当前位置:文档之家› 高纯纳米三氧化二铝在陶瓷中的作用-降低烧结温度

高纯纳米三氧化二铝在陶瓷中的作用-降低烧结温度

高纯纳米三氧化二铝在陶瓷中的作用-降低烧结温度

高纯纳米三氧化二铝在陶瓷中的作用-降低烧结温度

氧化铝陶瓷(alumina ceramics )是一种以α-Al2O3为主晶相的陶瓷材料,由于α-Al2O3具有熔点高,硬度大,耐化学腐蚀,优良的介电性,是氧化铝各种形态中最稳定的晶型,也是自然界中惟一存在的氧化铝的晶型。

用α-Al2O3为原料制备的氧化铝陶瓷结构件材料,其机械性能、高温性能、介电性能及耐化学腐蚀性能都是非常优异的。

影响预烧质量的因素:

1)工业中预烧氧化铝时,通常要加入适量的添加物,如H3BO4,NH4F,AlF3、高纯纳米氧化铝(VK-L30)等,。添加物可以降低预烧温度、促进晶型转化、排除Na2O等杂质。加入5%~15%的高纯纳米氧化铝,可以降低烧结温度50-100度。

添加剂的影响:

由于Al2O3陶瓷坯体熔点高,较难烧结,若加入某种添加剂,则可以改善烧结性能,促进烧结。就添加剂来说,大致可分为以下两大类:一类是与Al2O3生成固溶体,一类是能生成液相。

第一类添加剂为变价氧化物,有高纯纳米氧化铝(VK-L30)、TiO2、Cr2O3、Fe2O3及MnO2等。由于其晶格常数与Al2O3的相接近,因此通常能与Al2O3生成固溶体。同时它们是变价氧化物,由于变价作用,使Al2O3瓷产生缺陷,活化晶格,促进烧结。尽管添加剂有多种,对于高纯瓷件来说最适合的添加剂为高纯纳米氧化铝(VK-L30)。例如,加入5~15%的高纯纳米氧化铝,可以使Al2O3瓷的烧结温度降低50~150℃,大大节约能源,并且高纯纳米氧化铝不属于外来杂质,大大提高了产品质量。

另一类添加剂即由于生成液相,降低烧成温度而促进Al2O3的烧结。这一类添加剂有高岭土、SiO2、CaO、MgO等。这时由于它们能与其它外加剂生成二、三元或更复杂的低共熔物。由于出现液相,即液相对固相的表面湿润力和表面张力,使固相粒子靠紧并填充气孔。

氧化铝陶瓷的性能与应用

1. 性能

(1)机械强度高。Al2O3瓷烧结产品的抗弯强度可达250MPa,热压产品可达500MPa。Al2O3成分愈纯,强度愈高。强度在高温下可维持到900℃。利用其机械强度,可以制成装置瓷和其他机械构件。添加纳米氧化铝烧结的陶瓷强度提高,不容易断裂。

(2)电阻率高,电绝缘性能好。常温电阻率1015Ω·cm,绝缘强度15kV/mm。利用其绝缘性和强度,可以制成基板、管座、火花塞、电路管壳等。

(3)硬度高。莫氏硬度为9,加上优良的抗磨损性,广泛用以制造磨轮、磨料、拉丝模、挤压模、轴承等。

(4)熔点高,抗腐蚀。熔点2050 ℃,能较好地抗Be、Sr、Ni、Al、V、Ta、Mn、Fe、Co等熔融金属的侵蚀。对NaOH、玻璃、炉渣的侵蚀也有很高的抵抗能力。因此可用作耐火材料、炉管、玻璃拉丝坩埚、空心球、热电偶保护套等。

(5)化学稳定性优良。许多复合的硫化物、磷化物、氯化物、氧化物等以及硫酸、盐酸、硝酸、氢氟酸均不与Al2O3作用。因此Al2O3可以制成坩埚、人体关节、人工骨、羟基磷灰石涂层多晶氧化铝陶瓷人工牙齿等。

