当前位置:文档之家› 第七章 配置帧中继

第七章 配置帧中继

第七章  配置帧中继
第七章  配置帧中继

第七章配置帧中继

一、帧中继技术(Frame Relay)

帧中继是一种高性能的WAN协议,它运行在OSI参考模型的物理层和数据链路层。它是一种数据包交换技术,是X.25的简化版本。它省略了X.25的一些强健功能,如提供窗口技术和数据重发技术,而是依靠高层协议提供纠错功能,这是因为帧中继工作在更好的WAN设备上,这些设备较之X.25的WAN设备具有更可靠的连接服务和更高的可靠性,它严格地对应于OSI参考模型的最低二层(即是第二层协议),而X.25还提供第三层的服务,所以,帧中继比X.25具有更高的性能和更有效的传输效率。图1是应用帧中继技术通信的典型例子。

图1、帧中继通信

? 虚电路:两个DTE设备(如路由器)之间的逻辑链路称为虚电路(交换虚拟线路SVC,Switched VirtualCircuits),帧中继用虚电路来提供端点之间的连接。由服务提供商预先设置的虚电路称为永久虚电路(PVC,Permanent VirtualCircuits);别外一种虚电路是交换虚电路(SVC),它是动态设置的虚电路。

? 帧中继设置中可分为数据终端设备(DTE)和数据电路终端设备(DCE),在实际应用中,Cisco路由器为DTE端,通过V.35线缆连接CSU/DSU,如果将两个路由器通过V.35线缆直连,连接V.35 DCE线缆的路由器充当DCE的角色,并且需要提供同步时钟。CSU(通道服务单元):把终端用户和本地数字电话环路相连的数字接口设备。DSU(数据业务单元):指的是用于数字传输中的一种设备,它能够把DTE设备上的物理层接口适配到T1或者E1等通信设施上。数据业务单元也负责信号计时等功能,它通常与CSU(信道业务单元)一起提及,称作CSU/DSU (Channel Service Unit/Data [or Digital] Service Unit)。

? 帧中继技术提供面向连接的数据链路层的通信,在每对设备之间都存在一条定义好的通信链路,且该链路有一个链路识别码。这种服务通过帧中继虚电路实现,每个帧中继虚电路都以数据链路识别码(DLCI,Data-Link Connection Identifier)标识自己,是在源和目的设备之间标识逻辑电路的一个数值。DLCI 的值一般由帧中继服务提供商指定。帧中继交换机通过在一对路由器之间映射DLCI来创建虚电路。帧中继即支持PVC也支持SVC。

? 帧中继本地管理接口(LMI,Local Management Interface)是对基本的帧中继标准的扩展。它是路由器和帧中继交换机之间信令标准,提供帧中继管理机

制。它提供了许多管理复杂互联网络的特性,其中包括全局寻址、虚电路状态消息和多目发送等功能。

? 非广播多访问(NBMA):指不支持广播包,但可以连接多于两个设备的网络。? 本地访问速率:连接到帧中继的时钟速度(端口速度),是数据流入或流出网络的速率。

? 承诺信息速率(CIR):指服务提供承诺提供的有保证的速率。

? 逆向ARP:帧中继网中的路由器通过逆向ARP可以自动建立帧中继映射,从而实现IP协议和DLCI之间的映射。ARP(Address Resolution Protocol,地址解释协议)。

? 帧中继的子接口:所谓子接口(Subinterface)是在帧中继的物理接口中定义的逻辑接口。帧中继有两种子接口类型,即是点到点子接口(Point-to-Point Subinterface)和多点子接口(Multipoint Subinterface)。点到点子接口适合于星型拓扑,多点子接口适合于部分网状或全网状拓扑环境。

?DCE(数据通信设备或者数据电路终端设备):该设备和其与通信网络的连接构成了网络终端的用户网络接口。它提供了到网络的一条物理连接、转发业务量,并且提供了一个用于同步DCE设备和DTE设备之间数据传输的时钟信号。调制解调器和接口卡都是DCE设备的例子。DTE(数据终端设备):指的是位于用户网络接口用户端的设备,它能够作为信源、信宿或同时为二者。数据终端设备通过数据通信设备(例如,调制解调器)连接到一个数据网络上,并且通常使用数据通信设备产生的时钟信号。数据终端设备包括计算机、协议翻译器以及多路分解器等设备。

二、帧中继配置常用命令

(1)、有关常用命令

(2)命令格式解释:

a、在端口配置中,封装帧中继:

encapsulation frame-relay {IETF | cisco}

Cisco路由器缺省为帧中继数据包封装格式为IETF,可以不用显示设置,另外,国内帧中继线路一般为IETF格式的封装,如果不同,则与当地电信管理部门联系,采用其它装格式。

b、设置LMI信令格式

frame-relay lmi-type {ansi | q933a | cisco}

Cisco路由器缺勤省的LMI信令格式为Cisco,可以不用设置,国内帧中继线路一般采用Cisco的LMI信令格式。如果不同,则与当地电信管理部门联系,采用相应的LMI信令格式。

c、映射IP地址与帧中继地址

frame-relay map ip对方路由器的IP地址本端口的帧中继号码{broadcast}

例:frame-relay map ip 172.16.1.2 102 cisco

broadcast参数表示允许在帧中继线路上传送路由广播信息

d、在模拟帧中继交换机的路由器上定义PVC

frame-relay route dlci_1 interface interface dlci_2

例:frame-relay route 102 interface serial0/1 201

注意:如果通过直连方式将两路由器连接起来,则两路由器的帧中继地址必须一致,地址可以随意设置。在实际应用中,申请的帧中继地址只有本地意义,两边进行通讯的路由器的帧中继地址可以不同。

三、应用帧中继的网络拓扑结构图

网络拓扑结构图:

拓扑图解释:

1、中间的路由器封装为帧中继交换机,定义PVC。端口S0:201,端口S1:102。连接DCE。

2、R1:端口S0:172.16.1.1/24端口E0:192.1.1.1/24。连接DTE。

3、R2:端口S0:172.16.1.2/24端口E0:192.1.2.1/24。连接DTE。

四、实验部分

(一)、实验目的

1、配置只有2个节点的帧中继环境。

2、配置帧中继实现网络互连。

3、查看帧中继PVC信息。

4、监测帧中继相关信息。

5、熟悉相关的查看和监测命令。

(二)、实验设备

1、Cisco 2610XM三台,其中一台配置为帧中继交换机。

2、DCE/DTE线二条。

3、控制台专用线一根。

4、装有超级终端的计算机一台。

(三)、实验拓扑图

本次实验拓扑结构图(参见图2)

(四)、实验过程及结果监测

1、将中间的路由器封装为2个节点的帧中继交换机:

A、将中间的路由器封装为2个节点的帧中继交换机:

Router>en

Router#conf t

Router (config)#host FR_Witch

FR_Witch(config)#host FR_Switch

FR_Switch(config)#end

FR_Switch#

FR_Switch#sh contro s0/0 //:先查看端口s0/0连接线缆是否为DCE线;Interface Serial0/0

Hardware is PowerQUICC MPC860

DCE V.35, no clock//:确认为DCE线,no clock暂没有时钟;

i db at 0x81127200, driver data structure at 0x8112ED04

SCC Registers:

General [GSMR]=0x2:0x00000000, Protocol-specific [PSMR]=0x8

Events [SCCE]=0x0000, Mask [SCCM]=0x0000, Status [SCCS]=0x00 Transmit on Demand [TODR]=0x0, Data Sync [DSR]=0x7E7E …………………

FR_Switch#

FR_Switch#sh contro s0/1 //:先查看端口s0/1连接线缆是否为DCE线;Interface Serial0/1

Hardware is PowerQUICC MPC860

DCE V.35, clock rate 64000

//:确认为DCE线,时钟为64Khz,等一下可以不用再配置时钟;idb at 0x81130A94, driver data structure at 0x81138598

…………………

FR_switch#conf t

FR_switch(config)#frame-relay switching//:启动路由器的帧中继交换功能;

FR_switch(config)#int s0/0

FR_switch(config-if)#encap frame-relay//:在端口配置中,把端口的帧格式封装帧中继;FR_switch(config-if)#clock rate 64000

