当前位置:文档之家› 弹塑性力学-第7章 柱体的弹塑性扭转(1)

弹塑性力学-第7章 柱体的弹塑性扭转(1)

弹塑性力学-第7章 柱体的弹塑性扭转(1)
弹塑性力学-第7章 柱体的弹塑性扭转(1)

第七章 等截面柱体的弹塑性扭转

在船舶、航空、土建以及机械工程等的机械传动机构中,作为传递扭矩的柱体是个重要的部件。所谓柱体的扭转,是指圆柱体和棱柱体只在端部受到扭矩的作用,且扭矩矢量与柱体的轴线z 的方向相重合。

扭转问题属于仅在端面上受力柱体的平衡问题,若严格地满足其边界条件,按弹塑性力学求解是比较困难的。因此,利用圣维南原理,将边界条件放松,即认为柱体中间截面上的应力仅与端面上外力的合力及合力矩有关,这种放松了边界条件的问题称为圣维南问题。即使对于圣维南问题,仍需要求解一组偏微分方程,并使其满足一定的边界条件。但在实用上很少由直接积分其基本方程而得到解答,大部分工程问题用间接的或近似的方法得到。在间接方法中,圣维南的半逆解法是很重要的。即先在应力或位移分量中假设一部分未知函数,然后将这部分函数代入基本方程,求得另外一部分的未知函数,并使全部未知函数满足所给定的边界条件,则所假设的和求得的函数即为问题的解。由于用应力作为基本未知函数用半逆法求解时可以导致比较简单的边界条件,因此求解比较方便。

7.1 弹性柱体自由扭转的基本关系式与应力函数解

在材料力学中曾经过讨论圆轴的扭转,其特点是扭转变形前后的截面都是圆形,而且每一个截而只作刚体转动,在小变形条件下,没有铀向位移,取坐标系为z y x ,,,且柱体的轴线为z 方向,z 方向的位移为w ,即0),,(=z y x w 。这样,变形后截面的半径及圆轴长度基本不变。

非圆形截面柱体的情况要复杂得多。由于截面的非对称性,在扭转过程中,截面不再保持为平面,而发生了垂直于截面的翘曲变形,即0),,(≠z y x w 。函数 ),,(z y x w 称为翘曲函数。下面讨论任意截面形状的棱柱体扭转基本方程。 设有任意截面形状的等截面棱柱体,柱体两端受纠扭矩T M 作用,如图7.1所示。

1. 边界条件

对于扭转问题,柱体侧面为自由表面,因此柱体侧面的边界条件为

??

???=+=+=+000m l m l m l zy zx y xy xy x ττσττσ (7.1-1)

式中),cos(),,cos(n y m x n l ==。

图7.1 棱柱体的扭转

在端部边界条件为

?????????====-==????????????00,0)(0,0ydA xdA dA M dA y x dA dA z z

z T zx zy zy zx σσσττττ (7.1-2) 2.柱体扭转时的位移与应变

对于柱体扭转问题,圣维南半逆解法假设:(1)认为截面的翘曲变形与z 轴无关,即各截面们翘曲程度相同。(2)柱体发生扭转变形时,截面仅仅产生绕z 轴的刚体转动,且间矩为单位长度的两截面的相对扭转角(扭率)θ为常数。因此,由假设(1)可知,翘曲函数w 仅为y x ,的函数;又由假设(2) 可知,翘曲函数必与祟函数戏正比,即

),(y x w θψ= (7.1-3) 再由假设(2),如果令距坐标原点为z 处截面相对0=z 截面的扭转角为z θ,则该截面上距扭转中心A 为r 的任一点扭转后移

至),,('z v y u x P +-(图7.2),由于0=z 处截

面没有转动,只有翘曲,因此P 点在y x ,方向

的),,.(z y x P 位移分量为

?

??==-=-=z x z r v z y z r u θαθθαθcos )(sin )( (7.1-4) 式中α为AP 与x 轴之间的夹角。由于截面总扭转角 图7.2扭转变形的位移 与该截面至坐标原点的距离成正比,故AP 的转角为z θ。将式(7.1-3)和式(7.1-4)代入应变位移关系,可得一点的应变为

?????+??=-??=====)()(0

0x y ,y x ,

zy zx xy z y x ψθγψθγγεεε (7.1-5) 3.广义虎克定律

对于柱体的弹性扭转,根据(7.1-5)式可得应力与应变之间的关系化为 ????

