当前位置:文档之家› 三角形全等的判定定理4(AAS)

三角形全等的判定定理4(AAS)

三角形全等的判定定理4(AAS)

14.2三角形全等的判定——“角角边”课后反思

朱家凯本节课为了让学生理解全等识别法的产生,我采取的对策是:让学生分成小组,按书中的要求画图、剪图、叠图,多重复几次,然后观察、讨论,发现某种规律。使学生从自己的生活体验出发,以合作学习的方式,突破重难点。

我主要从以下四个环节来安排教学内容的:

(1)创设情境,导入课题。

(2)让学生合作探究,发现角边角公理,掌握公理。

(3)指导学生运用公理解决问题,发展学生创造性思维。

(4)指导学生反思小结,让学生在学到数学知识,提高解题能力的同时,感悟到某个生活哲理,即学习任何东西的最佳途径应该是靠自己去发现,发展学生良好的个性品质。

本节课我放手让学生自主探索,分组展示,达到了预想的效果,学生学得高兴,教师教得轻松。

(完整版)相似三角形的判定方法

(一)相似三角形 1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽ △ABC的相似比,当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; (双A型) ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

三角形性质和判定定理

等腰三角形: 定义:有两条边相等的三角形是等腰三角形。在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 性质: 1.等腰三角形的两条腰相等; 2.等腰三角形的两个底角相等; 3.等腰三角形是轴对称图形; 4.等腰三角形顶角的平分线、底边上的中线、底边上的高重合,它们所在的直线都是等腰三角形的对称轴。 判定: 1.有两条边相等的三角形是等腰三角形; 2.如果一个三角形有两个角相等,那么这两个角所对的边也相等。 等边三角形: 定义:三边都相等的三角形是等边三角形,也叫正三角形。 性质: 1.等边三角形是轴对称图形,有三条对称轴,任意边的垂直平分线都是它的对称轴; 2.等边三角形的三个角都相等,每个角都是60°。 判定: 1.三条边都相等的三角形是等边三角形; 2.有一个角是60°的等腰三角形是等边三角形; 3.有两个角是60°的三角形是等边三角形。 直角三角形: 定义:有一个内角是直角的三角形叫做直角三角形。其中,构成直角的两边叫做直角边,直角边所对的边叫做斜边。 性质:1.直角三角形的两个余角互余; 2.直角三角形斜边上的中线等于斜边的一半; 3.直角三角形中30°角所对的直角边等于斜边的一半; 4.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 判定: 1.有一个角是直角的三角形是直角三角形; 2..有两个角互余的三角形是直角三角形; 3.如果一个三角形一条边上的中线等于这条边的的一半,那么这个三角形是直角三角形; 4.如果三角形的三边长a、b、c满足于 a^2+b^2=c^2,那么这个三角形是直角三角形。 角平分线定理:在角的平分线上的点到这个角的两边 的距离相等 逆定理:到一个角的两边的距离相同的点,在这个角的平分线上 中垂线定理:线段垂直平分线上的点到这条线段两个 端点的距离相等 逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上 1 定理三角形两边的和大于第三边 2 推论三角形两边的差小于第三边 5外角2 三角形的一个外角大于任何一个和它不相邻的内角 3 三角形内角和定理三角形三个内角的和等于180°4外角1 三角形的一个外角等于和它不相邻的两个 内角的和 全等的判定: 6边角边公理(SAS) 有两边和它们的夹角对应相等的两 个三角形全等 7角边角公理( ASA)有两角和它们的夹边对应相等 的两个三角形全等 8推论(AAS) 有两角和其中一角的对边对应相等的 两个三角形全等

相似三角形的判定定理2

A B C A 1 B 1 C 1 A B C D O 1、 相似三角形判定定理2 如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 可简述为:两边对应成比例且夹角相等,两个三角形相似. 如图,在ABC ?与111A B C ?中,1A A ∠=∠,1111 AB AC A B AC = ,那么ABC ?∽111A B C ?. 【例1】 如图,四边形ABCD 的对角线AC 与BD 相交于点O , 2OA =,3OB =,6OC =,4OD =. 求证:OAD ?与OBC ?是相似三角形. 相似三角形判定定理2 知识精讲

A B C D A B C D E 【例2】 如图,点D 是ABC ?的边AB 上的一点,且2AC AD AB =g . 求证:ACD ?∽ABC ?. 【例3】 如图,在ABC ?与AED ?中, AB AC AE AD = ,BAD CAE ∠=∠. 求证:ABC ?∽AED ?. 【例4】 下列说法一定正确的是( ) A .有两边对应成比例且一角相等的两个三角形相似 B .对应角相等的两个三角形不一定相似 C .有两边对应成比例且夹角相等的两个三角形相似 D .一条直线截三角形两边所得的三角形与原三角形相似 【例5】 在ABC ?和DEF ?中,由下列条件不能推出ABC ?∽DEF ?的是( ) A .A B A C DE DF = ,B E ∠=∠ B .AB AC =,DE DF =,B E ∠=∠ C .AB AC DE DF = ,A D ∠=∠ D .AB AC =,DE DF =,C F ∠=∠