FR_switch(config-if)#frame-relay lmi-type cisco //设置发往帧中继交换机的LMI信令格式;FR_switch(config-if)#frame-relay intf-type dce //:设置本端口在帧中继线路中充当DCE;FR_switch(config-if)#frame-relay route 102 interface serial0/1 201

//:在路由器上定义PVC,即是定义本接口的DLCI值为102,与S0/1接口的值为201的DLCI形成PVC;

FR_switch(config-if)#no shut//:激活该端口;

FR_switch(config-if)#int s0/1

FR_switch(config-if)#encap frame-relay

FR_switch(config-if)#clock rate 64000 //:由于该端口已有时钟,可也不再配置时钟;FR_switch(config-if)#frame-relay lmi-type cisco

FR_switch(config-if)#frame intf-type dce

FR_switch(config-if)#frame-relay route 201 interface serial0/0 102 //201、102自定义值;FR_switch(config-if)#no shut //:激活该端口;

FR_switch(config-if)#end

FR_switch#

B、查看有关帧中继的各项信息:

FR_Switch#

FR_Switch#sh fr r //:show frame-relay route,查看帧中继的路由设置信息;

Input Intf Input Dlci Output Intf Output Dlci Status

Serial0/0 102 Serial0/1 201 inactive

Serial0/1 201 Serial0/0 102 inactive

FR_Switch#

FR_Switch#sh fr lmi//:show frame-relay lmi,查看帧中继的LMI类型设置信息;

LMI Statistics for interface Serial0/0 (Frame Relay DCE) LMI TYPE = CISCO

Invalid Unnumbered info 0 Invalid Prot Disc 0

Invalid dummy Call Ref 0 Invalid Msg Type 0

Invalid Status Message 0 Invalid Lock Shift 0

Invalid Information ID 0 Invalid Report IE Len 0

Invalid Report Request 0 Invalid Keep IE Len 0

Num Status Enq. Rcvd 0 Num Status msgs Sent 0

Num Update Status Sent 0 Num St Enq. Timeouts 43

LMI Statistics for interface Serial0/1 (Frame Relay DCE) LMI TYPE = CISCO

Invalid Unnumbered info 0 Invalid Prot Disc 0

Invalid dummy Call Ref 0 Invalid Msg Type 0

Invalid Status Message 0 Invalid Lock Shift 0

Invalid Information ID 0 Invalid Report IE Len 0

Invalid Report Request 0 Invalid Keep IE Len 0

Num Status Enq. Rcvd 0 Num Status msgs Sent 0

Num Update Status Sent 0 Num St Enq. Timeouts 0

FR_Switch#

FR_Switch#sh fr pvc //:show frame-relay pvc,查看帧中继的PVC状态信息;

PVC Statistics for interface Serial0/0 (Frame Relay DCE)

Active Inactive Deleted Static

Local 0 0 0 0

Switched 0 1 0 0

Unused 0 0 0 0

DLCI = 102, DLCI USAGE = SWITCHED, PVC STATUS = INACTIVE, INTERFACE = Serial0/0

input pkts 0 output pkts 0 in bytes 0

out bytes 0 dropped pkts 0 in FECN pkts 0

in BECN pkts 0 out FECN pkts 0 out BECN pkts 0

in DE pkts 0 out DE pkts 0

out bcast pkts 0 out bcast bytes 0

30 second input rate 0 bits/sec, 0 packets/sec

30 second output rate 0 bits/sec, 0 packets/sec

switched pkts 0

Detailed packet drop counters:

no out intf 0 out intf down 0 no out PVC 0

in PVC down 0 out PVC down 0 pkt too big 0

shaping Q full 0 pkt above DE 0 policing drop 0

pvc create time 00:11:34, last time pvc status changed 00:11:32

//:以上为s0/0 102端口的各种信息;

PVC Statistics for interface Serial0/1 (Frame Relay DCE)

Active Inactive Deleted Static

Local 0 0 0 0

Switched 0 1 0 0

Unused 0 0 0 0

DLCI = 201, DLCI USAGE = SWITCHED, PVC STATUS = INACTIVE, INTERFACE = Serial0/1

input pkts 0 output pkts 0 in bytes 0

out bytes 0 dropped pkts 0 in FECN pkts 0

in BECN pkts 0 out FECN pkts 0 out BECN pkts 0

in DE pkts 0 out DE pkts 0

out bcast pkts 0 out bcast bytes 0

30 second input rate 0 bits/sec, 0 packets/sec

30 second output rate 0 bits/sec, 0 packets/sec

switched pkts 0

Detailed packet drop counters:

no out intf 0 out intf down 0 no out PVC 0

in PVC down 0 out PVC down 0 pkt too big 0

shaping Q full 0 pkt above DE 0 policing drop 0

pvc create time 00:13:19, last time pvc status changed 00:13:19

//:以上为s0/1 102端口的各种信息;

FR_Switch#

2、对R1、R2进行基本的帧中继配置;

A、配置路由器R1:

Router>

Router>en

Router#conf t

Router (config)#host R1

R1(config)#int fa0/0

R1(config-if)#ip addr 192.1.1.1 255.255.255.0

R1(config-if)#no keepalive

//:因为端口没连接设备,而且在实验过程中要保持该端口常处于激活状态;

R1(config-if)#no sh //:no shutdown

R1(config-if)#int s0/0

R1(config-if)#ip addr 172.16.1.1 255.255.255.0

R1(config-if)#no shutdown

R1(config-if)#encap frame

R1(config-if)#frame map ip 172.16.1.2 102 cisco

//:定义了一个帧中继到IP地址的映射,即是通过DCLI 102可以到达172.16.1.2的IP地址,此处的DLCI是本地的DLCI,而不是对方的DLCI。使用的LMI类型为Cisco。R1(config-if)#no frame inverse-arp

//:关闭帧中继的逆向ARP;如果在一个端口只配置一个DLCI时,可以不用关闭此项,路由器将自动获得DLCI到IP地址的映射,像本次实验;若配置了多个DLCI时,关闭此项,可避免多个DLCI之间映射的混乱。

R1(config-if)#end

R1#

B、配置路由器R2::

Router>

Router>en

Router#conf t

Router(config)#hostn R2

R2(config)#

R2(config)#int fa0/0

R2(config-if)#ip addr 192.1.2.1 255.255.255.0

R2(config-if)#no keepalive

R2(config-if)#no shut

R2(config-if)#

R2(config-if)#int s0/0

R2(config-if)#ip addr 172.16.1.2 255.255.255.0

R2(config-if)#encap frame

R2(config-if)#frame map ip 172.16.1.1 201 cisco

R2(config-if)#no frame inverse-arp//:关闭帧中继的逆向ARP;

R2(config-if)#no shu

R2(config-if)#end

C、查看R1、R2上有关帧中继的各项信息:

R1#

R1#sh frame pvc//:show frame-relay pvc

//:查看工作在R1上的帧中继PVC性况,列出各项统计信息,包括进出S1端口的数据包的情况;

PVC Statistics for interface Serial0/1 (Frame Relay DTE)

Active Inactive Deleted Static

Local 1 0 0 0

Switched 0 0 0 0

Unused 0 0 0 0

DLCI = 102, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/1

input pkts 5 output pkts 6 in bytes 520

out bytes 554 dropped pkts 0 in FECN pkts 0

in BECN pkts 0 out FECN pkts 0 out BECN pkts 0

in DE pkts 0 out DE pkts 0

out bcast pkts 1 out bcast bytes 34

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

pvc create time 00:01:26, last time pvc status changed 00:01:26

R1#

R1#sh fr map//:show frame-relay map 列出由手工配置的帧中继到IP地址的映射;

Serial0/1 (up): ip 172.16.1.2 dlci 102(0x66,0x1860), static,//:static静态映射;

C ISCO, status defined, active

R1#

R1#sh frame tra//:show frame-relay traffic 显示帧中继的查询和应答帧均为0;

Frame Relay statistics:

ARP requests sent 0, ARP replies sent 0//:由于关闭了逆向ARP,故多项数据为0;

ARP request recvd 0, ARP replies recvd 0

R1#

R1#sh frame lmi//:show frame-relay lmi列出LMI类型的信息和相应的统计信息;