?????+??==-??======)()(0x y G G y x G G zy zy zx zx xy z y x ψθγτψθγττσσσ (7.1-6) 由式(7.1-5)和(7.1-6)可见,根据圣维南原理得到:截面上任诃一点都没有正应力,因此各纵向纤维之间和沿各纵向纤维方向均无压了应力;在各截面内(xoy 平面)没有应变,即截面在xoy 坐标面上的投影形状不变。此外,在截面每一点只有由zx τ和zy τ所确定的纯剪切。

4.平衡方程

当不计体力时,平衡方程可由(2.2-2)式化为 ????

?????=??+??=??=??000y x z z zy zx zy zx ττττ (7.1-7) 5.应变协调方程

将式(7.1-6)中的第二式对y 微分,第三式对x 微分,然后相减,可得用应力表示的两种不同形式的应变协调方程为 ???

????-=??-??=??+??θττψψG x y y x zy zx 202222 (7.1-8) 由上式可知,翘曲函数ψ是调和函数,通常称ψ为圣维南调和函数。于是,任意截面形状的柱体扭转时的应力,归结为根据边界条件求解(7.1-7),(7.1-8)两式。

6.柱体扭转的应力函数法

由于从(7.1-8)式求解翘曲函数ψ通常比较困难,为此,借助应力函数法。当

不计体力时,设应力函数?与应力分量zx τ和zy τ之间的关系为 x

y zy zx ??-=??=?τ?τ, (7.1-9) 称?为普朗特应力函数。将式(7.1-9)代入平衡方程式(7.1-7),显然满足。将它代入应变协调方程(7.1-8)第二式后,得 θ???G y x 222222

-=??+??=? (7.1-10) 由此可知,应力函数?应满足上述偏微分方程式(7.1-10)。这种类型的方程称为泊松方程。

当柱体侧面无面力作用时,则边界条件式(7.1-1)简化为

0=+m l zy zx ττ (a)

注意到在边界上,)(),(s y y s x x ==,由图7.1可知,当s 增加时,y 增加,而x 减少。因此,其方向余弦为 ???????-====ds dx y n m ds

dy x n l ),cos(),cos( (b) 将式(7.1- 9)和式(b)代入式(a)后,有

0=??=????+????s

s x x s y y ??? (c) 由式(c)可知 =?常数

上式说明,沿柱体任意截面的边界曲线,应力函数),(y x ?为一任意常数。对于实心柱体,也即截面为单连通域,由式(7.1-9)知,因剪应力是应力函数的一阶偏导数,所以将常数取为零并不失一般性,即

0),(=y x ? (沿柱体周边0C ) (7.1-11) 而截面上任一点的合剪应力的为 n

grad x y zy zx ??==??+??=+=????τττ2222)()( (7.1-12) 式中n 为沿?等值线的法线方向,τ的方向为沿?等值线的切线方向,因此称?等值线为剪应力线。由于边界上的剪应力方向必须与边界的切线一致,故周界线0C 本

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法

弹塑性力学 第四章 弹性力学的基本方程与解法 一、线性弹性理论适定问题的基本方程和边界条件 对于在空间占有体积域V 的线弹性体在外加恒定载荷和固定几何约束条件下引起 的小变形问题,若以, , u εσ作为求解变量,则可以建立如下偏微分方程边值问题: 几何方程 ()1,,2ij i j j i u u ε= + ()12?+?u u ε= (1a) 广义胡克定律 ij ijkl kl E σε= :E σ=ε (1b) 平衡方程 ,0ij j i f σ+= ??+=f 0σ V ?∈x (1c) 以上方程均要求在域内各点均满足。 边界条件 u u i i = ?∈x S ui (2a) n t j ji i σ= ?∈x S ti (2b)对于适定问题,即不仅要求保证解存在唯一,而且有较好的稳定性。当载荷或边界条件给定值有微小摄动时,应能保证问题解的变化也是微小的。对于边界条件的提法就有严格的要求。即要求: S S S S S ui ti ui ti U I ==? (2c) 对于各向同性材料,其广义胡克定律可具体写成 σλεδεij kk ij ij G =+2 ()tr 2G λ+I σ=εε (3a) ()11ij ij kk ij E ενσνσδ??=+??? ()()1tr E νν=????I ε1+σ?σ (3b)以上就域内方程来说,一共是对于u ,,σ ε的15个独立分量u i ij ij ,, σε的15个方程。对于边界条件来说,三维问题每点有三个边界条件,而且是在三个正交方向上每个方向有一个边界条件,这个边界条件或者给定位移、或者给定面力。这三个正交