直角三角形的定理及规律新

直角三角形的定理及知识要点 一、补充定理 直角三角形的定理 1、直角三角形两锐角互余。 2、直角三角形斜边上的中线等于斜边的一半。 3、勾股定理:直角三角形两直角边的平方和等于斜边的平方。 30角所对的直角边等于斜边的一半。 4、直角三角形中0 直角三角形的逆定理 1、两锐角互余的三角形是直角三角形。 2、一条边上的中线等于这边的一半的三角形是直角三角形。 3、勾股定理的逆定理:两边的平方和等于第三边的平方的三角形是直角三角形。 30。 4、直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边的对角为0 等腰三角形的定理 1、三角形中等边对等角。 2、三线合一:等腰三角形底边的中线、底边的高、顶角的平分线三线合为一线。 60。 3、等边三角形三内角都是0 逆定理 1、三角形中等角对等边。 等边三角形的判定 60的三角形是等边三角形。 1、有两个角等于0 2、三个角相等的三角形是等边三角形。 60的等腰三角形是等边三角形。 3、有一个角是0 1

2 二、常见的图形及规律 1、Rt △ABC 中,若∠A =30°, ∠C =90°, 则 BC:AC:AB = 1:3:2。 2、Rt △ABC 中,若∠A =45°, ∠C =90°, 则 BC:AC:AB =1:1:2。 三、常见的勾股数 (一)3、4、5序列 ×2:6、8、10 ×10:30、40、50 ×0.1:0.3、0.4、0.5 1 2 ?:1.5、 2、 2.5 ×3:9、12、15 ×20:60、80、100 ×0.2:0.6、0.8、1.0 ×13:1、 43、 53 ×4:12、16、20 ×100:300、400、500 ×0.3:0.9、1.2、1.5 ×14:3544 、 1、 ×5:15、20、25 ×200:600、800、1000 ×0.4:1.2、1.6、2.0 ×1341555: 、 、 ×6:18、24、30 ×0.8:2.4、3.2、4.0 (二)由公式22a m n =-,2b mn =,22 c m n =+(m n >)推导出的序列 1 2 3 4 5 6 … 2 3,4,5 3 6,8,10 5,12,13 4 8,15,17 12,16,20 7,24,2 5 5 10,24,2 6 20,21,29 16,30,34 9,40,41 6 12,35,37 24,32,40 27,36,45 20,48,52 11,60,61 7 14,48,50 25,45,53 40,42,58 33,56,65 24,70,74 13,84,85 … … … … … … … … 勾 股 数 n m

三角形全等的判定定理教案

教 案 课题三角形全等的条件(SSS) 专业 指导教师 班级 学号 §三角形全等的条件(SSS) 一.教学目标 知识目标:掌握“边边边”条件的内容,并能结合已学过的三角形全等的判定定理来判定两个三角形是否全等. 能力目标:在探索三角形全等的判定条件的过程中,培养学生动手画图和观察识图的能力,及类比推理的能力. 情感目标:通过实践,在探索中体验发现数学规律的乐趣,以及获得成功的愉悦感.

二.教学重难点 重点:“SSS”判定定理并灵活运用. 难点:尺规作图画全等三角形;及恰当地选择三角形全等的判定定理. 三.教学分析 教学方法:探究式教学法为主、讲练结合法为辅. 教学手段:粉笔、木条、直尺、多媒体. 课型:新授课. 四.教学过程 (一) 复习引入,自然过渡. 问题1:目前我们已经学习了几种三角形全等的判定方法(找同学回答,在同学回答问 题的过程时,写下他们回答的三个判定定理SAS、ASA、AAS) 问题2:两个三角形具有哪些性质(找同学回答) 思考1:如果两个三角形只有对应角相等,那么这两个三角形一定全等吗(在学生回答后,给出图形加以说明) 思考2:如果两个三角形只有对应边相等,那么这两个三角形一定全等吗(学生猜想结果) (二)探索发现 1.作出猜想 根据同学的回答,做出猜想——三边分别对应相等的两个三角形一定全等. 2.证明猜想 将班集体分为3个小组,第一组的同学画一个边长为2cm、9cm、12cm的三角形;第二组的同学画一个边长为6cm、8cm、10cm的三角形;第三组的同学画一个边长为7cm、11cm、17cm的三角形.每位同学将自己画好的三角形用剪刀剪下来.(每一组叫两个同学展示他们的图形,同学们可以发现他们是重合的,说明这两个三角形是全等的),此时,证明同学们的猜想正确. 3.得出结论 带领学生总结出结论:三边对应相等的两个三角形一定全等.(SSS) (三)例题讲解 例1 如下图,在四边形ABCD中,已知,. AD CB AB CD ==求证ABC CDA ???. 证明:在ABC ?与CDA ?中, () () () CB AD AB CD AC CA = ? ? = ? ?= ? 已知 已知 公共边

