当前位置:文档之家› 工程流体力学22流体平衡微分方程

工程流体力学22流体平衡微分方程

平衡微分方程与切应力互等定理

第二章应力状态分析 一. 内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。 应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二. 重点

1.应力状态的定义:应力矢量;正应力与切应力;应力分量; 2.平衡微分方程与切应力互等定理; 3.面力边界条件; 4.应力分量的转轴公式; 5.应力状态特征方程和应力不变量 三.知识点 体力、应力矢量、应力分量、平衡微分方程、面力边界条件、主平面与主应力、主应力性质、截面正应力与切应力、三向应力圆、八面体单元、偏应力张量不变量、面力、正应力与切应力、应力矢量与应力分量、切应力互等定理、应力分量转轴公式、平面问题的转轴公式、应力状态特征方程、应力不变量、最大切应力、球应力张量和偏应力张量 §2.1 体力和面力 学习思路: 本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。

流体的平衡微分方程及其积分

流体的平衡微分方程及其积分 一、流体平衡微分方程——欧拉平衡方程 如图所示,在平衡流体中取一微元六面体,边长分别为d x ,d y ,d z ,设中心点的压强为p (x,y,z )=p ,对其进行受力分析: 根据平衡条件,在x 方向有0F x =∑,即: 0zX y z y x p 21z y )21=+)+-((d dxd d d dx p d d dx x p p ρ????- 01X =-x p ??ρ 式中:X ——单位质量力在x 轴的投影 流体平衡微分方程(即欧拉平衡微分方程): ?????????=??-=??-=??- 010101z p Z y p Y x p X ρρρ 物理意义:处于平衡状态的流体,单位质量流体所受的表面力分量与质量力分量彼此相等。 压强沿轴向的变化率(z p y p x p ??????,,)等于轴向单位体积上的质量力的分量(ρX ,ρY ,

ρZ )。 二、平衡微分方程的积分 将欧拉平衡微分方程中各式,分别乘以dx 、dy 、dz ,整理: Zdz)Ydy (Xdx dz z p dy y p x ++=??+??+??ρdx p 因为p = p (x,y,z ) ∴ Zdz)Ydy (Xdx dp ++=ρ ρ为常量; Xdx +Ydy +Zdz 应为某函数W =F (x ,y ,z )的全微分: dz z W dy y W dx x W dz dy dx d ??+??+??=++=)Z Y (X W dW dp =ρ 平衡流体中压强p 的全微分方程 积分得:p=ρW +c 假定平衡液体自由面上某点(x 0,y 0,z 0)处的压强p 0及W 0为已知,则: c =p 0-ρW 0 ∴ p=p 0+ρ(W-W 0) 欧拉平衡微分方程的积分 三、帕斯卡定律 处于平衡状态下的不可压缩流体中,任意点M 处的压强变化值△p 0,将等值地传递到此平衡流体的其它各点上去。 说明:只适用于不可压缩的平衡流体; 盛装液体的容器是密封的、开口的均可。 四、等压面 平衡流体中压强相等的各点所组成的面。 等压面:dp =ρ(Xdx +Ydy +Zdz )=0 ρ为常量,则:Xdx +Ydy +Zdz =0 即:质量力在等压面内移动微元长度所作的功为零。 等压面的特征:平衡流体的等压面垂直于质量力的方向 只有重力作用下的等压面应满足的条件: 1.静止; 2.连通; 3.连通的介质为同一均质流体;

4.2 理想流体的运动微分方程讲解

4.2 理想流体的运动微分方程 理想流体是指无粘性的且不可压缩流体,是一种假想的,不存在的流体。实际流体有粘性,粘性流体。 1. Enler 运动微分方程 H G 图 4-3 理想流体的作用力 取微六面体如图4-3所示;中心点为),,(z y x M ,M 处的压强为 ),,,(t z y x p 。作用在六面体的力有质量力z y x X d d d ρ,z y x Y d d d ρ,z y x Z d d d ρ;流体运动时的惯性力z y x d d d ρa ;由压强产生的表面力,在x 向分别为z y x x p p d d )d 21(??- 和z y x x p p d d )2 d (??+-。按牛顿第二定律不难列出x 向的力平衡方程如下: z y x a z y x x p p x x p p z y x X d d d d d )]2 d ()2d [(d d d x ρρ=??+-??-+ 列出y 、z 向力平衡方程。整理x 、y 、z 向力平衡方程(同除m z y x d d d d =ρ)如下

??? ? ? ? ???==??-==??-==??-t u a z p Z t u a y p Y t u a x p X d d 1d d 1d d 1z z y y x x ρρρ (4.2-1a) 上式也可简记为 t u a x p X d d 1i i i i ==??- ρ 3,2,1=i (4.2-1b) 式(4.2-1a)也可写成矢量形式 t p d d 1 u a G = =?- ρ (4.2-1c) 式中 Z Y X k j i G ++=为单位质量的体积力。 式(4.2-1a)便是理想流体的运动微分方程,是Euler 1755年推导出来的,故又称Euler 运动微分方程。 4.3 理想的流体运动方程的积分-Bernoulli 方程 Bernoulli 方程在工程流体力学基本理论中占有重要地位,其形式简单、意义明确,在工程中有着广泛应用。Bernoulli 方程是Euler 方程或葛罗米柯方程的积分形式。 一 运动微分方程在流线上的积分形式 在流线上取质点,不论是否定常运动,经过时间t d ,质点沿流线的微位移z y x d d d d k j i s ++=;s d 的分量,d ,d ,d z y x 可表示为 t u z t u y t u x d d ,d d ,d d z y x === (4.3-1) 对式(4.2-1a )的三式依次乘z y x d ,d ,d ,相加则有 )d d d (1d d d z z p y y p x x p z Z y Y x X ??+??+??- ++ρz t u y t u x t u d d d z y x ??+??+??= t u t u t u t u t u t u d d d z z y y x x ??+??+??= z z y y x x d d d u u u u u u ++= (4.3-2)