弹塑性力学第十一章标准详解

第十一章 习题答案 11.3使用静力法和机动法求出图示超静定梁的极限载荷。 解1:(1)静力法 首先该超静定梁(a )化为静定结构(b )、(c )。分别求出其弯矩图,然后叠加,得该超静定梁的弯矩图(f ) 在极限情况下 ,A s B s M M M M =-= 设C 点支反力为C R ,则: 12C s R l Pl M -=- 1(2)C s R l l M -= 由上二式得() ()111 42p M l l P l l l * -= - 当P 值达到上述数值时,结构形成破坏机构,故P 为该梁的完全解。 (2)机动法 设破坏机构如图(g ),并设B 点挠度为δ,则: 11,(2)A C l l l θδθδ==- () 1122B A C l l l l δ θθθ=+= - 外力功e W P δ=

内力功() 1 1142i A A B B s l l W M M M l l l θθδ-=+= - 由e i W W =,可得极限载荷上限为 () 1 1142s l l P M l l l *-= - 由于在P *作用下,()s s M M x M -≤≤,故上式所示载荷为完全解的极限载荷。 解2:(1)静力法 先将该超静定梁化为静定梁(b )、(c ),分别作弯矩图,叠加得该超静定梁的弯矩图(f ) 设A 点为坐标原点,此时弯矩方程为: ()()()2 12 B M x R l x q l x =--- 在极限状态时,有 ()0,0s x M M ==- ()11,s x x M x M == 令 () 0dM x dx =得1()B q l x R -= (1) 而21 2 B s R l ql M -=- (2) ()()2 1112 B s R l x q l x M ---= (3) 联立解(1)、(2)、(3)得 2 1 22s s M qM ql l ??=- ??? 解得21122s M q l ?= ?

应用弹塑性力学习题解答教材

应用弹塑性力学习题解答 目录 第二章习题答案 (2) 第三章习题答案 (6) 第四章习题答案 (9) 第五章习题答案 (26) 第六章习题答案 (37) 第七章习题答案 (49) 第八章习题答案 (54) 第九章习题答案 (57) 第十章习题答案 (59) 第十一章习题答案 (62)

第二章习题答案 2.6设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 2.7利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系 可求得。 最终的结果为

2.8已知应力分量为,其特征方程为 三次多项式,求。如设法作变换,把该方程变为形式 ,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 2.9已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记

2.10已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,, 2.11已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为, ,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得

(完整版)弹塑性力学作业(含答案)(1)

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值 应作何修正。 解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定) 代入材力有关公式得: 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +2 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所 示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A A γσγ??===?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε==; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= o o o o V ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = = o V ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-?? ??+-?? ??--?? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P v 、正应力σn 及剪应力τn 。 解:首先求出该斜截面上全应力n P v 在x 、y 、z 三个方向的三个分量:n '=n x =n y =n z 题图1-3

弹塑性力学-第7章 柱体的弹塑性扭转(1)

第七章 等截面柱体的弹塑性扭转 在船舶、航空、土建以及机械工程等的机械传动机构中,作为传递扭矩的柱体是个重要的部件。所谓柱体的扭转,是指圆柱体和棱柱体只在端部受到扭矩的作用,且扭矩矢量与柱体的轴线z 的方向相重合。 扭转问题属于仅在端面上受力柱体的平衡问题,若严格地满足其边界条件,按弹塑性力学求解是比较困难的。因此,利用圣维南原理,将边界条件放松,即认为柱体中间截面上的应力仅与端面上外力的合力及合力矩有关,这种放松了边界条件的问题称为圣维南问题。即使对于圣维南问题,仍需要求解一组偏微分方程,并使其满足一定的边界条件。但在实用上很少由直接积分其基本方程而得到解答,大部分工程问题用间接的或近似的方法得到。在间接方法中,圣维南的半逆解法是很重要的。即先在应力或位移分量中假设一部分未知函数,然后将这部分函数代入基本方程,求得另外一部分的未知函数,并使全部未知函数满足所给定的边界条件,则所假设的和求得的函数即为问题的解。由于用应力作为基本未知函数用半逆法求解时可以导致比较简单的边界条件,因此求解比较方便。 7.1 弹性柱体自由扭转的基本关系式与应力函数解 在材料力学中曾经过讨论圆轴的扭转,其特点是扭转变形前后的截面都是圆形,而且每一个截而只作刚体转动,在小变形条件下,没有铀向位移,取坐标系为z y x ,,,且柱体的轴线为z 方向,z 方向的位移为w ,即0),,(=z y x w 。这样,变形后截面的半径及圆轴长度基本不变。 非圆形截面柱体的情况要复杂得多。由于截面的非对称性,在扭转过程中,截面不再保持为平面,而发生了垂直于截面的翘曲变形,即0),,(≠z y x w 。函数 ),,(z y x w 称为翘曲函数。下面讨论任意截面形状的棱柱体扭转基本方程。 设有任意截面形状的等截面棱柱体,柱体两端受纠扭矩T M 作用,如图7.1所示。 1. 边界条件 对于扭转问题,柱体侧面为自由表面,因此柱体侧面的边界条件为 ?? ???=+=+=+000m l m l m l zy zx y xy xy x ττσττσ (7.1-1) 式中),cos(),,cos(n y m x n l ==。