LMI Statistics for interface Serial0/1 (Frame Relay DTE) LMI TYPE = CISCO

Invalid Unnumbered info 0 Invalid Prot Disc 0

Invalid dummy Call Ref 0 Invalid Msg Type 0

Invalid Status Message 0 Invalid Lock Shift 0

Invalid Information ID 0 Invalid Report IE Len 0

Invalid Report Request 0 Invalid Keep IE Len 0

Num Status Enq. Sent 20 Num Status msgs Rcvd 21

Num Update Status Rcvd 0 Num Status Timeouts 0

R1#

R2#//:请将各项信息与R1的各项信息比较;

R2#sh fram pvc

PVC Statistics for interface Serial0/0 (Frame Relay DTE)

Active Inactive Deleted Static

Local 1 0 0 0

Switched 0 0 0 0

Unused 0 0 0 0

DLCI = 201, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0

input pkts 5 output pkts 5 in bytes 520

out bytes 520 dropped pkts 0 in FECN pkts 0

in BECN pkts 0 out FECN pkts 0 out BECN pkts 0

in DE pkts 0 out DE pkts 0

out bcast pkts 0 out bcast bytes 0

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

pvc create time 00:11:17, last time pvc status changed 00:04:17

R2#

R2#sh frame map

Serial0/0 (up): ip 172.16.1.1 dlci 201(0xC9,0x3090), static,

CISCO, status defined, active

R2#ping 172.16.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.16.1.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 68/69/72 ms

R2#

3、配置R1、R2上的静态路由并测试连通性:

R2#conf t

R2(config)#ip route192.1.1.0 255.255.255.0 172.16.1.1

//:配置目标网段为192.1.1.0/24的静态路由;

R2(config)#end

R2#

R1#conf t

R1(config)#ip route 0.0.0.0 0.0.0.0 172.16.1.2

//:配置缺省路由格式,也可配置与R2相同的静态路由;

R1(config)#end

R1#sh ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is 172.16.1.2 to network 0.0.0.0

172.16.0.0/24 is subnetted, 1 subnets

C 172.16.1.0 is directly connected, Serial0/1

C 192.1.1.0/24 is directly connected, FastEthernet0/0

S* 0.0.0.0/0 [1/0] via 172.16.1.2 //:缺省静态路由配置缺省路由;

R1#

R1#ping 192.1.2.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.1.2.1, timeout is 2 seconds:

!!!!! //:从R1到192.1.2.1地址的ping测试是成功的,则本实验的配置任务完成;Success rate is 100 percent (5/5), round-trip min/avg/max = 68/69/72 ms

R1#

五、结果监测

(1)、帧中继常用的Debug监测命令:

debug frame-relay dlsw

debug frame-relay end-to-end

debug frame-relay events

debug frame-relay ip

debug frame-relay packet

debug frame-relay dlsw

(2)、用debug frame packet命令监测帧中继:

R1#

R1#debug frame packet//:可以监测帧中继包传输的情况;

Frame Relay packet debugging is on//:系纺信息,debug frame packet 进程开始;R1#

R1#ping 192.1.2.1//:打开监测后,使用ping指令造成帧中继包的收发。

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.1.2.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 68/69/72 ms

00:49:02: Serial0/1(o): dlci 102(0x1861), pkt type 0x800(IP), datagramsize 104

00:49:02: Serial0/1(i): dlci 102(0x1861), pkt type 0x800, datagramsize 104

R2#

R2#debug frame packet

Frame Relay packet debugging is on//:系纺信息,debug frame packet 进程开始;

R2#

R2#ping 192.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.1.1.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 68/70/72 ms

R2#

01:03:46: Serial0/0(o): dlci 201(0x3091), pkt type 0x800(IP), datagramsize 104

01:03:46: Serial0/0(i): dlci 201(0x3091), pkt type 0x800, datagramsize 104

……………

//:Serial0/0(o) 和Serial0/0(i) 说明了发出(out)和接收(in)的方向;

R1#conf t

R1(config)#int s0/1

R1(config-if)#no frame map ip 172.16.1.2 201 cisco//:取消帧中继映射;

R1(config-if)#end

R1#

R1#show frame map//:由于取消了帧中继映射,故不能列出帧中继映射;

R1#

R1#ping 192.1.2.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.1.2.1, timeout is 2 seconds:

00:53:59: Serial0/1:Encaps failed--no map entry link 7(IP).

00:54:01: Serial0/1:Encaps failed--no map entry link 7(IP).

00:54:03: Serial0/1:Encaps failed--no map entry link 7(IP).

00:54:05: Serial0/1:Encaps failed--no map entry link 7(IP).

00:54:07: Serial0/1:Encaps failed--no map entry link 7(IP).

Success rate is 0 percent (0/5)

//:包的封装失败,原因是没有MAP入口项,即是没有相对的帧中继映射存在;

R1#undebug all //:关闭所有debug进程;

All possible debugging has been turned off//:系纺信息,debug frame packet 进程结束;R1#

六、使用帧中继技术应注意事项:

1、帧中继技术主要用于传递数据业务,它使用一组规程将数据信息以帧的形式

(简称帧中继协议)有效地进行传送。它是广域网通信的一种方式。

2、帧中继所使用的是逻辑连接,而不是物理连接,在一个物理连接上可复用多

个逻辑连接(即可建立多条逻辑信道),可实现带宽的复用和动态分配。3、帧中继协议是对X.25协议的简化,因此处理效率很高,网络吞吐量高,通信

时延低,帧中继用户的接入速率在64kbit/s至2Mbit/s,甚至可达到34Mbit/s。

4、帧中继的帧信息长度远比X.25分组长度要长,最大帧长度可达1600字节/

帧,适合于封装局域网的数据单元,适合传送突发业务(如压缩视频业务、WWW业务等)。

帧中继网络是由许多帧中继交换机通过中继电路连接组成。目前,加拿大北电、新桥,美国朗讯、FORE等公司都能提供各种容量的帧中继交换机。

一般来说,FR路由器(或FRAD)是放在离局域网相近的地方,路由器可以通过专线电路接到电信局的交换机。用户只要购买一个带帧中继封装功能的路由器(一般的路由器都支持),再申请一条接到电信局帧中继交换机的DDN专线电路或HDSL专线电路,就具备开通长途帧中继电路的条件。

需要特别介绍的是帧中继的带宽控制技术,这是帧中继技术的特点和优点之一。在传统的数据通信业务中,特别象DDN,用户预定了一条64K的电路,那么它只能以64Kbit/s的速率来传送数据。而在帧中继技术中,用户向帧中继业务供应商预定的是约定信息速率(简称CIR),而实际使用过程中用户可以以高于CIR的速率发送数据,却不必承担额外的费用。举例来说,一个用户预定了CIR=64Kbit/s的帧中继电路,并且与供应商鉴定了另外两个指标,Bc(承诺突发量)、Be (超过的突发量),当用户以等于或低于64Kbit/s的速率发送数据时,&127;网络定将负责地传送,当用户以大于64Kbit/s的速率发送数据时,只要网络有空(不拥塞),且用户在一定时间(Tc)内的发送的量(突发量)小于Bc+Be时,网络还会传送,当突发量大于Bc+Be时,网络将丢弃帧。所以帧中继用户虽然付了64Kbit/s的信息速率费(收费依CIR来定),却可以传送高于64Kbit/s的数据,这是帧中继吸引用户的主要原因之一。

