转运动的轴必须由至少两只相距一定距离的滚动(或滑动)轴承来支承,旋转轴的运行性能、支承状况及质量及密切相关,对旋转轴支承状况和质量有决定性影响的不仅是轴承本身而且包括轴承周围的支承结构设计。滚动轴承是标准件,对它的设计主要是选型和确定尺寸,不涉及结构设计问题,而轴承周围的机构,比如轴承座,则必须根据不同的轴承经行具体的结构设计。如何经行整个轴支承结构的设计,以保证轴支承的性能,提高轴支承的质量?本文提出12条轴支承结构设计准则。 2 轴支撑设计准则 轴支承结构设计的主要要求是持久、可靠、经济。要满足这些要求,仅靠正确地选择轴承类型、轴承尺寸是远不够的,轴承周围的结构因素,诸如轴颈、轴承座、定位件等对轴支承性能的影响是显著的,此外,密封、润滑的影响也很大。 轴支承结构设计的首先要确定如何对所选用的轴承根据其工况在圆周方向和轴向进行可靠地固定,周向固定通常利用配合面上的摩擦力,即采取压紧配合的方法,轴向固定一般用结构方法,例如,凸台、挡圈、螺母等。其次轴支承结构的设计要便于安装、拆卸、密封、润滑。下面结合集体结构实例逐一论述轴支承结构设计准则。 轴系的结构设计没有固定的标准,要根据轴上零件的布置和固定方法,轴上载荷大小、方向和分布情况,以及对轴的加工和装配方法决定的。轴的结构设计,要以轴上零件的拆装是否方便、定位是否准确固定是否牢靠来衡量轴结构设计的好坏。轴的结构设计要包括轴的合理外形和全部尺寸,要满足强度、刚度以及装配加工要求,拟定几种不同的方案进行比较,轴的设计要越简单越好。 轴的结构设计主要取决于以下几个方面:轴在机器中的安装形式和位置;载荷的性质、方向、大小及分布情况;轴上安装零件的类型、数量、尺寸以及相应的连接方法等。轴的结构要满足:轴上的零件不仅要有准确的工作位置还要便于调整和装拆;轴要具有良好的制造工艺性。 2.1 轴向静定准则 轴支承结构设计必须使轴在轴线方向处于静定状态——轴在轴线方向既不能有刚体位移(静不定),也不能有阻碍自由伸缩的多余约束(超静定)。轴向静定准则是轴支承结构设计中最基本最重要的准则。 轴在轴向若约束 不够,则表示轴定位 不确定,甚至有从轴 向脱离的危险,这种 情况必须避免,见图 1(左)。将轴在轴线 正反两个方向都分别 固定可避免静不定, 但每个轴上也不能有

单体液压支柱的结构设计(详细尺寸、三维视图)

单体液压支柱的结构设计

第1章绪论 1.1我国煤层贮存状况 我国是煤炭资源最为丰富的国家,煤炭的储量和产量占世界第一位。煤炭已经成为我国所依赖的重要能源。我国的煤炭资源分布地域极广,煤层贮存状况也各式各样,主要有如下几个特点: 1、从围岩和煤层贮存的关系上来说,我国不仅有贮存在软岩顶板下的煤层和一般顶板条件下的煤层,还有赋存在坚硬顶板条件下的煤层。坚硬顶板下煤层开采难度相当大,常常有几千平方米的悬顶出现,一旦垮落即可造成严重的事故。 2、从煤层贮存的地质条件来说,由于地质条件复杂,由地壳运动而造成的被断层破坏的煤层较多。在一块煤田中,总有几条贯穿整个煤田的、大落差的断层,至于较小的断层更是层出不穷。 3、从煤层自身的贮存条件上来说,在我国境内的煤层有近水平煤层,有倾斜煤层,有急倾斜煤层,还有直立倒转的煤层;不仅有相当稳定的大片煤层,也有像我国南方的“鸡窝”状贮存煤层。 可以看出,我国是世界上煤层贮存条件最为复杂的国家。在开采的实践过程中,工程技术人员所遇到的困难和解决困难的方式是全世界绝无仅有的。近几年煤矿冒顶事故频繁发生,因此,单体液压支柱在采矿工业中是非常重要的。它保障着国家财产和人员的生命安全,尤其在大倾角煤层中,更能体现它的重要性。但通用式单体液压支柱不能满足要求,所以对其顶盖进行改进——采用防倒式顶盖。 1.2用途 外注式支柱是一种外部供液的恒阻式单体液压支柱。它可与金属顶梁配套使用,也可单独做点柱用,供煤矿一般机械化工作面支护顶板,或供综合机械化工作面作端头支护及其他临时性支护。 1.3适用范围 外注式支柱使用于下列煤层条件: 1、煤层倾角大于25°~35°的急倾斜回采工作面。 2、煤层顶、底板条件 (1)工作阻力为300KN的支柱,底板抗压入强度应为28MP以上。如底板较软,支柱压入底板的深度以不恶化顶板的完整性及不影响支柱的回收为限,否则,应采取“穿鞋”或加大底座等措施。