弹塑性力学-第1章 绪论

第一章绪论 1.1弹塑性力学的任务 固体力学是研究固体材料及其构成的物体结构在外部干扰(载荷、温度交化等)下的力学响应的科学,按其研究对象区分为不同的学科分支。弹性力学和塑性力学是固体力学的两个重要分支。弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效难则。 以弹性分析为基础的结构设计是假定材料为理想弹性,相应于这种设计观点就以分析结果的实际适用范作为设计的失效准则,即认为应力(严柞地说是应力的某一函数值)到达一定限值(弹性界限),将进入塑性变形阶段时、材料将破坏。结构中如果有一处或—部分材料“破坏”,则认为结构失效(丧失设计所规定的效用)。由于一般的结构都处于非均匀受力状态,当高应力点或高应力区的材料到达弹性界限时,类他的大部分材料仍处于弹性界限之内;而实际材料在应力超过弹性界限以后并不实际发生破坏,仍具有一定的继续承受应力(载荷)的能力,只 不过刚度相对地降低。因此弹性设计方法不能充分发挥材料的潜力,导致材料的某种浪费。实际上、当结构内的局部材料进入塑性变形阶段,在继续增加外载荷时,结构的内力(应力)分布规律与弹性阶段不同,即所谓内力(应力)重分布,这种重分布总的是使内力(应力)分布更趋均匀,使原来处于低应力区的材料承受更大的应力,从而更好地发挥材料的潜力,提高结构的承载能力。显然,以塑性分析为基础的设计比弹性设计更为优越。但是,塑性设计允许结构有更大约变形,以及完全卸载后结构将存在残余变形。因此,对于刚度要求较高及不允许出现残余变

弹塑性力学讲义全套

弹塑性力学 弹塑性力学 绪论:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹塑性力学是固体力学的一个重要分支,是研究弹性和塑形物体变形规律的一门学科。它推理严谨,计算结果准确,是分析和解决许多工程技术问题的基础和依据。在弹塑性力学中,我们可以看到很多学习材料力学、结构力学等学科所熟知的参数和变量,一些解题的思路也很类似,但是我们不能等同的将弹塑性力学看成材料力学或者是结构力学来学习。材料力学和结构力学的研究对象及问题,往往也是弹塑性力学所研究的对象及问题。但是,在材料力学和结构力学中主要采用简化的初等理论可以描述的数学模型;在弹塑性力学中,则将采用较精确的数学模型。有些工程问题(例如非圆形断面柱体的扭转、孔边应力集中、深梁应力分析等问题)用材料力学和结构力学的方法求解,而在弹塑性力学中是可以解决的;有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的理论,而弹塑性力学则可以给出用初等理论所得结果可靠性与精确度的评价。在弹塑性力学分析中,常采用如下简化假设:连续性假设、均匀各向同性、小变形假设、无初应力假设等假设。 弹塑性力学基本方程的建立需要从几何学、运动学和物理学三方面来研究。在运动学方面,主要是建立物体的平衡条件,不仅物体整体要保持平衡,而且物体内的任何局部都要处于平衡状态。反映这一规律的数学方程有两类,即运动微分方程和载荷的边界条件。以上两类方程都与材料的力学性质无关,属于普适方

弹塑性力学基础翻译-第七章

弹塑性力学基础翻译■第七章 7、塑性 7.1介绍 两个基本因素控制弹性的发展,一个是加载过程的完全可逆性,当一个使物体产生应变的力消失,物体就立刻回到未加载力之前;第二个因素说明在荷载作用下物体的变形或者应变只取决于最终的应力,与加载过程和路径无关,因此弹性行为可以视为一个点函数,因为任何产生的应变可以通过初始应力、终了应力以及特定的比例常数来确定。但是当塑性或者永久变形产生时这两个因素就不明显了。 为了产生塑性变形或者塑性流,应力必须超过屈服应力。如果大大超过屈服应力,许多固体(比如延性金属)的变形或尺寸会一直打到一个很大的程度。另外,当最终应变形成,一个应变元可以通过不同的加