三角形相似判定定理的证明

第四章图形的相似 5.相似三角形判定定理的证明 驻马店市第四中学:田慧婷一、学生知识状况分析 “相似三角形判定定理的证明”是“探索三角形相似的条件”之后的一个学习内容,学生已经学习了相似三角形的有关知识,对相似三角形已有一定的认识,并且在前一节课的学习中,以充分经历了猜想,动手操作,得出结论的过程。本节主要进行相似三角形判定定理的证明,证明过程中需添加辅助线,对学生来说具有挑战性,需要通过已有的知识储备,相似三角形的定义以及构造三角形全等的方法完成证明过程。 二、教学任务分析 本节共一个课时,本节是从证明相似三角形判定定理1、两角分别相等的两个三角形相似入手,使学生进一步通过推理证明上节课所得结论命题1的正确性,从而学会证明的方法,为后续证明判定定理2,3打下基础。 三、教学过程分析 本节课设计了个教学环节:第一环节:复习回顾,导入课题;第二环节:动手操作、探求新知;第三环节:动手实践,推理证明;第四环节:方法选择,合理应用;第五环节:课堂小结,布置作业。 第一环节:复习回顾,导入课题 内容:1.平行线分线段成比例公理及推论定理; 2.判定两个三角形全等的方法有哪些? 3.三角形相似的定义,判定两个三角形相似的方法有哪些? 在上节课中,我们通过类比两个三角形全等的条件,寻找并探究判定两个三角形相似的条件,您能证明它们一定成立吗? 目的:通过学生回顾复习已得结论入手,激发学生学习兴趣。 效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。 第二环节:动手操作,探求新知

内容:命题1、两角分别相等的两个三角形相似。如何对文字命题进行证明?与同伴进行交流. 目的:通过学生回顾证明文字命题的步骤入手,引导学生进行画图,写出已知,求证。 第一步:引导学生根据文字命题画图, 第二步:根据图形和文字命题写出已知,求证。 已知:如图,在△ABC和△A’B’C’中,∠A=∠A’,∠B=∠B’。 求证: △ABC∽△A’B’C’。 第三步:写出证明过程。(分析现在能说明两个三角形相似的方法只有相似三角形的定义,我们可以利用这一线索进行探索,已知两角对应相等,根据三角形内角和定理可以推出第三个角也相等,从而可得三角对应相等,下一步,我们只要再证明三边对应成比例即可。根据平行线分线段成比例的推论,我们可以在△ABC内部或外部构造平行线,从而构造出与△A’B’C’全等的三角形。)教师可以以填空的形式进行引导。 证明:在△ABC的边AB(或延长线)上截取AD=A’B’,过点D作BC的平行线,交AC于点E,则∠ADE=∠B, ∠AED=∠C, ________(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)。 过点D作AC的平行线,交BC于点F,则 __________(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)。 ∴____________ ∵DE∥BC,DF∥AC

直角三角形的判定定理“HL”