(6)光学特性。可以制成透光材料(透光Al2O3瓷),用以制造钠蒸汽灯管、微波整流罩、红外窗口、激光振荡元件等。

纳米氧化铝制备工艺技术

1. 200780101735 用于制备有控制结构与粒度的纳米多孔氧化铝基材料的方法和利用所述方法获得的纳米多孔氧化铝 2. 92104368 尺寸可控纳米、亚微米级氧化铝粉的制备方法 3. 95105843 纳米级氧化铝的生产工艺 4. 96117151 纳米添加氧化铝陶瓷的改性方法 5. 00125966 一种形态松散的纳米、亚微米级高纯氧化铝的制备方法 6. 01134059 纳米氢氧化铝的制备方法 7. 01126878 纳米尺寸的均匀介孔氧化铝球的合成方法 8. 01124685 一种作催化剂载体用的纳米级氧化铝及其制备方法 9. 01121545 高纯纳米级氧化铝的制备方法 10. 01113724 去除纳米氧化铝模板背面剩余铝的方法 11. 01132376 导电性纳米氮化钛-氧化铝复合材料的制备方法 12. 02139370 氧化铝纳米纤维的制备方法 13. 02138470 制备纳米材料的氧化铝模板及模板的制备方法 14. 02136111 利用氧化铝模板生长锗纳米线的方法 15. 02129021 纳米羟基磷灰石/氧化铝复合生物陶瓷的制备方法 16. 02116802 超纯纳米级氧化铝粉体的制备方法 17. 02109247 一种带有氧化铝壳的复合金属纳米粉末材料及其制备方法 18. 02138014 醇铝气相法制取纳米高纯氧化铝的方法 19. 200310106128 高纯纳米氧化铝纤维粉体制备方法 20. 03141495 一种氧化铝纳米纤维的制备方法 21. 03140530 一种表面包膜氧化铝的纳米二氧化钛颗粒的制备方法 22. 03129084 纳米氧化铝材料的制造方法 23. 03117871 纳米氧化铝胶体功能陶瓷涂料生产方法 24. 03800065 α-氧化铝纳米粉的制备方法 25. 03136606 一种纳米孔氧化铝模板的生产工艺 26. 03133529 纳米氧化铝浆组合物及其制备方法 27. 03102045 一种含有改性纳米级氧化铝的半合成烃类转化催化剂 28. 200480009462 纳米多孔超细α-氧化铝粉末及其溶胶-凝胶制备方法 29. 200420080270 一种去除纳米氧化铝模板背面铝层的装置 30. 200410063067 纳米氧化铝铜基体触头材料 31. 200410019998 一种基于多孔氧化铝模板纳米掩膜法制备纳米材料阵列体系的方法 32. 200410013256 一种无硬团聚的纳米氧化铝的制备方法 33. 200410010510 阳极氧化铝模板中一维硅纳米结构的制备方法 34. 200410067540 纳米氢氧化铝的制备方法 35. 200410077970 纳米氢氧化铝、粘土与乙烯-醋酸乙烯共聚物的阻燃复合材料