七、实验预习、报告内容及思考题

(一)、实验预习

1、阅读本章理论及实验内容。

2、弄清帧中继的基本工作原理及配置方法。

(二)、实验报告内容

1、列出实验过程中的命令及其实际输出。

2、实验中所遇到的问题及解决方法。

3、对用到的命令进行说明。

4、回答思考题。

(三)、思考题

1、帧中继与X.25在应用中的区别?各自的优缺点。

帧中继协议原理及配置

帧中继协议原理及配置 【复习旧课】(教学手段:课堂提问) 【引入新课】(教学手段:创设情景) 【讲授新课】(教学手段:教师讲授) 一、 帧中继概述 帧中继(Frame Relay ,简称FR )是以X.25 分组交换技术为基础,摒弃其中复杂的检、纠错过程,改造了原有的帧结构,从而获得了良好的性能。帧中继的用户接入速率一般为64 kbps ~2 Mbps ,局间中继传输速率一般为2 Mbps 、34 Mbps ,现已可达155 Mbps 。 1. 帧中继简介 帧中继技术继承了X.25 提供的统计复用功能和采用虚电路交换的优点,但是简化了可靠传输和差错控制机制,将那些用于保证数据可靠性传输的任务(如流量控制和差错控制等)委托给用户终端或本地结点机来完成,从而在减少网络时延的同时降低了通信成本。帧中继中的虚电路是帧中继包交换网络为实现不同DTE 之间的数据传输所建立的逻辑链路,这种虚电路可以在帧中继交换网络内跨越任意多个DCE 设备或帧中继交换机。 图6-4 帧中继网络 一个典型的帧中继网络是由用户设备与网络交换设备组成,如图6-4所示。作为帧中继网络核心设备的FR 交换机其作用类似于我们前面讲到的以太网交换机,都是在数据链路层完成对帧的传输,只不过FR 交换机处理的是FR 帧而不是以太帧。帧中继网络中的用户设备负责把数据帧送到帧中继网络,用户设备分为帧中继终端和非帧中继终端两种,其中非帧中继终端必须通过帧中继装拆设备(FRAD )接入帧中继网络。 2. 帧中继的特点 帧中继具有如下特点: ● 帧中继技术主要用于传递数据业务,将数据信息以帧的形式进行传送。 ● 帧中继传送数据使用的传输链路是逻辑连接,而不是物理连接,在一个物理连接上可以复用多个逻辑连接,可以实现带宽的复用和动态分配。 ● 帧中继协议简化了X.25的第三层功能,使网络节点的处理大大简化,提高了网络对信息的处理效率。采用物理层和链路层的两级结构,在链路层也只保留了核心子集部分。 ● 在链路层完成统计复用、帧透明传输和错误检测,但不提供发现错误后的重传。省去了帧编号、流量控制、应答和监视等机制,大大节省了交换机的开销,提高了网络吞吐量、 局域网 局域网

广域网综合技术实验报告

广域网技术课程设计报告 设计题目:广域网技术综合实验 目录 1.概述 (2) 1.1目的 (2) 1.2课程设计的任务 (2) 2.设计的内容 (2) 2.1拓扑图 (2) 2.2课程设计的内容 (3) 3.总结 (4) 3.1课程设计进行过程及步骤 (4) 3.1.1基本配置 (4) 3.1.2 DHCP的配置 (7)

3.1.3配置路由协议 (8) 3.1.4 帧中继配置 (9) 3.1.5 PPP的配置(chap) (11) 3.1.6 ACL的配置 (11) 3.1.7 NAT配置 (12) 3.1.8验证 (12) 3.2所遇到的问题,你是怎样解决这些问题的 (15) 3.3体会收获及建议 (15) 4.教师评语 (15) 5.成绩 (15)

1.概述 1.1目的 通过一个完整的广域网技术综合打实验,促使大家能够从整体上把握WAN广域网连接,并且能从更深层次上来理解搭建整体网络的一个完整流程,同时增强实际动手能力。 熟练掌握广域网上设备的常用配置:实现PPP配置、帧中继封装、ACL访问控制列表设置、NAT网络地址转换、DHCP动态地址分配等协议,巩固所学广域网技术,并加深对其概念的理解。 1.2课程设计的任务 (1)DHCP及其中继的配置与验证 (2)PPP的配置与验证 (3)帧中继的配置与验证 (4)RIP的配置与验证 (5)标准ACL的配置与验证 (6)NAT的配置、地址映射与验证 2.设计的内容 2.1拓扑图 注:下图的拓扑图为某企业的网络规划图,包含有核心层、汇聚层、及接入层。核心层组要由接入R1及电信ISP组成,汇聚层主要由总部R2及分支R3组成,接入层由S1、S2、S3、S4交换机组成。在接入层R1上通过配置ACL及NAT保护内网的安全。 图2-1

CISCO路由器配置手册----帧中继(Frame Relay)配置

CISCO路由器配置手册----Frame Relay 1. 帧中继技术 帧中继是一种高性能的WAN协议,它运行在OSI参考模型的物理层和数据链路层。它是一种数据包交换技术,是X.25的简化版本。它省略了X.25的一些强健功能,如提供窗口技术和数据重发技术,而是依靠高层协议提供纠错功能,这是因为帧中继工作在更好的WAN设备上,这些设备较之X.25的WAN设备具有更可靠的连接服务和更高的可靠性,它严格地对应于OSI参考模型的最低二层,而X.25还提供第三层的服务,所以,帧中继比X.25具有更高的性能和更有效的传输效率。 帧中继广域网的设备分为数据终端设备(DTE)和数据电路终端设备(DCE),Cisco 路由器作为 DTE设备。 帧中继技术提供面向连接的数据链路层的通信,在每对设备之间都存在一条定义好的通信链路,且该链路有一个链路识别码。这种服务通过帧中继虚电路实现,每个帧中继虚电路都以数据链路识别码(DLCI)标识自己。DLCI的值一般由帧中继服务提供商指定。帧中继即支持PVC也支持SVC。 帧中继本地管理接口(LMI)是对基本的帧中继标准的扩展。它是路由器和帧中继交换机之间信令标准,提供帧中继管理机制。它提供了许多管理复杂互联网络的特性,其中包括全局寻址、虚电路状态消息和多目发送等功能。 2. 有关命令: 端口设置 任务命令 设置Frame Relay封装encapsulation frame-relay[ietf] 1 设置Frame Relay LMI类型frame-relay lmi-type {ansi | cisco | q933a}2 设置子接口interface interface-type interface-number.subinterface -number [multipoint|point-to-point] 映射协议地址与DLCI frame-relay map protocol protocol-address dlci

105012011053 陈益梅帧中继实验报告

实验报告十 课程网络管理实验名称帧中继的配置 专业_ 数学与应用数学班级__双师1班_ __ 学号___105012011053 __ 姓名陈益梅同组姓名 实验日期:2014年6月17日报告退发(订正、重做) 一、实验目的 理解帧中继网络及其应用环境。掌握帧中继网络的配置。掌握静态路由/路由选择协议在帧中继网络环境中的使用。 二、实验内容 三、实验拓扑图及IP地址规划 PC机IP地址子网掩码网关 PC1 10.10.10.2 255.255.255.0 10.10.10.1 PC2 20.20.20.2 255.255.255.0 20.20.20.1 PC3 30.30.30.2 255.255.255.0 30.30.30.1

设备名接口名IP地址子网掩码网络号R1 f0/0 10.10.10.1 255.255.255.0 10.10.10.0 R1 S0/0/0 40.40.40.1 255.255.255.0 40.40.40.0 R2 f0/0 20.20.20.1 255.255.255.0 20.20.20.0 R2 S0/0/0 40.40.40.2 255.255.255.0 40.40.40.0 R3 f0/0 30.30.30.1 255.255.255.0 30.30.30.0 R3 S0/0/0 40.40.40.3 255.255.255.0 40.40.40.0 四、主要配置步骤 1、三台路由器接口分别配置ip地址。 Router(config)#hostname R1 R1(config)#int s0/0/0 R1(config-if)#ip address 40.40.40.1 255.255.255.0 R1(config-if)#no shutdown R1(config)#int f0/0 R1(config-if)#ip address 10.10.10.1 255.255.255.0 R1(config-if)#no shutdown Router(config)#hostname R2 R2(config)#int s0/0/0 R2(config-if)#ip address 40.40.40.2 255.255.255.0 R2(config-if)#no shutdown R2(config)#int f0/0 R2(config-if)#ip address 20.20.20.1 255.255.255.0 R2(config-if)#no shutdown