载方式使物体达到末状态,因此当荷载消失后不仅无法观测到像弹性一样的完全可逆现象,末状态也取决于荷载的加载过程而不只是初应力和末应力状态。这个发现意味着塑性变形是一个过程函数,需要增量应变在应变过程上的累积来确定总的应变。 在研究塑性的时候至少可以采取三种很明显 的方式。 1、在考虑应力应变分布满足规定的边界条件的情况下,通过材料的性质来建立理想模型。这个被称作宏观塑性理论,很类似于长久以来的弹性理论。 2、应用于金属物理学的方法。在这种方法中,实际固体中单晶体变形方式建立于研究的基础,通过一个物体内部联系从单晶体扩展到多晶体的聚集从而形成整个构件。这种方法通常被工程师运用。这个叫做微观塑性理论。 3、技术的方法。通过寻求某些现象学的规则,运用实验观察实际物体材料在宏观尺寸上的数学表达式。这确保在一般意义上的设计上可以预测材料的属性,这可能被叫做宏观工程塑性。这种方法在本章中是重点。 7.2弹性和塑性的比较为了方便,许多上述的说明被总结成表格的形式。在这种方式有个直接的比较,很

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

弹塑性力学试题及标准答案(2015、16级工程硕士)

工程硕士研究生弹塑性力学试题 一、简述题(每题5分,共20分) 1.简述弹性力学与塑性力学之间的主要差异。 固体力学是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正是固体力学中的两个重要分支。 弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。 大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效难则。 塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。 2.简述弹性力学中圣维南原理的基本内容。 3.简述薄板弯曲的基本假定。

弹塑性力学课件 第三章

R r u A A' x y z Ch3-1 位移与应变几何方程 分量形式: 符号规定:与坐标轴同向为正 刚体位移:各点间相对位置在物体发生位移后依然不变。 刚体位移不会使物体产生变形 n 位移: 定义A 点位移: u =r -R 位移—物体内每一点的空间位置的变化位移场:物体内各点位移矢量的集合 l l l ?′= εα ?=γ0 90A B A B l l ' ' ' x y z A B A B l l ''' C C ' α 90 x y z o 应变:符号规定:正应变—线元伸长为正 剪应变—直角变小为正 物体变形 { 体积改变形状畸变 长度变化,方向改变 O A B C O A B C ' ' ' 'x y z OA OA -A O x ′′= ε OB OB -B O y ′′= ε OC OC -C O z ′′= εA O B yx xy ′ ′′∠?π =γ=γ2B O C zy yz ′ ′′∠?π =γ=γ2C O A zx xz ′ ′′∠?π =γ=γ2 与一点的应力状态相似,可以证明:应变张量决定了一点的应变状态

x u dx u dx x u u x ??= ??? ??????+=εy v dy v dy y v v y ??= ???????????+=εx v dx v dx x v v yx ??= ???+= α)(y u dy u dy y u u xy ??= ???+= α)(xy u v y x γ??= +??dx x u u ??+dx x v v ??+dy y u u ??+dy y v v ??+考虑小变形假定 v αxy αyx x y O A B A'B' O' u x u x ε?= ?y v y ε?= ?xy yx u v y x γγ??== +??z w z ??= εyz zy v w z y γγ??== +??xz zx u w z x γγ??== +??几何方程(小变形): 其他应变分量同理可以得出 z w z ??= εx w z u zx xz ??+??= γ=γy w z v zy yz ??+??= γ=γε εεεε εεεε ε???? =?? ????? ? 1 2ij ij εγ=几何方程张量表示 )(2 1 ,,i j j i ij u u += εCauchy 应变 张量 ??? ???????????? ???+=dx x w dx x v dx x u A'M',, 1??? ???????????????+??=dy y w dy y v dy y u B'M',,1? ??????????? ??+????=dz z w dz z v dz z u C'M'1,,Ch3-2 体积应变 M 点位移,,) u v w (A B C A B C ' ' ' x y z M M ' d z d x d y 变形后各边长沿坐标轴的投影