低温烧结氧化铝陶瓷

文章编号:1671-3559(2007)01-0017-03 收稿日期:2006-10-30 基金项目:山东省自然科学基金(Y2006F5);济南市科技明星 计划(50119) 作者简介:史国普(1981-),男,内蒙古商都人,硕士生;王 志 (1962-),山东莱西人,博士,教授,硕士生导师。 低温烧结氧化铝陶瓷 史国普,王 志,侯宪钦,孙 翔,俎全高,徐秋红 (济南大学材料科学与工程学院,山东济南250022) 摘 要:选用CaO-MgO-SiO 2(CMS)和TiO 2两种添加剂来降低氧化铝陶瓷的烧结温度。通过设计正交试验讨论烧结助剂和烧结温度对氧化铝陶瓷的相对密度的影响规律,并用扫描电子显微镜观察了不同配方氧化铝陶瓷的显微结构。结果发现:C MS 质量分数为6%、TiO 2质量分数为1%、烧结温度为1500e 时氧化铝陶瓷的相对密度98.71%。同时晶体发育比较均匀,没有出现晶体的异常长大和二次再结晶现象。 关键词:Al 2O 3陶瓷;相对密度;添加剂;晶体中图分类号:T B321 文献标识码:A 氧化铝陶瓷熔点高,硬度高,且有优良的热稳定性和化学稳定性,是优异的工程陶瓷材料之一。但其离子键较强,从而导致其质点扩散系数低(Al 3+ 在1700e 时扩散系数仅10-11c m 2#s -1)、烧结温度较高。例如99氧化铝陶瓷的烧结温度可高达近1800e 。如此高的烧结温度将促使晶粒长大,残余气孔聚集长大,导致材料力学性能降低,同时也造成材料气密性差,且对窑炉耐火砖的损害较大。因此,降低氧化铝陶瓷的烧结温度,降低能耗,缩短烧成周期,减少窑炉和窑具损耗,从而降低生产成本,一直是企业所关心和急需解决的重要课题。对于陶瓷材料而言,一般采用两种途径来降低其烧结温度[1] :一是通过获得超细颗粒、无团聚、以及分散均匀的良好烧结活性的粉体来达到降低烧结温度的目的;二是添加适量的烧结助剂,以达到促进材料致密化并且在低温烧结的目的。其中烧结助剂又分为两类[2]:一类是与氧化铝生成固熔体,例如TiO 2、Cr 2O 3、MnO 2等;另一类是能生成液相,例如:高岭土、CaO 、MgO 、SiO 2等。降低烧成温度而促进Al 2O 3的烧结,对于烧结助剂的作用机理已形成共识。因此这种方法在陶瓷 领域的工业生产中被广泛采用[3]。 Kwon 和Singh 等[4-5] 分别以MgO-Al 2O 3-SiO 2 和CaO-Al 2O 3-SiO 2玻璃为烧结助剂,分析并阐述了Al 2O 3陶瓷溶解-沉淀过程的动力学和烧结机理。然而两种烧结助剂对Al 2O 3陶瓷的液相烧结激活能均较高,致密化效果不好。溶解-沉淀为液相烧结中的主要过程,它对致密化的贡献与基体在液相中的溶解度有关,溶解度越大则致密化程度越高[6] 。由相图可得Al 2O 3在CaO-MgO-SiO 2中的溶解度远大于其在MgO -Al 2O 3-SiO 2和Ca O -Al 2O3-SiO 2玻璃中的溶解度[1]。但是仅用CaO-MgO-SiO 2作为烧结助剂,Al 2O 3陶瓷的致密度只能达到95%左右,而且致密烧结温度较高。因此本文中以商业高纯的A -Al 2O 3为原料,通过添加CaO-MgO-SiO 2和TiO 2两种复合烧结助剂来降低陶瓷的烧结温度。 1 实验原料及方法 实验主要原料为A -Al 2O 3(纯度99.8%,平均粒径6.5L m),CaO-MgO-SiO 2玻璃相(C MS)分别按30B 9B 21的质量比称量混合,TiO 2(纯度99%,平均粒径2.7L m)。将各个含量的烧结助剂和粉料一起用高纯的氧化铝小球湿磨48h,烘干,加入PVA 造粒,然后在50MPa 条件下压力成型,最后分别在1450e 、1500e 、1550e 的温度下烧结,保温3h 后,炉冷至室温。 利用Archimedes 法测量试样的体积密度。计算样品相对密度时,分别以3.98g #cm -3 、2.69g #c m -3 、 4.26g #cm -3 为A -Al 2O 3、CMS 、TiO 2的理论密度。用SE M(HI TACHI S-2500,日本日立公司)观察试样的断口形貌以及结晶情况。 第21卷第1期2007年1月 济南大学学报(自然科学版) J OURNAL OF UNIVE RSITY OF JINAN (Sci.&Tech 1) Vol.21 No.1 Jan.2007