结构支撑体系设计

门式刚架结构的支撑体系 轻型门式刚架结构沿宽度方向的横向稳定性,是通过设计适当刚度的框架来抵抗所承受到的横向荷载而保证的。由于在长度方向的纵向结构刚度较弱,于是需要沿纵向设置支撑,以保证其纵向稳定性。支撑系统的主要目的是把施加在纵向结构上的风、起重机及地震等荷载从其作用点传到柱基础,最后传到地基。轻型门式刚架结构的标准支撑系统有斜交叉支撑(图1)、门架支撑(图2)和柱脚绕弱轴抗弯固接的刚接柱支撑(图3)。 图1 交叉支撑 图2 门架支撑 图3 柱脚绕弱轴抗弯固接的刚接柱支撑 支撑结构及其相连的两榀主刚架形成了一个完全的稳定开间,在施工或使用过程中,它都能通过屋面檩条或系杆为其余各榀刚架提供最基本的纵向稳定保障。 作用在山墙上的风荷载由支撑传递到基础的路径,如图4所示,交叉支撑需要克服杆件本身的自重和外力引起的轴力。预张力圆钢通过预张力克服自重,其他截面杆件则通过截面本身的抗弯性能来平衡自重产生的弯矩。 支撑的设计具体包括支撑形式选择、支撑布置、支撑杆及支撑连接设计四个方面。 一、支撑承受的荷载 1、纵向风荷载 结构纵向的风荷载实际的传为路径有两部分:大部分通过存在支撑的跨间传到基础力,如图4所示;另外一部分荷载则由檩条系统作用到结构中部的各榀刚架,并依靠刚架本身的平面外刚度传递至地面。但在设计中,中间跨的分担作用比较小,并且计算工作量大,如果考虑檩条受压,还会增加檩条设计的复杂性,所以通常认为支撑承担了所有的纵向风荷载。

支撑 图4 山墙风荷载传递路径 2、檩条系统的传力 檩条和隅撑为主刚架的构件提供平面外的抗侧力,如图5所示。结构的所有檩条和隅撑的这种抗侧力叠加起来,最后由两端的支撑来平衡。这部分合力的具体数值很难通过简化模型准确计算得到,而且与纵向风荷载相比也比较小,在支撑设计中通常可以忽略不计。但在檩条和隅撑的平面外支撑作用比较显著时,也会给两端支撑带来不利影响。所以在支撑设计时,常常要 求留有一定的余量。 图5 檩条和隅撑为构件提供支撑力 二、交叉支撑 交叉支撑是轻型钢结构建筑中,用于屋顶、侧墙和山墙的标准支撑系统。交叉支撑有柔性支撑和刚性支撑两种。 1、柔性支撑 柔性支撑构件为镀锌钢丝绳索、圆钢、带钢或角钢,由于构件长细比较大,几乎不能受压。在一个方向的纵向荷载作用下,一根受拉,另一根则退出工作。设计柔性支撑时可对钢丝绳和圆钢施加预拉力,以抵消自重产生的压力,这样计算时可不考虑构件自重。 2、刚性支撑 刚性支撑构件为方管或圆管,可以承受拉力和压力。 柔性支撑和刚性支撑的工作机理如图6所示。 三、支撑平面的设置 由于檩条对屋面梁的平面外支撑力的合力最后由支撑系统来平衡,这样就要求支撑平面尽量地靠近檩条所在的平面,以避免整个屋面纵向传力系统出现偏心。 对于十字交叉的剪刀撑来说,如果杆件选用张紧的圆钢,就可以在腹板靠近上翼缘打孔,或直接在上翼缘焊接连接板作为连接点来实现,如图7(a)所示。如果选用角钢,连接板仍然可以焊接在上翼缘,那么由于在交叉点杆件必须肢背相靠,如图7(d)所示,这时要求在檩条和上翼缘之间留有比较大的空间,如图7(b)所示。为克服该情况的出现,连接板可以被焊接在梁腹板的中间,以便于设计和安装,如图7(c)所示。

相关主题
文本预览
相关文档 最新文档