华为实训11-1 帧中继静态映射配置

实训11帧中继静态映射配置(1) 实验目的:在三个路由器上配置桢中继网络 实验技术原理: 帧中继协议是一种简化的X.25广域网协议。帧中继协议是一种统计复用的协议,它在单一物理传输线路上能够提供多条虚电路。每条虚电路用数据链路连接标识(Data Link Connection Identifier,DLCI)来标识,DLCI只在本地接口和与之直接相连的对端接口有效,不具有全局有效性,即在帧中继网络中,不同的物理接口上相同的DLCI并不表示是同一个虚电路。 帧中继网络既可以是公用网络或者是某一企业的私有网络,也可以是数据设备之间直接连接构成的网络。 (1)DTE: 帧中继网络提供了用户设备(如路由器和主机等)之间进行数据通信的能力,用户设备被称作数据终端设备(Data Terminal Equipment,DTE); (2)DCE: 为用户设备提供接入的设备,属于网络设备,被称为数据电路终接设备(Data Circuit-terminating Equipment,DCE); (3)虚电路介绍: 根据虚电路建立方式的不同,虚电路分为两种类型:永久虚电路(Permanent Virtual Circuit,PVC)和交换虚电路(Switched Virtual Circuit,SVC)。手工设置产生的虚电路称为永久虚电路。通过协议协商产生的虚电路称为交换虚电路,这种虚电路由帧中继协议自动创建和删除。目前在帧中继中使用最多的方式是永久虚电路方式。在永久虚电路方式下,需要检测虚电路是否可用。本地管理接口(Local ManagementInterface,LMI)协议就是用来检测虚电路是否可用的。 LMI协议用于维护帧中继协议的PVC表,包括:通知PVC的增加、探测PVC的删除、监控PVC状态的变更、验证链路的完整性。系统支持三种本地管理接口协议:ITU-T的Q.933附录A、ANSI的T1.617附录D以及非标准兼容协议。 LMI协议的基本工作方式是:DTE设备每隔一定的时间间隔发送一个状态

帧中继

基本的帧中继配置 实验1完成了对帧中继交换机的配置,为本实验提供了帧中继的链路环境。本实验将针对连接在帧中继线路上的路由器进行设置,以实现端到端的连通性。 在实际的网络项目中,我们并不调试帧申继交换机,而是调试连在帧中继线路两端的路由器。本实验所完成的就是这样的任务。 1.实验目的 通过本实验,读者可以掌握以下技能: ●配置帧中继实现网络互连; ●查看帧中继pvc信息; ●监测帧中继相关信息。 2.设备需求 本实验需要以下设备: ●实验中配置好的帧中继交换机; ●2台路由器,要求最少具有1个串行接口和1个以太网接口; ●2条DCE电缆,2条DTE电缆; ●1台终端服务器,如Cisco 2509路由器,及用于反向Telnet的相应电缆; ●台带有超级终端程序的PC机,以及Console电缆及转接器。 3.拓扑结构及配置说明 本实验的拓扑如图8-4所示。

在"帧中继云"的位置,实际放置的是实验1中配置好的帧中继交换机,使用全网状的拓扑。使用帧中继交换机的S1和S2接口分别用一组DCE。DTE电缆与R1和R2实现连接。 实验中,以太网接口不需要连接任何设备。 网段划分和IP地址分配如图8-4中的标注。 本实验通过对帧中继的配置实现R1的E0网段到R2的E0网段的连通性。 4.实验配置及监测结果 第1步:配置基本的帧中继连接 连接好所有设备并给各设备加电后,开始进行实验。 这一步完成对于两台路由器S0接口的帧中继参数的配置,同时也配置E0接口。 配置清单8-4记录了帧中继的基本配置。 配置清单8-4 配置基本的帧中继连接 第1段:配置R1路由器 R1#conft Enter configuration commands, one per line. End with CNTL/Z. R1(config)#int eO R1(config-if)#ip addr 192.1.1.1255.255.255.0 R1(config-if)#no keepa R1(config-if)#no shut R1(config-if)#int sO R1(config-if)#ip addr 172,16.1.1255.255.255.0

帧中继协议

帧中继协议 刷钻代码https://www.doczj.com/doc/4a11706843.html,/ 一、数据链路层帧方式接入协议(LAPF) 1、LAPF基本特性 LAPF(Link Access Procedures to Frame Mode Bearer Services)是帧方式承载业务的数据链路层协议和规程,包含在ITU-T建议Q.922中。LAPF的作用是再ISDN用户-网络接口的B、D或H通路上为帧方式承载业务,在用户平面上的数据链路(DL)业务用户之间传递数据链路层业务数据单元(SDU)。 LAPF使用I.430和I.431支持的物理层服务,并允许在ISDN B/D/H通路上统计复用多个帧方式承载连接。LAPF也可以使用其它类型接口支持的物理层服务。 LAPF的一个子集,对应于数据链路层核心子层,用来支持帧中继承载业务。这个子集称为数据链路核心协议(DL-CORE)。LAPF的其余部分称为数据链路控制协议(DL-CONTROL)。 LAPF提供两种信息传送方式:非确认信息传送方式和确认信息传送方式。 2、LAPF帧结构 LAPF的帧由5种字段组成:标志字段F、地址字段A、控制字段C、信息字段I和帧检验序列字段FCS。 标志字段(Flag)是一个特殊的八比特组01111110,它的作用是标志一帧的开始和结束。在地址标志之前的标志为开始标志,在帧校验序列(FCS)字段之后的标志为结束标志。

地址字段A的主要用途是区分同一通路上多个数据链路连接,以便实现帧的复用/分路。地址字段的长度一般为2个字节,必要时最多可扩展到4个字节。地址字段通常包括地址字段扩展比特EA,命令/响应指示C/R,帧可丢失指示比特DE,前向显式拥塞比特FECN,后向显示拥塞比特BECN,数据链路连接标识符DLCI和DLCI扩展/控制知识比特D/C等7个组成部分。 控制字段C分3种类型的帧:信息帧(I帧)用来传送用户数据,但在传拥护数据的同时,I帧还捎带传送流量控制和差错控制信息,以保证用户数据的正确传送;监视帧(S帧)专门用来传送控制信息,当流量和差错控制信息没有I帧可以“搭乘”时,需要用S帧来传送;无编号帧(U帧),有两个用途:传送链路控制信息以及按非确认方式传送用户数据。 信息字段I包含的是用户数据,可以是任意的比特序列,它的长度必须是整数个自己,LAPF信息字节的最大默契长度为260个字节,网络应能支持协商的信息字段的最大字节数至少为1598,用来支持例如LAN互联之类的应用,以尽量减少用户设备分段和重装用户数据的需要。 帧校验序列字段FCS是一个16比特的序列。它具有很强的检错能力,它能检测出在任何位置上的3个以内的错误、所有的奇数个错误、16个比特之内的连续错误以及大部分的大量突发错误。 3、LAPF帧交换过程 LAPF的帧交换过程是对等实体之间在D/B/H通路或其它类型物理通路上传送和交换信息的过程,进行交换的帧有I帧、S帧和U帧。 采用非确认信息传送方式时,LAPF的工作方程十分简单,用到的帧只有一种,即无编号信号帧UI。UI帧的I段包含了用

实验报告 3 思科 华为广域网协议配置实验

实验 3 广域网链路层协议配置实验 实验目的 掌握HDLC 、PPP 、FR 的配置 实验设备 Cisco 2621, Quidway 28系列路由器 实验概述 1. 实验环境 R A R B PC A PC B S0/0 S0/0 f0/0 f0/0 路由器各个接口的IP 地址设置如下: R A R B F0/0 202.0.0.1/24 202.0.1.1/24 S0/0 192.0.0.1/24 192.0.0.2/24 PC 机的IP 地址和缺省网关的IP 地址如下: PC A PC B IP 地址 202.0.0.2/24 202.0.1.2/24 Gateway 202.0.0.1/24 202.0.1.1/24