氧化铝陶瓷的制备与应用

论文题目:氧化铝陶瓷的制备与应用 学院:材料科学与工程学院 专业班级:材料化学2班 学号:20090488 姓名:王杰 日期:2011-10-19

氧化铝陶瓷的制备与应用 摘要:氧化铝陶瓷是用途最广泛的陶瓷材料中的一种,它可用作机器及设备制造中的耐腐蚀材料、化工专业中的抗腐蚀材料、电工及电子技术中的绝缘材料、热工技术中的耐高温材料以及航空、国防等领域中的某些特种材料。 Abstract: the alumina ceramics is the most widely use of one of the ceramic material, it can be used as the machine and equipment manufacture of corrosion resistant material, chemical corrosion materials in the professional, electrical and electronic technology of thermal insulation materials, high temperature resistant materials and technologies in the aerospace, defense, etc to some of the special material. 关键词:氧化铝陶瓷耐磨性机械强度耐化学腐蚀 Keywords: alumina ceramics Wear resistance Mechanical strength Chemical corrosion-resistant 氧化铝陶瓷是一种用途广泛的陶瓷。因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。[1] 1.硬度大经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2.耐磨性能极好经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。

纳米三氧化二铝的应用及研究进展

纳米三氧化二铝的应用及研究进展应化100130139 吕进 摘要:本文主要简述三氧化二铝的催化原理和他的结构、组成。简述其制备的方法和表征以及其使用情况。总的说来,三氧化二铝的制备分别有以下几中方法:碱法生产三氧化二铝;酸法生产三氧化二铝;电热法生产三氧化二铝。三氧化二铝的性质,包括比表面积、孔结构、晶体结构和形貌等,主要由其制备方法决定.。氧化铝包括了α型氧化铝和γ氧化铝。 关键词:三氧化二铝,催化原理,制备,表征,球花型介孔A12O3,X-射线衍射(XRD),Pt/A12O3的制备 Nano 3 oxidation the application and research progress Applied Chemistry 100130139 LV Jin Abstract: this paper mainly discusses the catalytic principle and his 3 oxidation 2 aluminium structure, composition. Briefly introduces the preparation and characterization of the method and the use. On the whole, the preparation of the 3 oxidation 2 aluminium respectively in the following methods: 3 oxidation 2 aluminium production process; Acid production by 3 oxidation 2 aluminium; Electric heating method production 3 oxidation 2 aluminium. 3 oxidation the properties, including specific surface area, pore structure, crystal structure and morphology, mainly by its preparation methods decision.. Alumina including α type alumina and gamma alumina. Key words:3 oxidation 2 aluminium, catalytic principle, preparation, characterization, the ball pattern mesoporous A12O3, X-ray diffraction (XRD), Pt/A12O3 preparation 1 组成 1 活性组分:三氧化二铝2载体:负载型催化剂3助催化剂: α-A12O3,γ- A12O3 2 结构 在α型氧化铝的晶格中,氧离子为六方紧密堆积,铝离子对称地分布在氧离子围成的八面体配位中心 3 催化原理 具有良好的孔径分布、较大的孔容和比表面积以及多种晶型的不同性能 4 制备 4.1 碱法生产A12O3 碱法的基本原理是使矿石中的A12O3与碱在一定条件下生成铝酸钠进入溶液,从而与二氧化硅和氧化铁等杂质分离,然后再使纯净的铝酸钠溶液分解析出Al(oH)3,经高温锻烧制得成品A12O3。 碱法生产A12O3又可分为拜耳法、烧结法、联合法。 4.2 酸法生产A1203 酸法是用适当的无机酸处理矿石使产生的相应铝盐(如AIC13、A12(S04)3、Al州03)3)进入溶液中,矿石中的氧化硅不与酸作用而残留于渣中;将铝盐进一步净化除铁后,使之分解得到Ab03。该法需要昂贵的耐酸设备,且所使用的酸回收十分困难,所以难以 用于大规模的工业化生产