1 / 2 第2课时 直角三角形的判定定理“HL ” (参考用时:30分钟 ) 1. 如图所示,∠C=∠D=90°,添加一个条件,可使用“HL ”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件: ①∠ABC=∠ABD;②AC=AD; ③BC=BD;④∠BAC=∠BAD. 适合的有( B ) (A)1个 (B)2个 (C)3个 (D)4个 2. 如图,△ABC 中,AB=AC,BD ⊥AC 于D,CE ⊥AB 于E,BD 和CE 交于O,AO 的延长线交BC 于F,则图中全等的直角三角形有( D ) (A)3对 (B)4对 (C)5对 (D)6对 3. 如图,在△ABC 中,∠BAC=90°,AB=AC,AE 是经过A 点的一条直线,且B,C 在AE 的两侧,BD ⊥AE 于D,CE ⊥AE 于E,CE=2,BD=6,则DE 的长为( D ) (A)2 (B)3 (C)5 (D)4 4.已知:如图,AE ⊥BC,DF ⊥BC,垂足分别为 E,F,AE=DF,AB=DC,则△ ABE ≌△ DCF (HL). 第4题图 5.如图,MN ∥PQ,AB ⊥PQ,点A,D,B,C 分别在直线MN 与PQ 上,点E 在AB 上,AD+BC=7, AD=EB,DE=EC,则AB= 7 . 第5题图 6. 如图,在△ABC 和△DCB 中,∠A=∠D=90°,AC=BD,AC 与BD 相交于点 O. (1)求证:△ABC ≌△DCB; (2)△OBC 是何种三角形?证明你的结论. (1)证明:在△ABC 和△DCB 中,∠A=∠D=90°, AC=BD,BC=CB.所以Rt △ABC ≌Rt △DCB(HL). (2)解:△OBC 是等腰三角形. 因为Rt △ABC ≌Rt △DCB,所以∠ACB=∠DBC, 所以OB=OC,所以△OBC 是等腰三角形. 7. 如图,已知Rt △ABC 中,∠ ACB=90°,CA=CB,D 是AC 上一点,E 在BC 的延长线上,且AE=BD,BD 的延长线与AE 交于点F.试通过观察、测量、猜想等方法来探索BF 与AE 有何特殊的位置关系,并说明你猜想的正确性 . 解:猜想:BF ⊥AE. 理由:因为∠ACB=90°,所以∠ACE=∠BCD=90°. 又BC=AC,BD=AE,所以△BDC ≌△AEC(HL). 所以∠CBD=∠CAE. 又因为∠CAE+∠E=90°,所以∠EBF+∠E=90°. 所以∠BFE=90°,即BF ⊥AE. 8.(1)如图1,点A,E,F,C 在一条直线 上,AE=CF,过点E,F 分别作DE ⊥AC,BF ⊥AC,若AB=CD,试证明BD 平分线段EF; (2)若将图1变为图2,其余条件不变时,上述结论是否仍然成立?请说明理由 . (1)证明:因为DE ⊥AC,BF ⊥AC, 所以∠DEC=∠BFA=90°. 因为AE=CF, 所以 AE+EF=CF+EF,

全等三角形判定方法四种方法”_

三角形全等的条件(一) 学习要求 1 ?理解和掌握全等三角形判定方法 1―― “边边边”, 2?能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 课堂学习检测 一、填空题 1 ?判断 ____ 的 _____ 叫做证明三角形全等. 2?全等三角形判定方法 1―― “边边边”(即 ________ )指的是 _____ 3?由全等三角形判定方法 1―― “边边边”可以得出:当三角形的三边长度一定时,这个 三角形的 _____ 也就确定了. 在厶 ______ 和厶 ______ 中, RP RQ(已知), PM _______ , _____ _______ (), 二 _____ 也 ______ ( )? / PRM = _______ ( ______ ) ? 即RM ? 5. 已知:如图 2 — 2, AB = DE , AC = DF , BE = CF. 求证:/ A =Z D . 4. 已 知: 求只要证_ 证明:如图 2 —〔,△ RPQ 中, RM 平分/ PRQ . 要证 RM 平分/ PRQ ,即/ PRM = M 为PQ 的中点(已知),

分析:要证/ A =Z D,只要证_________ 也 ______ 证明:??? BE = CF ( ), 二BC = ____ . 在厶ABC和厶DEF中, AB _______ , BC _______ , AC _______ , 二 _____ 也______ ( ). ???/ A=Z D ( __________ ). 6. 如图2- 3, CE = DE, EA = EB, CA = DB , 求证:△ ABCBAD . 证明:??? CE= DE , EA= EB, ? _____ + _______ = _______ + 即 _____ = _______ . 在厶ABC和厶BAD中, = ______ (已知), _____ _______ (已知), (已证), _____ ( ), ? △ ABC◎△ BAD ( ). 综合、运用、诊断 一、解答题 7. 已知:如图2 —4, AD = BC . AC= BD .试证明:/ CAD = /DBC . &画一画. 已知:如图2 —5,线段a、b、c . 求作:△ ABC,使得BC = a, AC= b, AB = c .

三角形相似的判定数学教案

三角形相似的判定数学教案 三角形相似的判定数学教案 一、教学目标 1.使学生了解直角三角形相似定理的证明方法并会应用. 2.继续渗透和培养学生对类比数学思想的认识和理解. 3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力. 4.通过学习,了解由特殊到一般的唯物辩证法的观点. 类比学习,探讨发现 三、重点及难点 1.教学重点:是直角三角形相似定理的应用. 2.教学难点:是了解直角三角形相似判定定理的证题方法与思路. 四、课时安排 3课时 五、教具学具准备 多媒体、常用画图工具 六、教学步骤 [复习提问] 1.我们学习了几种判定三角形相似的方法?(5种)