为了保证配置不受影响,请在实验前清除路由器的所有配置有重新启动(Cisco的路由器删除startup-config 文件,Quidway的路由器删除saved-config文件)。 2.实验步骤 1)配置路由器的接口IP地址和主机地址,修改路由器名称为RA和RB; 2)在路由器的串口上配置HDLC协议,查看路由器的配置文件,并测试PCA和PCB之间的连通性; 3)在路由器的串口上配置无验证的PPP协议,查看路由器的配置文件,并测试PCA 和PCB之间的连通性; 4)在路由器的串口上配置PAP认证的PPP协议,查看路由器的配置文件,并测试PCA和PCB之间的连通性; 5)在路由器的串口上配置CHAP认证的PPP协议,查看路由器的配置文件,并测试PCA和PCB之间的连通性; 6)在路由器的串口上配置帧中继协议,查看路由器的配置文件,并测试PCA和PCB之间的连通性。 实验内容 1.配置HDLC协议,测试PCA和PCB之间的连通性,填写表1。 在端口状态下命令:link-protocol hdlc (Quidway命令) encapsulation hdlc (Cisco命令) 表1 实验步骤观察内容 显示路由器的串口状态Command: show interface s0/0 或:display interface s0/0 Serial0/0 is up, line protocol is down Hardware is PowerQUICC Serial Internet address is 192.0.0.1/24 MTU 1500 bytes, BW 2000000 Kbit, DL Y 20000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation HDLC, loopback not set 测试PC1/PC2连通状态Command: ping Pinging 202.0.1.2 with 32 bytes of data: Request timed out. Request timed out. Request timed out. Request timed out. Ping statistics for 202.0.1.2: Packets: Sent = 4, Received = 0, Lost = 4 (100% loss), 2.配置无验证的PPP协议,测试PCA和PCB之间的连通性,填写表2。在端口状态下命令:link-protocol ppp(Quidway命令) encapsulation ppp (Cisco命令)

计算机网络技术实践实验报告

计算机网络技术实践 实验报告 实验名称实验三 RIP和OSPF路由协议的配置及协议流程 姓名____ ______实验日期: ____________________ 学号___________实验报告日期: ____________________ 报告退发: ( 订正、重做 ) 一.环境(详细说明运行的操作系统,网络平台,机器的IP地址)●操作系统:Windows7 ●网络平台:虚拟网络(软件Dynamips) ●IP地址:127.0.0.1 二.实验目的 ●在上一次实验的基础上实现RIP和OSPF路由协议 ●自己设计网络物理拓扑和逻辑网段,并在其上实现RIP和OSPF协议 ●通过debug信息详细描述RIP和OSPF协议的工作过程。 ●RIP协议中观察没有配置水平分割和配置水平分割后协议的工作流程; ●OSPF中需要思考为什么配置完成后看不到路由信息的交互?如何解 决? 三.实验内容及步骤(包括主要配置流程,重要部分需要截图) ●设计网络物理拓扑和逻辑网段

编写.net文件 autostart = false [localhost] port = 7200 udp = 10000 workingdir = ..\tmp\ [[router R0]] image = ..\ios\unzip-c7200-is-mz.122-37.bin model = 7200 console = 3001 npe = npe-400 ram = 64 confreg = 0x2102 exec_area = 64 mmap = false slot0 = PA-C7200-IO-FE slot1 = PA-4T s1/0 = R1 s1/1 s1/1 = R2 s1/2

第七章 配置帧中继

第七章配置帧中继 一、帧中继技术(Frame Relay) 帧中继是一种高性能的WAN协议,它运行在OSI参考模型的物理层和数据链路层。它是一种数据包交换技术,是X.25的简化版本。它省略了X.25的一些强健功能,如提供窗口技术和数据重发技术,而是依靠高层协议提供纠错功能,这是因为帧中继工作在更好的WAN设备上,这些设备较之X.25的WAN设备具有更可靠的连接服务和更高的可靠性,它严格地对应于OSI参考模型的最低二层(即是第二层协议),而X.25还提供第三层的服务,所以,帧中继比X.25具有更高的性能和更有效的传输效率。图1是应用帧中继技术通信的典型例子。 图1、帧中继通信 ? 虚电路:两个DTE设备(如路由器)之间的逻辑链路称为虚电路(交换虚拟线路SVC,Switched VirtualCircuits),帧中继用虚电路来提供端点之间的连接。由服务提供商预先设置的虚电路称为永久虚电路(PVC,Permanent VirtualCircuits);别外一种虚电路是交换虚电路(SVC),它是动态设置的虚电路。 ? 帧中继设置中可分为数据终端设备(DTE)和数据电路终端设备(DCE),在实际应用中,Cisco路由器为DTE端,通过V.35线缆连接CSU/DSU,如果将两个路由器通过V.35线缆直连,连接V.35 DCE线缆的路由器充当DCE的角色,并且需要提供同步时钟。CSU(通道服务单元):把终端用户和本地数字电话环路相连的数字接口设备。DSU(数据业务单元):指的是用于数字传输中的一种设备,它能够把DTE设备上的物理层接口适配到T1或者E1等通信设施上。数据业务单元也负责信号计时等功能,它通常与CSU(信道业务单元)一起提及,称作CSU/DSU (Channel Service Unit/Data [or Digital] Service Unit)。 ? 帧中继技术提供面向连接的数据链路层的通信,在每对设备之间都存在一条定义好的通信链路,且该链路有一个链路识别码。这种服务通过帧中继虚电路实现,每个帧中继虚电路都以数据链路识别码(DLCI,Data-Link Connection Identifier)标识自己,是在源和目的设备之间标识逻辑电路的一个数值。DLCI 的值一般由帧中继服务提供商指定。帧中继交换机通过在一对路由器之间映射DLCI来创建虚电路。帧中继即支持PVC也支持SVC。 ? 帧中继本地管理接口(LMI,Local Management Interface)是对基本的帧中继标准的扩展。它是路由器和帧中继交换机之间信令标准,提供帧中继管理机

帧中继——点到点子接口(point-to-point)配置

帧中继概述: ?是由国际电信联盟通信标准化组和美国国家标准化协会制定的一种标准。 ?它定义在公共数据网络上发送数据的过程。 ?它是一种面向连接的数据链路技术,为提供高性能和高效率数据传输进行了技术简化,它靠高层协议进行差错校正,并充分利用了当今光纤和数字网络技术。 帧中继的作用: ?帧使用DLCI进行标识,它工作在第二层;帧中继的优点在于它的低开销。 ?帧中继在带宽方面没有限制,它可以提供较高的带宽。 ?典型速率56K-2M/s内 选择 Frame Relay 拓扑结构: ?全网结构:提供最大限度的相互容错能力;物理连接费用最为昂贵。 ?部分网格结构:对重要结点采取多链路互连方式,有一定的互备份能力。 ?星型结构:最常用的帧中继拓扑结构,由中心节点来提供主要服务与应用,工程费最省 帧中继的前景: ?一种高性能,高效率的数据链路技术。 ?它工作在OSI参考模型的物理层和数据链路层,但依赖TCP上层协议来进行纠错控制。 ?提供帧中继接口的网络可以是一个ISP服务商;也可能是一个企业的专有企业网络。?目前,它是世界上最为流行的WAN协议之一,它是优秀的思科专家必备的技术之一。 子接口的配置: ?点到点子接口

–子接口看作是专线 –每一个点到点连接的子接口要求有自己的子网 –适用于星型拓扑结构 ?多点子接口(和其父物理接口一样的性质) –一个单独的子接口用来建立多条PVC,这些PVC连接到远端路由器的多点子接口或物理接口 –所有加入的接口都处于同一的子网中 –适用于 partial-mesh 和 full-mesh 拓扑结构中 帧中继术语: ?DTE:客户端设备(CPE),数据终端设备 ?DCE:数据通信设备或数据电路端接设备 ?虚电路(VC):通过为每一对DTE设备分配一个连接标识符,实现多个逻辑数据会话在同一条物理链路上进行多路复用。 ?数字连接识别号(DLCI):用以识别在DTE和FR之间的逻辑虚拟电路。 ?本地管理接口(LMI):是在DTE设备和FR之间的一种信令标准,它负责管理链路连接和保持设备间的状态。 今天我们研究点到点子接口(point-to-point)

帧中继基础知识总结

帧中继基础知识总结 版本V1.0 密级?开放?内部?机密 类型?讨论版?测试版?正式版 1帧中继基本配置 1.1帧中继交换机 帧中继交换机在实际工程环境中一般不需要我们配置,由运营商设置完成,但在实验环境中,要求掌握帧中继交换机的基本配置。 配置示例: frame-relay switching interface s0/1 encapsulation frame-relay frame-relay intf-type dce clock rate 64000 frame-relay route 102 interface s0/2 201 // 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号 frame-relay route 103 interface s0/3 301 no shutdown