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

氧化铝陶瓷制作工艺

氧化铝陶瓷介绍 来自:中国特种陶瓷网发布时间:2005-8-3 11:51:15 氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长

纳米氧化铝的研究进展

1.5纳米氧化铝的研究进展 1.5.1氧化铝的性质 氧化铝是化学键力很强的离子键化合物。它有八种同质异形晶体:Q、B、Y、0、 q、8、K、X-A1203,其中主要的也是在工业中得到重要应用的是Q.A1203、B.A1203 和Y.A1203---种晶型。Y—A1203为低温稳定相,Q.A1203是熔点2050。C以下唯一的在任 何温度下都会稳定存在的相态,其它相态均为过渡相或不稳定相【74】。 Y.A1203属于立方晶系,尖晶石型结构,其中氧原子呈面心立方密堆积,铝原子不 规则地排列在由氧原子围成的八面体和四面体孔穴中。它的密度为3.30.3.639/cm3,只在 低温下稳定,在高温下不稳定,它不溶于水,但溶于酸或碱。y.A1203比表面很大,约 为200.600m2/g,具有强的吸附能力和催化活性,广泛用于吸附剂、催化剂和催化剂载体[751 O B.A1203是一种氧化铝含量很高的多铝酸盐,它的化学组成可近似地用RO.6A1203 或R20.1 1A1203来表示(RO为碱土金属氧化物,R20为碱金属氧化物),其结构由碱土 金属或碱金属离子层尖晶石结构单元交替堆积而成,氧离子排列成立方密堆积结构,Na+ 完全包含在垂直于c轴的松散堆积平面内,在这个平面内可以很快扩散,呈现离子型导电,称钠离子导体。因此,13.A1203是一类重要的固体电解质【75J。 Q.A1203属于三方晶系,刚玉型结构,该结构可以看成氧离子按六方紧密排列,即ABABAB一二层重复型,而铝离子有序的填充于2/3的八面体间隙中,使其化学式成为A1203。Q.A1203熔点为2050。C,密度为3.90-4.019/cm3,模氏硬度为9。它的化学性质 稳定,不溶于水,也不溶于酸或碱,耐腐蚀且电绝缘性好,广泛应用于高硬度研磨材料、陶瓷材料、耐火材料和集成电路的基板等【75,76】。