2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写). 其中判定定理1、2、3的.证明思路是什么?(①作相似,证全等;②作全等,证相似) 3.什么是“勾股定理”?什么是比例的合比性质? 【讲解新课】 类比判定直角三角形全等的“HL”方法,让学生试推出: 直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 已知:如图,在∽中, 求证:∽ 建议让学生自己写出“已知、求征”. 这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到.应让学生对此有所了解. 定理证明过程中的“都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题. 例4已知:如图,,,,当BD与、之间满足怎样的关系时∽. 解(略) 教师在讲解例题时,应指出要使∽.应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边. 还可提问:(1)当BD与、满足怎样的关系时∽?(答案:)

直角三角形全等判定定理教案

直角三角形全等判定定理教案 主题:直角三角形全等判定定理 授课人:范金华 【教学目标】 1.使学生理解判定两个直角三角形全等可用已经学过的全等三角形判定方法来判定. 2.使学生掌握“斜边、直角边”定理,并能熟练地利用这个定理和一般三角形全等的判定方法来判定两个直角三角形全等.指导学生自己动手,发现问题,探索解决问题(发现探索法).由于直角三角形是特殊的三角形,因而它还具备一般三角形所没有的特殊性质.因为这是第一次涉及特殊三角形的特殊性,所以教学时要注意渗透由一般到特殊的数学思想,从而体现由一般到特殊处理问题的思想方法. 3.让学生领会无处不在的数学之美 【教学重点和难点】 1.重点:“斜边、直角边”定理的掌握. 2.难点:“斜边、直角边”定理的灵活运用. 【教学手段】:剪好的直角三角形硬纸片和展示板若干 【教学方法】观察、比较、合作、交流、探索. 【教学过程】 (一)情景引入 故事:乌龟和兔子关于滑梯的争论。 (二)引入新课 如果两个直角三角形的斜边和一对直角边相等(边边角),这两个三角形是否能全等呢? (三)探究新知 如图3-43,在△ABC 与△A 'B 'C '中,若AB=A 'B ',AC=△A 'C ',∠C=∠C '=Rt ∠,这时Rt △ABC 与Rt △A 'B 'C '是否全等? 学生讨论后得出结果: 把Rt △ABC 与Rt △A 'B 'C '拼合在一起(教具演示)如图3-44,因为∠ACB=∠A 'C 'B '=Rt ∠,所以B 、C(C ')、B '三点在一条直线上,因此,△ABB '是一个A(A’) C(C’) B B

等腰三角形,于是利用“SSS ”或“AAS ”可证三角形全等. 从而引出直角三角形全等判定定理——“HL ”定理. (四)知识形成 1.斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”). 1)这是直角三角形全等的一个特殊的判定定理,其他判定定理用于任意三角形全等的判定定理.(前提、条件) 2)证明直角三角形全等的方法总结 2.分组小游戏: 图形展示:请同学们将手中的全等的直角三角形两个一组摆出不同的位置关系,贴在展示栏内。看哪组贴的又快又多又漂亮! 3.应用 例1已知:如图,在△ABC 和△ABD 中,AC ⊥BC, AD ⊥BD,垂足分别为C,D,AD=BC. 求证:△ABC ≌△BAD. 此题由学生分析,找出全等条件,由老师写出板书过程。 例2 例2.已知:如图,AB=CD,DE ⊥AC,BF ⊥AC,垂足分别为E,F,DE=BF. 求证:AE=CF. 变式:求证:AB//DC 此题由学生讨论后说出思路,由学生推举代表 上台板演 A B D C A B C D E D C F A B

三角形相似的判定教案(共3课时) 人教版

《三角形相似的判定》教案 重点、难点分析 相似三角形的判定及应用是本节的重点也是难点.它是本章的主要内容之一,是在学完相似三角形的基础上,进一步研究相似三角形的本质,以完成对相似三角形的定义、判定全面研究.相似三角形的判定还是研究相似三角形性质的基础,是今后研究圆中线段关系的工具.它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大. 释疑解难 (1)全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的3个定理和判定两个三角形相似的3个定理之间有内在的联系,不同之处仅在于前者是后者相似比为1的情况. (2)相似三角形的判定定理的选择:①已知有一角相等时,可选择判定定理1与判定定理2;②已知有二边对应成比例时,可选择判定定理

2与判定定理3;③判定直角三角形相似时,首先看是否可以用判定直角三角形的方法来判定,如果不能,再考虑用判定一般三角形相似的方法来判定. (3)相似三角形的判定定理的作用:①可以用来判定两个三角形相似; ②间接证明角相等、线段域比例;③间接地为计算线段的长度及角的大小创造条件. (4)三角形相似的基本图形:①平行型:如图1,“A”型即公共角对的边平行,“×”型即对顶角对的边平行,都可推出两个三角形相似; ②相交线型:如图2,公共角对的边不平行,即相交或延长线相交或对顶角所对边延长相交.图中几种情况只要配上一对角相等,或夹公共角(或对顶角)的两边成比例,就可以判定两个三角形相似。