(完整版)弹塑性力学公式

应力应变关系: 弹性模量 || 广义虎克定律 1.弹性模量 a 弹性模量 单向拉伸或压缩时正应力与线应变之比,即 E σε = b 切变模量 切应力与相应的切应变 之比,即 G τγ= c 体积弹性模量 三向平均应力 0() 3 x y z σσσσ++= 与体积应变θ(=εx +εy +εz )之比, 即 K σθ= d 泊松比 单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 1 ε νε= 2.广义虎克定律 a.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程(或用脚标形式简)写 为: 22()0 j ij i i x u f t σρ??++-=?? (,,,)i j x y z = (2)6个变形几何方程,或简写为: 1()2j i ij j i u u E x x ??= +?? (,,,)i j x y z = (3)6个物性方程简写为: 0132ij ij E G E ν σσδ= - 2ij ij ij G σελθδ=+ (,,,)i j x y z = { 1() 0() () i j ij i j δ=≠= 2.边界条件 x x xx xy xy xz xz F l l l σττ=++ y yz xx y xy yz xz F l l l τσσ=++ z zz xx xy xy z xz F l l l ττσ=++ 式中,l nj =cos(n,j)为边界上一点的外 法线n 对j 轴的方向余弦 b 位移边界问题 在边界S x 上给定的几何边界条件为 *x x u u = * y y u u = *z z u u = 式中,u i 为表面上给定的位移分量 Cauchy 公式: T x = σ x l + τ xy m +τ zx n T y = τ xy l+σ y m +τ zy n T y =τ xz l+τ y z m +σ z n (n z n T n T στ= 边界条件: ()()()x xy xz s x xy y yz s y xz yz z s z l m n T l m n T l m n T στττστττσ++=++=++= 平衡微分方程: 000yx x zx x xy y zy y yz xz z z F x y z F x y z F x y z τσττστττσ???+++=??????+++=??????+++=??? 主应力、不变量,偏应力不变量 321231230 x y z x xy y z zx yz yx y zy xz x z x xy xz yx y yz zx zy z I I I I I I σσσσσσστσστττσττσσστττστττσ-+-==++=++ = 1231 ();3 m i i m s σσσσσσ=++=- ()()()1123222222230 16()6x y y z z x xy yz zx J s s s J J σσσσσστττ=++=??=-+-+-+++????=偏应力张量行列式的秩 八面体 812381 () 3σσσστ=++ 等效应力σ=体积应变x y z θεεε=++ 12312()E v v εσσσ-= ++ 几何方程: ;;;x xy y yz z xy u u v x y x v v w y z y w u w z z x εγεγεγ???= =+??????==+ ??????==+ ??? 1 2 ij ij εγ= 变形协调方程22 222y xy x xy y x ετε???+=??? 物理方程 ()()()12(1) ;12(1) ;12(1) ;x x y z xy xy y y x z yz yz z z y x zx zx v v E E v v E E v v E E εσσσγτεσσσγτεσσσγτ+??=-+=??+??=-+=??+??=-+=??

(整理)弹塑性力学答案

一、简答题 1答:(1)如图1所示,理想弹塑性力学模型: e s s e E E σε εεσεσεε=≤==>当当 (2)如图2所示,线性强化弹塑性力学模型: () 1e s s e E E σε εεσσεεεε=≤=+->当当 (3)如图3所示,幂强化力学模型:n A σε= (4)如图4所示,钢塑性力学模型:(a )理想钢塑性: s s εσσεσσ=≤=>当不确定 当 (b )线性强化钢塑性: ()0 /s s s E εσσεσσσσ=≤=->当当 图1理想弹塑性力学模型 图2线性强化弹塑性力学模型 图 3幂强化力学模型 (a ) (b ) 图4钢塑性力学模型 2答:

3答:根据德鲁克公设, ()00,0p p ij ij ij ij ij d d d σσεσε-≥≥。在应力空间中,可将0ij ij σσ-作为向量ij σ与向量0 ij σ之差。由于应力主轴与应变增量主轴是重合的,因此,在应力空间 中应变增量也看作是一个向量。利用向量点积的定义: ()0 0cos 0p p ij ij ij ij ij ij d σ σεσσε?-=-≥,?为两个向量的夹角。由于0ij ij σσ-和p ij ε都是 正值,要使上式成立,?必须为锐角,因此屈服面必须是凸的。 4 答:逆解法就是先假设物体内部的应力分布规律,然后分析它所对应的边界条件,以确定这样的应力分布规律是什么问题的解答。 半逆解法就是针对求解的问题,根据材料力学已知解或弹性体的边界形状和受力情况,假设部分应力为某种形式的函数,从而推断出应力函数,从而用方程和边界条件确定尚未求出的应力分量,或完全确定原来假设的尚未全部定下来的应力。如果能满足弹性力学的全部条件,则这个解就是正确的解答。否则需另外假定,重新求解。 二、计算题 1解:对于a 段有:0N a a a a F A E a a σσεε==?= ,对b 段有:0 N b b b b P F A E b b σσεε-==?= 又a b ?=? 则N bP F a b = + 2解:代入公式,116I =,227I =-,30I = 故117.5MPa σ=,20MPa σ=, 3 1.5MPa σ=- ()0123/3 5.33MPa σσσσ=++= 08.62MPa τ= = 3解:(1)代入公式,110I =,2200I =-,30I = 故主应力:120MPa σ=,20MPa σ=, 310MPa σ=-