纳米陶瓷涂层的典型应用领域

纳米陶瓷涂层的一些典型应用领域: 飞机发动机、燃气轮机零部件: 热障涂层(TBC)被广泛地应用在飞机发动机、涡轮机和汽轮机叶片上,保护高温合金基体免受高温氧化、腐蚀,起到隔热、提高发动机进口温度和发动机推重比作用的一种陶瓷涂层材料。8YSZ材料被用做热障涂层材料在军用发动机已应用几十年了,它的缺点是不能突破1200o C的使用温度,但现在军用发动机的使用温度已经超过1200o C,因此急需材料方面的突破。另外,地面燃气轮机的热障涂层材料基本受制于国外,也亟待国产化。国内外研究指出含锆酸盐的双陶瓷热障涂层被认为是未来发展长期使用温度高于1200o C的最有前景的涂层结构之一。用纳米结构锆酸盐粉体喂料制备的纳米结构双陶瓷型n-LZ/8YSZ热障涂层的隔热效果明显好于其它现有涂层,与相同厚度的传统微米结构单陶瓷型8YSZ 热障涂层相比,隔热效果提高了70%。而且,纳米结构的双陶瓷型涂层具有比其它两种涂层层更好的热震性能。 军舰船舶零部件: 纳米结构的热喷涂陶瓷涂层早已广泛应用于美国海军装备(包括军舰、潜艇、扫雷艇和航空母舰)上的数百种零部件。纳米结构陶瓷涂层的强度、韧性、耐磨性、耐蚀性、热震抗力等均比目前国内外商用陶瓷涂层材料中质量好、销量大的美科130涂层的性能显著提高。有着高出1倍的韧性,高出4-8倍的耐磨性,高出1-2倍的结合强度和抗热震性能和高出约10倍的疲劳性能。表1给出了纳米结构的热喷涂陶瓷涂层在美国海军舰船上的一些典型应用。 表1 一些美国海军舰船上应用的热喷涂纳米Al2O3/TiO2陶瓷涂层 零部件船上系统基体材料使用环境 水泵轴储水槽NiCu合金盐水 阀杆主柱塞阀不锈钢蒸汽 轴主加速器碳钢盐水 涡轮转子辅助蒸汽碳钢油 端轴主推进发动机青铜盐水 阀杆主馈泵控制不锈钢蒸汽 膨胀接头弹射蒸汽装置CuNi合金蒸汽 支杆潜艇舱门不锈钢盐水 流量泵燃料油碳钢燃料油 柴油机、工程机械零部件: 高性能纳米结构陶瓷涂层可以大幅度提高材料或零部件的硬度、韧性、耐磨性、抗腐蚀性和耐高温性能,因此可广泛应用于柴油发动机、工程机械等领域。如缸体、泵轴、机轴、曲轴、凸轮轴、轴瓦、连杆瓦、柱塞、阀杆、阀座、液压支杆、缸盖、活塞销、活塞和活塞环等零部件。如:纳米陶瓷涂层来大幅度提高曲轴的抗疲劳强度、硬度和耐磨性;纳米陶瓷涂层用于活塞无疑会是最具有高性价比的工艺技术;纳米陶瓷涂层将给与主轴瓦及连杆瓦以更高的强度、硬度和韧性,显著提高其耐磨性能,极大地减小曲轴的磨损、有效地防止烧瓦、抱瓦及烧

试验纳米氧化铝粉体的制备及粒度分析

实验2 纳米氧化铝粉体的制备及粒度分析 一.实验目的 1.了解纳米材料的基本知识。 2.学习纳米氧化铝的制备。 3. 了解粒度分析的基本概念和原理。 4. 掌握马尔文激光粒度分析仪的使用。 二.实验原理 纳米氧化铝因其具有耐高温、耐腐蚀、比表面积大、反应活性高、烧结温度低,比普通氧化铝粉有着更优异的物化特性,在人工晶体、精细陶瓷、催化剂等方面得到广泛的应用。到目前为止纳米氧化铝粉末的制备方法众多,大致可分为气相法、固相法和液相化学反应法等,其中液相法制备Al2O3具有平均粒径小,分布范围窄、纯度高、活性高、设备简单、制备工艺影响因素可控等优点。 许多学者就纳米氧化铝的合成进行了广泛深入的研究。采用各种方法制备出纳米氧化铝粉体,但困扰纳米超细制备和应用的一个严重问题就是由于表面能造成的粉体的团聚,转相温度高而使颗粒明显长大,人们一般通过添加分散剂来克服团聚,因此对分散剂的合理选择,制备条件的有效控制及分散机理、分散效果的研究显得十分重要。 本实验以不同聚合度的聚乙二醇(PEG)为分散剂,采用沉淀法制备氢氧化铝胶体,胶体经800~1100℃高温煅烧2 h得到纳米氧化铝粉体,其在煅烧过程中经历Al(OH)3→AlOOH(勃姆石)→γ-Al2O3→δ-Al2O3→θ-Al2O3→α-Al2O3的相变过程,此方法能得到的最小平均粒径约为25 nm。 三.仪器与试剂 试剂:硫酸铝铵、浓氨水(25-28%)、聚乙二醇(PEG,聚合度n=200、600、2000、4000)、无水乙醇等,纯度均为AR级。 仪器:集热式恒温磁力搅拌器、40ml陶瓷坩埚、陶瓷研钵、500ml烧杯、真空水泵、布氏漏斗、抽滤瓶、马弗炉、50ml量筒、分析天平、空气塞、干燥箱、磁铁、容量瓶250ml、称量纸、滤纸、玻璃棒、钥匙、表面皿、分液漏斗。 Mastersizer 2000激光粒度仪。 四.实验步骤 1.查文献