1.2环境1 主接口运行帧中继(Invers-arp) FRswitch(帧中继交换机)的配置: frame-relay switching interface s0/1// 连接到R1的接口 encapsulation frame-relay frame-relay intf-type dce clock rate 64000 frame-relay route 102 interface s0/2 201 // 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号 no shutdown interface s0/2// 连接到R2的接口 encapsulation frame-relay frame-relay intf-type dce clock rate 64000 frame-relay route 201 interface s0/1 102 no shutdown R1的配置如下: interface serial 0/0 ip address 192.168.12.1 255.255.255.252 encapsulation frame-relay // 接口封装FR,通过invers-arp发现DLCI,并建立对端IP到本地DLCI的映射(帧中继映射表)no shutdown R2的配置如下: interface serial 0/0 ip address 192.168.12.2 255.255.255.252 encapsulation frame-relay no shutdown

帧中继协议

课程7 帧中继协议

目录 1 课程说明 课程介绍 1 课程目标 1 相关资料 1 2 第一节帧中继协议介绍 1.1帧中继概述 2 1.2 帧中继的历史 2 1.3 网络交换技术及其特点 2 1.4 帧中继的技术和市场起因 4 1.5 帧中继技术的特点 5 1.6 什么情况下适用帧中继 6 7 第二节帧中继协议介绍及应用 2.1 帧中继协议的一些概念7 2.2 帧中继的应用8 2.3 帧中继PVC交换9 2.4 帧中继的带宽管理10 12 第3课帧中继帧格式 3.1 Q.922附录A介绍12 3.2 IETF封装12 3.3 CISCO封装15 17 第四节帧中继LMI协议 4.1 LMI协议简介17 4.2 Q.933附录A 17 22 第五节InARP协议介绍 24 缩略词表

课程说明 课程介绍 本教材介绍了帧中继技术的起因、发展、特点及应用等,阐述了有关帧中继 的一些基本概念,注重介绍了帧中继的封装协议、LMI协议和INARP协议。课程目标 完成本课程学习,学员能够掌握: ?了解帧中继的特点、技术条件、应用等 ?理解帧中继的基本概念,了解帧中继的一些协议 相关资料 《帧中继技术及其应用》 《QUIDWAY路由器用户手册》

第一节帧中继协议介绍 1.1帧中继概述 概括的讲,帧中继技术是在数据链路层用简化的方法传送和交换数据单元的 快速分组交换技术。帧中继技术是在分组交换技术充分发展,数字与光纤传 输线路逐渐代替已有的模拟线路,用户终端日益智能化的条件下诞生并发展 起来的。 1.2 帧中继的历史 1986年AT&T首先在其有关ISDN的技术规范中提出帧中继业务;1988年国际 电信联盟ITU-T公布第一个有关帧中继业务框架的标准I.122;1989年美国国家 标准委员会ANSI开始帧中继技术标准的研究工作;1990年CISCO、DEC、NT 和STRATACOM联合创建帧中继委员会;1991年帧中继委员会改名为帧中继 论坛,并开始标准的制定工作。迄今ITU-T、ANSI和帧中继论坛制定了帧中继 的一系列标准,帧中继技术日趋完善。有关标准见附录。 1.3 网络交换技术及其特点 为了对帧中继有一个概括的了解和认识,首先简要回顾一下网络交换技术的 发展。随着数据通讯技术的发展和演变,网络交换技术有电路方式、分组方 式、帧方式、信元方式和交换型多兆比特数据业务(SMDS)。 电路方式是基于电话网电路交换的原理,当用户要求发送数据时,交换机就 在主叫用户和被叫用户之间接通一条物理的数据传输通路。特点是时延小、 “透明”传输(即传输通路对用户数据不进行任何修正或解释)、信息传输 的吞吐量大。缺点是所占带宽固定,网络资源利用率低。 分组方式是一种存储转发的交换方式。他是将需要传输的信息划分为一定的 长度的包(分组),以分组为单位进行存储转发的。每个分组信息都载有接 收地址和发送地址的的标识,在传送分组之前必须首先建立虚电路,然后依

《网络技术及产品应用》实验报告

内蒙古商贸职业学院计算机系 学生校内实验实训报告 2011 --2012学年第一学期 系部:计算机系 课程名称:网络技术及产品应用 专业班级:10级计算机系网络技术班 内蒙古商贸职业学院计算机系制

填写说明 1、实验项目名称:要用最简练的语言反映实验的内容,要与实验指导书或课程标准中相一致。 2、实验类型:一般需要说明是验证型实验、设计型实验、创新型实验、综合型实验。 3、实验室:实验实训场所的名称;组别:实验分组参加人员所在的组号。 4、实验方案设计(步骤):实验项目的设计思路、步骤和方法等,这是实验报告极其重要的内容,概括整个实验过程。 对于操作型实验(验证型),要写明需要经过哪几个步骤来实现其操作。对于设计型和综合型实验,在上述内容基础上还应该画出流程图和设计方法,再配以相应的文字说明。对于创新型实验,还应注明其创新点、特色。 5、实验小结:对本次实验实训的心得体会、思考和建议等。 6、备注:分组实验中组内成员分工、任务以及其他说明事项。 注意: ①实验实训分组完成的,每组提交一份报告即可,但必须说明人员分工及职责。不分组要求全体成员独立完成的实验实训项目可由指导老师根据个人完成情况分组填写。 ②实验成绩按照百分制记,根据教学大纲及课程考核要求具体区分独立计算、折算记入两种情况。 ③本实验实训报告是根据计算机系实验的具体情况在学院教务处制的实验实训报告的基础上进行改制的。特此说明。

成绩单 组别:小组成员:杨林林赵俊旭 次数实验实训项目名称成绩 1 交换机端口隔离 2 跨交换机实现VLAN 3 单臂路由 4 无线网络 5 创建ACL访问列表 6 路由器配置为帧中继交换机 7 IPV6路由 8 密码恢复技术 9 配置PPP及PAP认证 10 DHCP与NAT配置 总成绩

帧中继配置(点到点)

帧中继是ISP提供的一种广域网服务,是一种网络与数据终端设备(DTE)接口标准,多用于公司总部与分支机构互连。 帧中继的主要特点是:使用光纤作为传输介质,因此误码率极低,能实现近似无差错传输,减少了进行差错校验的开销,提高了网络的吞吐量;帧中继是一种宽带分组交换,使用复用技术时,其传输速率可高达44.6Mbps。但是,帧中继不适合于传输诸如话音、电视等实时信息,它仅限于传输数据。 下面我们开始试验,试验拓扑如下 试验环境分析:在上图环境中A路由器代表公司总部,A公司有两个分支机构,我们分别用路由器B、C表示 试验目标:使用帧中继实现总部与分支机构互连 帧中继的配置分为点对点子接口和多点子接口,在此我们将使用点对点子接口配置帧中继。点对点网络就是每一个端口对应一个相应的站点,而一个公司有可能有多个分支,而路由器端口的数量有限,这是我们需要在一个物理端口上划分出多个子接口,每个子接口对应一个站点。帧中继配置在路由器与分支相连的端口上,也就是广域网端口 帧中继配置命令: ①进入物理端口后不需要直接在端口上配置IP地址,如有IP地址可以在端口上使用 (config-if)#no ip address ②在物理端口(广域网端口)封装帧中继协议 (config-if)#encap frame-relay

③激活物理端口 (config-if)#no shutdown ④在物理端口上建立子接口,并指定接口类型 (config-if)#interface 子接口point-to-point ⑤给子接口配置IP地址和子网掩码 (config-subif)#ip address IP地址子网掩码 ⑥给子接口配置DLCI值 (config-subif)#frame-relay interface-dlci DLCI值 ⑦给子接口配置端口速率 (config-sibif)#bandwidth 带宽 DLCI值 IP地址规划 A:e0---192.168.10.1 B:e0---192.168.20.1 C:e0---192.168.30.1 s0.1--202.110.100.1 s0---202.110.100.2 s0---202.110.10 1.2 s0.2--202.110.101.1 一、配置A路由器 A(config)#interface e0 进入局域网端口 A(config-if)#ip address 192.168.10.1 255.255.255.0配置局域网I P和掩码 A(config-if)#no shutdown激活局域网端口 A(config-if)# interface s0 进入广域网端口 A(config-if)#no ip address 删除广域网端口的IP A(config-if)#no shutdown 激活广域网 A(config-if)#encap frame-relay封装帧中继协议 A(config-if)#interface s0.1 point-to-point 在物理端口上建立子接口S0.1,指定端口类型 A(config-subif)#ip address 202.110.100.1 255.255.255.0给子接口配置IP和掩码 A(config-subif)#frame-relay interface-dlci 102 给S0.1子接口封装DLCI A(config-subif)#bandwidth 64给S0.1子接口配置 A(config-subif)#interface s0.2 point-to-point 建立子接口S0.2,并指定子接口类型