弹塑性力学第三章

3. STRAIN 3.1. Deformation and Strain tensor In present chapter we examine the deformation geometry of the deformable solid without regard for the actual forces required to produce it. The most obvious and direct method of describing the motion of a continuum solid is to consider the motion of each and every particle making up the solid. If the relative position of every particle is not changed, there is only rigid moving and rotation, then we may consider it as a rigid displacement. If the relative position of every particle is changed, in the same time the initial shape of the body is distorted, then we called there is a deformation. In the following, we will discuss the deformation of elastic-plastic body. Suppose the distance between two points P o(x o, y o) and P(x,y) is P o P in plane Oxy before deformation. After deformation the two ends of segment P o P moved to P o′(x o′y o′) and P′(x′, y′). Let P o P =s, P o′P′= s ′then the components of vectors s′and s along the x , y axes are: s x′=s x+ s x s y′=s y′+s y The displacement component at point P o is u o =x o′?x o v o =y o′?y o (3.1) Similarly, at point P the displacement component is(Fig.3.1): u =x′– x v =y′– y (3.2) Suppose the displacement u and v are the single-value continuously functions of x and y, then we can expand the displacement at point P in an infinite Taylor series about point P o, that is: u = u o + s x + s y + 0 (s x2, s y2 ) v =v o + s x + s y+ 0(s x2, s y2) (3.3) Because point P is in the neighbourhood of the point P o, therefore the quantity s is sufficiently small, so that we obtain the formula s x =s x′–s x = (x′-x ) – (x o′-x o ) = s x+s y s y =s y′–s y = (y′-y) – (y o′-y o )= s x+ Using the indicial notation and summation convention, these equations

弹塑性力学基础翻译-第七章

弹塑性力学基础翻译-第七章

7、塑性 7.1介绍 两个基本因素控制弹性的发展,一个是加载过程的完全可逆性,当一个使物体产生应变的力消失,物体就立刻回到未加载力之前;第二个因素说明在荷载作用下物体的变形或者应变只取决于最终的应力,与加载过程和路径无关,因此弹性行为可以视为一个点函数,因为任何产生的应变可以通过初始应力、终了应力以及特定的比例常数来确定。但是当塑性或者永久变形产生时这两个因素就不明显了。 为了产生塑性变形或者塑性流,应力必须超过屈服应力。如果大大超过屈服应力,许多固体(比如延性金属)的变形或尺寸会一直打到一个很大的程度。另外,当最终应变形成,一个应变元可以通过不同的加载方式使物体达到末状态,因此当荷载消失后不仅无法观测到像弹性一样的完全可逆现象,末状态也取决于荷载的加载过程而不只是初应力和末应力状态。这个发现意味着塑性变形是一个过程函数,需要增量应变在应变过程上的累积来确定总的应变。 在研究塑性的时候至少可以采取三种很明显

的方式。 1、在考虑应力应变分布满足规定的边界条件的情况下,通过材料的性质来建立理想模型。这个被称作宏观塑性理论,很类似于长久以来的弹性理论。 2、应用于金属物理学的方法。在这种方法中,实际固体中单晶体变形方式建立于研究的基础,通过一个物体内部联系从单晶体扩展到多晶体的聚集从而形成整个构件。这种方法通常被工程师运用。这个叫做微观塑性理论。 3、技术的方法。通过寻求某些现象学的规则,运用实验观察实际物体材料在宏观尺寸上的数学表达式。这确保在一般意义上的设计上可以预测材料的属性,这可能被叫做宏观工程塑性。这种方法在本章中是重点。 7.2弹性和塑性的比较 为了方便,许多上述的说明被总结成表格的形式。在这种方式有个直接的比较,很明显的揭示了这两种性质的主要区别。 由于屈服的开始和表现是我们优先考虑的,所以我们会用不同的模型来解释上述的物理过程。对于下面的几个模型,我们做几个假设。