高纯纳米三氧化二铝在陶瓷中的作用-降低烧结温度

高纯纳米三氧化二铝在陶瓷中的作用-降低烧结温度 氧化铝陶瓷(alumina ceramics )是一种以a-AI2O3为主晶相的陶瓷材料,由于a-AI2O3具有熔点高,硬度大,耐化学腐蚀,优良的介电性,是氧化铝各种形态中最稳定的晶型,也是自然界中惟一存在的氧化铝的晶型。 用a -AI2O3为原料制备的氧化铝陶瓷结构件材料,其机械性能、高温性能、介电性能及耐化 学腐蚀性能都是非常优异的。 影响预烧质量的因素: 1)工业中预烧氧化铝时,通常要加入适量的添加物,如H3BO4, NH4F, AIF3、高纯纳米氧 化铝(VK-L30)等,。添加物可以降低预烧温度、促进晶型转化、排除Na2O等杂质。加入5%~15%的高纯纳米氧化铝,可以降低烧结温度50-100 度。 添加剂的影响: 由于AI2O3 陶瓷坯体熔点高,较难烧结,若加入某种添加剂,则可以改善烧结性能,促进烧 结。就添加剂来说,大致可分为以下两大类:一类是与Al2O3生成固溶体,一类是能生成液相。 第一类添加剂为变价氧化物,有高纯纳米氧化铝(VK-L30)、TiO2、Cr2O3、Fe2O3及MnO2等。由于其晶格常数与Al2O3的相接近,因此通常能与Al2O3生成固溶体。同时它们是变价氧化物,由于变价作用,使AI2O3 瓷产生缺陷,活化晶格,促进烧结。尽管添加剂有多种,对于高纯瓷件来说最适合的添加剂为高纯纳米氧化铝(VK-L30)。例如,加入5~15%的高纯纳米氧化铝,可以使Al2O3瓷的烧结温度降低50~150C,大大节约能源,并且高纯纳米氧化铝不属于外来杂质,大大提高了产品质量。 另一类添加剂即由于生成液相,降低烧成温度而促进Al2O3的烧结。这一类添加剂有高岭土、 SiO2、CaO、MgO 等。这时由于它们能与其它外加剂生成二、三元或更复杂的低共熔物。由于出现液相,即液相对固相的表面湿润力和表面张力,使固相粒子靠紧并填充气孔。氧化铝陶瓷的性能与应用 1. 性能 (1)机械强度高。Al2O3瓷烧结产品的抗弯强度可达250MPa,热压产品可达500MPa。Al2O3 成分愈纯,强度愈高。强度在高温下可维持到900 C。利用其机械强度,可以制成装置瓷和 其他机械构件。添加纳米氧化铝烧结的陶瓷强度提高,不容易断裂。 ⑵电阻率高,电绝缘性能好。常温电阻率1015 Q ? cm,绝缘强度15kV/mm。利用其绝缘性 和强度,可以制成基板、管座、火花塞、电路管壳等。 (3)硬度高。莫氏硬度为9,加上优良的抗磨损性,广泛用以制造磨轮、磨料、拉丝模、挤压模、轴承等。 ⑷熔点高,抗腐蚀。熔点2050 C,能较好地抗Be、Sr、Ni、Al、V、Ta Mn、Fe、Co等熔 融金属的侵蚀。对NaOH、玻璃、炉渣的侵蚀也有很高的抵抗能力。因此可用作耐火材料、炉管、玻璃拉丝坩埚、空心球、热电偶保护套等。 (5)化学稳定性优良。许多复合的硫化物、磷化物、氯化物、氧化物等以及硫酸、盐酸、硝 酸、氢氟酸均不与Al2O3作用。因此Al2O3可以制成坩埚、人体关节、人工骨、羟基磷灰石涂层多晶氧化铝陶瓷人工牙齿等。 ⑹光学特性。可以制成透光材料(透光Al2O3 瓷),用以制造钠蒸汽灯管、微波整流罩、红 外窗口、激光振荡元件等。