直角三角形的判定(教学设计)

直角三角形的判定 教学目标 知识与技能:掌握直角三角形的判定条件,并能进行简单应用. 过程与方法:经历探索直角三角形的判定条件的过程,理解勾股逆定理. 情感态度与价值观:激发学生解决的愿望,体会勾股逆向思维所获得的结论.明确其应用范围和实际价值. 重点、难点、关键 重点:理解和应用直角三角形的判定. 难点:运用直角三角形判定方法进行解决问题. 关键:运用合情推理的方法,对勾股定理进行逆向思维,形成一种判别方法. 教学准备 教师准备:直尺、圆规、投影片. 学生准备:复习勾股定理,预习本节课内容. 教学过程 一、创设情境 神秘的数组(投影显示). 美国哥伦比亚大学图书馆收藏着一块编号为“普林顿322”(plim pton 322)的古巴比伦泥板. 泥板上的一些神秘符号实际上是一些数组,这些神秘的数组揭示了什么奥秘呢? 经专家的潜心研究,发现其中2列数字竟然是直角三角形的勾和弦,?只要添加一列数(如表所示)左边的一列,那么每列的3个数就是一个直角三角形的三边的长! 例如:60、45、70是这张表中的一组数,而且602+452=752,小明画了以60mm ?、?45mm 、75mm 为边长的△ABC .(如图所示) 请你猜想,小明所画的△ABC 是直角三角形吗?为什么? 教师活动:操作投影仪,提出问题,引导学生思考. 学生活动:观察问题,小组合作交流,思考上述问题的解答. 思路点拨: 思路一:用量角器量三角形的3个内角,看有无直角. 思路二:动手画一个直角三角形,使它的2条直角边的长为60mm 和45mm ,?看能否与△ABC 全等.

媒体使用:投影显示“普林顿322”泥板的图片,以及数字. 古埃及人实验(投影显示) 古埃及人曾用下面的方法得到直角: 如图所示,用13个等距离的结把一根绳子分成等长12段,一个工匠同时握住绳子的第一个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,?就会得到一个直角三角形,其直角在第4个结论.请你思考:按这种做法真能得到一个直角三角形吗? 教师活动:提出问题,引导思考. 学生活动:继续探索,感悟其中的道理. 形成共识:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.(勾股定理) 思考:这个结论与勾股定理有什么关系呢? 学生活动:通过小组讨论、分析,发现它与勾股定理恰好是条件与结论互相对换的一个语句. 教师点拨:实际上它是勾股定理的逆定理,用它可以判定一个三角形是否是直角三角形.从神秘的数组中的数据可以发现它们都是勾股数,也就是满足a2+b2=c2的3个正整数a、b、c称为勾股数,古埃及实验也体现出这个特征.可见利用勾股数可以构造直角三角形. 二、范例学习 例3 设三角形三边长分别为下列各组数,试判断各三角形是否是直角三角形. (1)7,24,25;(2)12,35,37;(3)13,11,9 思路点拨:判断的依据是勾股逆定理,但是应该是将两个较小数的平方和与较大数平方进行比较,若相等,则可构成直角三角形,最大边所对的角是直角,这一点应该明确. 教师活动:引导学生完成例3,然后提问学生,强调方法. 学生活动:动手计算,对照勾股定理进行判断. 三、随堂练习 1.课本P54页第1,2题. 2.探研时空: (1)如图所示,在△ABC中,已知AB=10,BD=6,AD=8,AC=17,你能求出DC?的长吗? 思路点拨:本题首先要将△ABC分割成Rt△ABD和Rt△ADC,然后具体的分析,将题设条件进行对照,确定运算.在△ABD中, ∵AB=10,BD=6,AD=8,62+82=102, ∴AD2+BD2=AB2 于是∠ADB=90° (2)一个零件的形状如图(a)所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边尺寸如图(b),这个零件符合要求吗? 思路点拨:这是利用勾股定理的逆定理解决实际问题的例子,只要能运用自己的语言表达清楚解决问题的过程即可,这个问题,首先应在△ABD中计算出AB2+AD2=9+6=25=BD2,得到△ABD是直角三角形,∠A=90°,再在△BCD中,计算BD2+BC2=25+144=169=CD2,得到△BCD是直角三角形,∠DBC是直角,由此,可以推断出这个零件符合要求.