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下

平衡微分方程的适用范围

1、 平衡微分方程的适用范围 弹性力学、塑性力学、弹塑性力学。 2、 张量:怎样判断? (1)商判则:和任意矢量点积为K-1阶张量的量一定为K 阶张量。 (2)能否满足分量转换规律是判断某个数的集合是否表示一个张量的基本准则。 3、n 维张量的举例 标量零阶张量,矢量为一阶张量,应力、应变为二阶张量,应力、应变之间的弹性关系可用四阶张量表示。 4、▽的意义? ▽为一个梯度,▽2为调和算子(拉普拉斯算子),▽4为重调和算子。 5、柯西应变张量与格林应变张量的区别? 柯西应变张量适用于线弹性小变形,格林应变张量适用于任何情况。 6、任意斜面上的应力的本质是? 平衡微分方程和转轴公式。 7、如何描述正应变,剪应变,体积应变,应力的球张量,应力的偏张量? 对于各向同性材料,正应力引起正应变,引起线元长度变化;剪应力引起剪应变,引起角度的变化;应力的球张量,只引起体积变化,不会引起形状的变化;应力的偏张量,只引起形状变化,不会引起体积的变化。 8、 动力学的平衡微分方程如何表示?(达朗贝尔原理) 根据达朗贝尔原理,把惯性力当作体力来满足力平衡和力矩平衡条件。 9、转轴公式的理论依据:柯西公式。 10、等效应力、等效应变物理意义、公式: 等效应力将6个应力分量的对变形体的作用,等效于一个单向拉伸力的作用;等效应变将6个应变分量等效于一个单向拉伸力所产生的应变。利用实验,就可以直接建立等效应变与等效应力的数值关系 11、体积不可压(v=1/2): 从体积弹性模量() ν213-=E K 来看,当5.0=ν时,K 趋向于无穷大,也就是说体积变化无限小,即表示体积不可压缩。 12、为什么等值拉压是纯剪切 等值拉压时,线元只有角度发生变化,长度有发生变化,故等值拉压是纯剪切。 13、里茨和伽辽金法的物理思想 均是利用利用最小势能原理,寻找满足约束边界条件的试验函数。 14、弹性力学为什么可用逆解法、半逆解法: 解的唯一性定理表明,无论用什么方法求得的解,只要能满足全部基本方程和边界条件,就一定是问题的真解。 15、叠加原理建立在什么条件下: 基本方程和边界条件满足线弹性条件,举例:在线弹性条件下,复杂问题可通过简单叠加处理。 16、圣维南原理的思想: 在物体内,距外加载荷作用处相当远的各点的应力状态,在外载荷的合力和合力矩相同时,与外载荷的具体分布形式关系很小。

最新常微分方程平衡点及稳定性研究

常微分方程平衡点及稳定性研究

摘要 本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。关键词:自治系统平衡点稳定性全局吸引性

Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x= of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

[平衡微分方程的适用范围]平衡微分方程

[平衡微分方程的适用范围]平衡微分方程 平衡微分方程的适用范围 弹性力学、塑性力学、弹塑性力学。 张量:怎样判断? 商判则:和任意矢量点积为K-1阶张量的量一定为K 阶张量。 能否满足分量转换规律是判断某个数的集合是否表示一个张量的基本准则。 3、n 维张量的举例 标量零阶张量,矢量为一阶张量,应力、应变为二阶张量,应力、应变之间的弹性关系可用四阶张量表示。 4、▽的意义? ▽为一个梯度,▽2为调和算子,▽4为重调和算子。 5、柯西应变张量与格林应变张量的区别? 柯西应变张量适用于线弹性小变形,格林应变张量适用于任何情况。 6、任意斜面上的应力的本质是? 平衡微分方程和转轴公式。 7、如何描述正应变,剪应变,体积应变,应力的球张量,应力的偏张量?

对于各向同性材料,正应力引起正应变,引起线元长度变化;剪应力引起剪应变,引起角度的变化;应力的球张量,只引起体积变化,不会引起形状的变化;应力的偏张量,只引起形状变化,不会引起体积的变化。 动力学的平衡微分方程如何表示? 根据达朗贝尔原理,把惯性力当作体力来满足力平衡和力矩平衡条件。 9、转轴公式的理论依据:柯西公式。 10、等效应力、等效应变物理意义、公式: 等效应力将6个应力分量的对变形体的作用,等效于一个单向拉伸力的作用;等效应变将6个应变分量等效于一个单向拉伸力所产生的应变。利用实验,就可以直接建立等效应变与等效应力的数值关系 11、体积不可压: 从体积弹性模量来看,当时,K 趋向于无穷大,也就是说体积变化无限小,即表示体积不可压缩。 12、为什么等值拉压是纯剪切 等值拉压时,线元只有角度发生变化,长度有发生变化,故等值拉压是纯剪切。 13、里茨和伽辽金法的物理思想 均是利用利用最小势能原理,寻找满足约束边界条件的试验函数。

相关主题
文本预览
相关文档 最新文档