弹塑性力学-第3章 应变状态

第三章 应变状态理论 在外力、温度变化或其他因素作用下,物体内部各质点将产生位置的变化, 即发生位移。如果物体内各点发生位移后仍保持各质点间初始状态的相对位置,则物体实际上只发生了刚体平移和转动,这种位移称为刚体位移。如果物体各质点发生位移后改变了各点间初始状态的相对位置,则物体同时也产生了形状的变化,其中包括体积改变和形状畸变,物体的这种变化称为物体的变形运动或简称为变形,它包括微元体的纯变形和整体运动。应变状态理论就是研究物变形后的几何特性。即给定物体内各点变形前后的位置,确定无限接近的任意两点之间所连矢量因物体变形所引起剧烈变化。这是一个单纯的几何问题,并不涉及物体变形的原因,也就是说并不涉及物体抵抗变形的物理规律。本章主要从物体变形前后的几何变化论述物体内一点的应变状态。 位移与线元长度、方向的变化 坐标与位移 设变形前物体上各点的位置在笛卡尔坐标(Descarter coordinate)系的轴(X 、、Y、Z )上的投影为(z y x ,,),又设物体上各点得到一位移,并在同一坐标轴上的投影为(u 、v 、w ),这些位移分量可看作是坐标(z y x ,,)的函数。于是物体上任点的最终位置由下述坐标值决定。即 ?? ? ?? +=+=+=),,(),,(),,(z y x w z z y x v y z y x u x ζηξ 上式中函数u 、v 、w 以及它们对坐标(z y x ,,)的偏导数假设是连续的,则式确定了变量(z y x ,,)与),,(ζηξ之间的关系。因为物体中变形前各点对应看变形后的各点,因此式是单值的,所以式可看成是坐标的一个变换。 如果在中,假设00,y y x x ==,则由式可得如下三个方程

弹塑性力学作业(含答案)

2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τ xy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yx y σβτβτβσβ+=?? +=?………………………………(a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()() 1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=?? ? --+-=??L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2 β; 化简(c )式得:c =γctg β-2γ1 ctg 3 β 2—17.己知一点处的应力张量为3 1260610010000Pa ?? ????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且 该点的主应力可由下式求得: (()()3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410 x y Pa σσσ?++?==±????=?=±?=? 则显然:3 312317.08310 4.917100Pa Pa σσσ=?=?=

弹塑性力学复习提纲和考试习题

《弹塑性力学》复习提纲 1. 弹性力学和材料力学在求解的问题以及求解方法方面的主要区别是什么? 研究对象的不同:材料力学,基本上只研究杆状构件,也就是长度远远大于高度和宽度的构件。非杆状结构则在弹性力学里研究 研究方法的不同:材料力学大都引用一些关于构件的形变状态或应力分布的假定,得到的解答往往是近似的,弹性力学研究杆状结构一般不必引用那些假定,得到的结果比较精确。并可用来校核材料力学得出的近似解。 2. 弹性力学有哪些基本假设? (1)连续性,(2)完全弹性,(3)均匀性,(4)各向同性,(5)假定位移和形变是微小的 3. 弹性力学有哪几组基本方程?试写出这些方程。 (1)平面问题的平衡微分方程: 平面问题的几何方程: 平面应力问题的物理方程: (在平面应力问题中的物理方程中将E换为,换为就得到平面应变问题的物理方程) (2)空间问题的平衡微分方程;

空间问题的几何方程; 空间问题的物理方程: 4. 按照应力求解和按照位移求解,其求解过程有哪些差别? (1)位移法是以位移分量为基本未知函数,从方程和边界条件中消去应力 分量和形变分量,导出只含位移分量的方程和相应的边界条件,解出位移分量,然后再求形变分量和应力分量。要使得位移分量在区域里满足微分方程,并在边界上满足位移边界条件或应力边界条件。 (2)应力法是以应力分量为基本未知函数,从方程和边界条件中消去位移 分量和形变分量,导出只含应力分量的方程和边界条件,解出应力分量,然后再求出形变分量和位移分量。满足区域里的平衡微分方程,区域里的相容方程,在边界上的应力边界条件,其中假设只求解全部为应力边界条件的问题。 5. 掌握以下概念:应力边界条件和位移边界条件;圣文南原理;平面应力与平 面应变;逆解法与半逆解法。 位移边界条件:若在部分边界上给定了约束位移分量和,则对于此边界上的每一点,位移函数u和v和应满足条件=,=(在 上) 应力边界条件:若在部分边界上给定了面力分量(s)和(s),则可以由边界 上任一点微分体的平衡条件,导出应力与面力之间的关系式。 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 平面应力问题:设所研究的物体为等厚度的薄板,在z方向不受力,外力沿z

相关主题
文本预览
相关文档 最新文档