全等三角形的判定常考典型例题和练习题

全等三角形的判定 一、知识点复习 ①“边角边”定理:两边和它们的夹角对应相等的两个三角形全等。(SAS) 图形分析: 、 书写格式:在△ABC和△DEF中 ? ? ? ? ? = ∠ = ∠ = EF BC E B DE AB ∴△ABC≌△DEF(SAS) ②“角边角”定理:两角和它们的夹边对应相等的两个三角形全等。(ASA) 图形分析: # 书写格式:在△ABC和△DEF中 ? ? ? ? ? ∠ = ∠ = ∠ = ∠ F C EF BC E B ∴△ABC≌△DEF(ASA) ③“角角边”定理:两个角和其中一个角的对边对应相等的两个三角形全等。(AAS) { 图形分析: 书写格式: 在△ABC和△DEF中 ! ? ? ? ? ? = ∠ = ∠ ∠ = ∠ EF BC F C E B ∴△ABC≌△DEF(AAS)

④“边边边”定理:三边对应相等的两个三角形全等。(SSS ) 图形分析: 、 书写格式: 在△ABC 和△DEF 中 ?? ? ??===EF BC DF AC DE AB ∴△ABC ≌△DEF(AAS) — ⑤“斜边、直角边”定理:斜边和一条直角边对应相等的两个直角三角形全等。(HL ) 图形分析: 书写格式: ) 在△ABC 和△DEF 中 ?? ?==DF AC DE AB ∴△ABC ≌△DEF (HL ) 一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗比如说“SSA ”、“AAA ”能成为判定两个三角形全等的条件吗 两个三角形中对应相等的元素 两个三角形是否全等 反例 $ SSA ? AAA |

相似三角形的判定定理1

1 / 7 1、 相似三角形的定义 如果一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的三边对应成比例,那么这两个三角形叫做相似三角形. 如图,DE 是ABC ?的中位线,那么在ADE ?与ABC ?中, A A ∠=∠, ADE B ∠=∠,AED C ∠=∠; 1 2AD DE AE AB BC AC ===.由相似三角形的定义,可知这两个三角形相似.用符号来表示,记作 ADE ?∽ABC ?,其中点A 与点A 、点D 与点B 、点E 与点C 分 别是对应顶点;符号“∽”读作“相似于”. 用符号表示两个相似三角形时,通常把对应顶点的字母分别写在三角形记号“?”后相应的位置上. 根据相似三角形的定义,可以得出: (1)相似三角形的对应角相等,对应边成比例;两个相似三角形的对应边的比,叫做这两个三角形的相似比(或相似系数). (2)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似. 2、 相似三角形的预备定理 平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似. 如图,已知直线l 与ABC ?的两边AB 、AC 所在直线分别交于点D 和点E ,则ADE ?∽ABC ?. 相似三角形判定定理1 A B C D E A B C D E A B C D E D A B C E

2 / 7 A B C A 1 B 1 C 1 3、 相似三角形判定定理1 如果一个三角形的两角与另一个三角形的两角对应相等,那么这两个三角形相似. 可简述为:两角对应相等,两个三角形相似. 如图,在ABC ?与111A B C ?中,如果1A A ∠=∠、1B B ∠=∠,那么ABC ?∽111A B C ?. 常见模型如下:

相似三角形的判定定理

24.4(1)相似三角形的判定 教学目标 1.知道相似三角形的定义及有关概念,知道相似比为1的相似三角形是全等三角形;会读、会用 “∽”符号;能准确写出相似三角形的对应角与对应边的比例式; 2、掌握相似三角形判定的预备定理及相似三角形的判定定理1; 3、综合运用所学两个定理,来判定三角形相似,计算相似三角形的边长. 4、了解判定定理1的证题方法与思路,应用判定定理l. 一、复习 1.什么叫做全等三角形?它在形状上、大小上有何特征? 2.两个全等三角形的对应边和对应角有什么关系? 3、复习平行线分线段成比例定理(文字表述及基本图形) 本节学习相似三角形的定义及相关判定定理. 二、学习新课 相似三角形的概念: 我们把对应角相等、对应边成比例的两个三角形,叫做相似三角形. 相似三角形的概念作为相似三角形的判定方法之一. [说明]相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.两个三角形形状相同,就是他们的对应角相等,对应边成比例. 相似比的概念 :相似三角形对应边的比k ,叫做相似比(或相似系数). [说明]①两个相似三角形的相似比具有顺序性. ②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形. 注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上. 类似地,如果两个边数相等的多边形的对应角相等、对应边成比例,那么这两个多边形叫做相似多边形.相似多边形的对应边的比,叫做相似比. 如图,111,ABC A B C ??是相似三角形,则111,ABC A B C ??相似可记作ABC ?∽111A B C ?.由于 111 2 AB A B =,则ABC ?与111A B C ?的相似比111 2 AB k A B = =,则111A B C ?与ABC ?的相似比,112A B k AB == . C 1 B 1 A 1 C B A