实验5fr(帧中继)的配置

北京理工大学珠海学院实验报告 ZHUHAI CAMPAUS OF BEIJING INSTITUTE OF TECHNOLOGY 班级学号姓名 指导教师成绩 实验题目实验 5 FR 的配置实验时间 实验 5 FR 的配置 一、实验目的 掌握帧中继的基本原理;掌握帧中继网络数据转发的过程;掌握帧中继的基本配置方法。 二、实验环境(软件、硬件及条件) 3Windows 主机+3 台路由器+FR 的网络 或者 1 台 Windows 主机+packet tracer 模拟器 三、实验内容 理解 FR 的工作原理,通过路由协议(本实验采用 RIP 协议)实现 FR 网络的互通。 四、实验拓扑

五、实验步骤 1、在 Packet Tracer 上边画好拓扑,并配置好模块和帧中继 DLCI,配置过程: 1)添加 3 台路由器,为路由器添加 S 端口模块( NM-4A/S 模块)。(由于实验室路由器的 s 端口数量有限,建议大家用模拟器实现本实验) 以R1为例 2)添加一个 Cloud-PT-Empty 设备(Cloud0)模拟帧中继网络,为 Cloud0 添加3 个 S 端口模块,分别与路由器连。

如图: 3)设置好 S1,S2,S3,的 DLCI 值: 以S1为例 先在DLCI选框上填上DLCI的值,在Name选框上填上Name的值,最后按下Add键,结果如下:

4)配置好 Frame-relay 连接: 结果如下: 5)连接端口注意:路由器作为 DTE 设备,Cloud0 作为 DCE 设备,按照拓扑添加 3 台 PC作测试用,连接到路由器 F 端口,并启动各连接端口。为各 PC 设置好 IP 和网关,做好 ip 地址的规划,网络拓扑就基本完成。 2、配置 3 台路由器的 FR R1 路由器配置:

7帧中继链路与上层协议的交互

11 帧中继链路与上层协议的交互 2008-08-19 23:15 15页的东西,很长,帧中继链路和OSPF网络类型的交互,很乱,再整理一下吧:都有些什么呢?嗯,有这些: 一、很NA的理论; 二、用Tunnel搭建远距离的链中继二层链路; 三、帧中继与OSPF网络类型的交互,这个最杂了,总结一下吧: 关于帧中继的不支持广播的问题: 1、帧中继是NBMA非广播型多路访问,由于不支持广播,所以在帧中继链路上运行依赖广播的RIP V1,是起不来的,当然,对于依赖组播的RIP V 2、EIGRP和OSPF,也是跑不下来的,实验中可以看到(组播在后面,现在还不怎么有概念)。怎么解决这个问题呢?在MAP映射里面加broadcast参数,将一个数据包复制成几份扔到各个DLCI管道里面去。反向ARP的话是自动加了这个参数的,手动映射的话必须得注意加上这个参数。再说一个吧,rip v2在帧中继链路上默认在主接口是关闭了水平分割的,但子接口开启,而EIGRP是默认开启的。 2、关于OSPF在帧中继链路上的问题: (1)邻居建立的问题:解决方法:改网络类型、单播建邻居 (2)角色混乱的问题:解决方法:改优先级,spoke端不参与竞选 (3)数据通信的问题:解决方法:做二层PVC和IP地址的映射(不增加PVC) 多播又是怎么发送数据包的?(这个不急,可以学了多播了再说) OSPF有五种网络类型,在帧中继链路上默认是NBMA,即或是帧中继二层链路加上了广播参数,即二层支持广播,OSPF也认为组播包发不出去而不发HELLO包,所以邻居关系无法建立,协议无法运行。 解决方法1:改OSPF网络类型,让OSPF用组播建立邻居: 改OSPF网络类型为点对多点,这时不管二层链路是全互联还是HUB-AND-SPOKE,角色混乱问题和路由数据包的发送问题都不存在值得注意的是:这个MA域的所有路由上的OSPF链路类型必须一致,否则即使能建立邻居,也不能正常传递路由.还有在HUB-AND-SPOKE二层链路上,各个路由器都会出现所有参与OSPF的路由器接口地址的32位主机路由;看一下二层链路是多点子接口的情况,现在是三个路由器多点子接口全互联,也就是三个路由器都还连着其他网络.将主接口和子接口的反向ARP关掉,或者不关开启LMI本地管理协议,在子接口做MAP映射.结果很正常,三个问题都没有出现(很奇怪,看了一下OSPF的接口,这是默认的NBMA三层网络,为什么在多点子接口下就不存在上述三个问题了呢?).这是三层网络为默认的NBMA的情况, NBMA都没有问题,改成点到多点应该更没有问题吧. 看一下,的确没有这三个问题,不过要注意的是这时会生成MA网络中参与OSPF 的接口地址的32位主机路由.现在看二层是HUB-AND-SPOKE的情况.这又是畸形

时分交换实验报告

实验报告 课程名称: 实验项目: 姓名: 专业: 班级: 学号:程控交换原理时分交换(mt8980)实验网络工程网络 计算机科学与技术学院 实验教学中心 2014年 5 月 5 日 一、实验目的 1.掌握程控时分交换网络的基本原理; 2.了解mt8980芯片的工作原理和使用方法。 二、实验内容 1.理解时分交换原理,利用时分交换网络进行两部电话单机通话,记录工作过程。 三、实验步骤 1.在关电的情况下,确认发送增益跳线k301、k401等均设置为1-2相连左侧;交换网络接口插上“时分mt8980”交换模块,保管好其它模块; 2.打开实验箱右侧电源开关,电源指示灯亮,系统开始工作; 3.通过薄膜开关将交换工作方式设置在“时分mt8980”进行实验; 4.以电话a、电话b为例,分别接上电话单机; 5.四路数字电话用户的pcm编码输出测试点,即时分网络输入信号; tp304:电话a的pcm编码输出测试点,同步时隙脉冲测试点tp02; tp404:电话b的pcm编码输出测试点,同步时隙脉冲测试点tp03; tp504:电话c的pcm编码输出测试点,同步时隙脉冲测试点tp04; tp604:电话d的pcm编码输出测试点,同步时隙脉冲测试点tp05; 四路数字电话用户的pcm译码输入测试点,即时分网络输出信号。 tp305:电话a的pcm译码输入测试点,同步时隙脉冲测试点tp02; tp405:电话b的pcm译码输入测试点,同步时隙脉冲测试点tp03; tp505:电话c的pcm译码输入测试点,同步时隙脉冲测试点tp04; tp605:电话d的pcm译码输入测试点,同步时隙脉冲测试点tp05。 注意:现每个pcm收发测试点测得的波形已是时分复用后波形,测量时注意对比各路pcm 数据输出的同步时隙脉冲。 6.双踪示波器同时测试tp304、tp405两点或tp305、tp404两点,是否有波形,按键说话时是否有变化; 7.示波器两探头放在tp304、tp405两点上。电话a摘机,拨号49,同时观察示波器,哪个探头能测到波形; 8.两路电话用户间的正常呼叫,两路电话正常通话。此时,按键或说话,同时观察示波器,哪个探头测到的波形,波形是否一样; 9.更换其它电话呼叫组合,根据步骤5中列出的测量点说明,验证时分交换网络mt8980的工作情况; 10.测试波形时,注意时隙脉冲与数据的时隙位置对比,时隙脉冲与时隙脉冲的位置对比,数据与数据的对比。 四、实验结果

相关主题
文本预览
相关文档 最新文档