直角三角形的所有定律

直角三角形的所有定律 针对初二和初三的定律哈、 满意答案 ★丶笨、才爱 5级 2009-07-21 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等

14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

《直角三角形的判定》例题与讲解

直角三角形的判定 1.勾股定理的逆定理 (1)勾股定理的逆定理的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形. (2)勾股定理的逆定理的释疑:不少的同学对知道三角形三边满足a2+b2=c2能得到直角三角形这样的一种结论持有怀疑的态度,其实通过三角形的全等可以很简单地证明出来.比如:如果在△ABC中,AB=c,BC=a,CA=b,并且满足a2+b2=c2 (如图所示),那么∠C=90°. 作△A1B1C1,使∠C1=90°,B1C1=a,C1A1=b,则A1B21=a2+b2. ∵a2+b2=c2,∴A1B1=c(A1B1>0). 在△ABC和△A1B1C1中, ∵BC=a=B1C1,CA=b=C1A1,AB=c=A1B1, ∴△ABC≌△A1B1C1. ∴∠C=∠C1=90°. 辨误区勾股定理的逆定理的条件 (1)不能说成在直角三角形中,因为还没有确定直角三角形,当然也不能说“斜边”和“直角边”. (2)当满足a2+b2=c2时,c是斜边,∠C是直角. 利用勾股定理的逆定理判断一个三角形是否为直角三角形的思路是:先确定最长边,算出最长边的平方及另两边的平方和,如果最长边的平方与另两边的平方和相等,则此三角形为直角三角形. 对啊!到目前为止判定直角三角形的方法有:①说明三角形中有一个直角;②说明三角形中有两边互相垂直;③勾股定理的逆定理. 【例1】如图所示,∠C=90°,AC=3,BC=4,AD=12,BD=13,问:

AD⊥AB吗试说明理由. 解:AD⊥AB. 理由:根据勾股定理得AB=AC2+BC2=5. 在△ABD中,AB2+AD2=52+122=169,BD2=132=169, 所以AB2+AD2=BD2. 由勾股定理的逆定理知△ABD为直角三角形,且∠BAD=90°. 故AD⊥AB. 2.勾股定理的逆定理与勾股定理的关系 勾股定理是通过“形”的状态来反映“数”的关系的,而勾股定理的逆定理是通过“数”的关系来反映“形”的状态的. (1)勾股定理是直角三角形的性质定理,勾股定理的逆定理是直角三角形的判定定理,二者是互逆的. (2)联系:①两者都与a2+b2=c2有关,②两者所讨论的问题都是直角三角形问题. (3)区别:勾股定理是以“一个三角形是直角三角形”为条件,进而得到这个直角三角形三边的数量关系“a2+b2=c2”;勾股定理的逆定理则是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到这个三角形是“直角三角形”. (4)二者关系可列表如下:

三角形相似定理

三角形相似定理(第3课时) 一、教学目标 1.使学生了解直角三角形相似定理的证明方法并会应用. 2.继续渗透和培养学生对类比数学思想的认识和理解. 3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力. 4.通过学习,了解由特殊到一般的唯物辩证法的观点. 二、教学设计 类比学习,探讨发现 三、重点及难点 1.教学重点:是直角三角形相似定理的应用. 2.教学难点:是了解直角三角形相似判定定理的证题方法与思路. 四、课时安排 3课时 五、教具学具准备 多媒体、常用画图工具、 六、教学步骤 [复习提问] 1.我们学习了几种判定三角形相似的方法?(5种) 2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写). 其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似) 3.什么是“勾股定理”?什么是比例的合比性质? 【讲解新课】

类比判定直角三角形全等的“HL”方法,让学生试推出: 直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 已知:如图,在∽中, 求证:∽ 建议让学生自己写出“已知、求征”. 这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到.应让学生对此有所了解. 定理证明过程中的“都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题. 例4已知:如图,,,,当BD与、之间满足怎样的关系时∽. 解(略) 教师在讲解例题时,应指出要使∽.应有点A与C,B与D,C 与B成对应点,对应边分别是斜边和一条直角边. 还可提问:(1)当BD与、满足怎样的关系时∽?(答案:

全等相似三角形的判定定理

相似三角形的判定定理: (1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(简叙为两角对应相等两三角形相似). (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.) (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.) (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似. (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 相似三角形的性质定理: (1)相似三角形的对应角相等. (2)相似三角形的对应边成比例. (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形的周长比等于相似比. (5)相似三角形的面积比等于相似比的平方. 射影定理 射影定理(又叫欧几里德定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 全等三角形 1. 三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。 2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。 3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。 4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”) 5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,属于SSA),这两种情况都不能唯一确定三角形的形状。

相关主题
文本预览
相关文档 最新文档