纳米陶瓷及其主要性能简析

纳米陶瓷 及其主要性能简析 [摘要] 纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。本文对纳米陶瓷的这些主要的特异性能进行了阐述。 [关键词] 纳米陶瓷、显微结构、晶界、扩散、烧结、强度、韧性、超塑性 [引言] 陶瓷材料作为材料的三大支柱之一 ,在日常生活及工业生产中起着举足轻重的作用。但是 ,由于传统陶瓷材料质地较脆 ,韧性、强度较差 ,因而使其应用受到了较大的限制。随着纳米技术的广泛应用 ,纳米陶瓷随之产生 ,希望以此来克服陶瓷材料的脆性 ,使陶瓷具有象金属一样的柔韧性和可加工性。英国著名材料专家 Cahn 在《自然》杂志上撰文说:纳米陶瓷是解决陶瓷脆性的战略途径。 一、纳米陶瓷及其结构简介 所谓纳米陶瓷是指在陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都是纳米水平的一类陶瓷。 我们知道陶瓷的烧结中粉料的粒度是重要的影响因素。粒度越小,粉粒的表面积越大,表面能越大,烧结的推动力越大;同时晶界所占体积越大,扩散越容易,因而烧结速度越快。当陶瓷中晶粒尺寸减小一个数量级,晶粒的表面积及晶界的体积亦以相应的倍数增加。如晶粒尺寸为nm 6~3,晶界的厚度为nm 2~1时,晶界的体积约占整个体积的%50。由于晶粒细化引起表面能的急剧增加。 纳米陶瓷由纳米量级的粉料烧结而成,是晶粒尺寸在nm 100~1之间的多晶陶瓷。所以结构中包含纳米量级的晶粒、晶界和缺陷。由于晶粒细化,晶界数量大幅度增加。当晶粒尺寸在nm 25以下,若晶界厚度为nm 1,则晶界处原子百分数达%50~%15,单位体积晶界的面积达32/600cm m ,晶界浓度达3 19/10cm 。 纳米陶瓷这样的特殊结构,使得其具有特殊的性能。 二、纳米陶瓷的主要性能及其简析 纳米陶瓷中纳米量级的晶粒、晶界和缺陷决定了它们具有区别于普通陶瓷的特殊性能,是纳米陶瓷性能优于普通陶瓷的根本原因所在。 1、 较低的烧结温度和较快的致密化速度

以MnO2-TiO2-MgO为添加剂注浆成型低温烧结Al2O3陶瓷

以MnO2-TiO2-MgO为添加剂注浆成型低温烧结Al2O3陶瓷 采用注浆成型方法,通过加入MnO2-TiO2-MgO复相添加剂,在1350℃空气气氛中常压烧结,获得了相对密度最大为95.7%的氧化铝陶瓷。研究了MnO2-TiO2-MgO复相添加剂对氧化铝陶瓷显微结构与力学性能的影响。在添加质量分数为3%MnO2,0.5%MgO的情况下,比较添加不同质量分数的TiO2(1.0~3.0%)对氧化铝陶瓷烧结性能的影响。通过对比发现,该复相添加剂能有效降低氧化铝陶瓷的烧结温度,在同一温度下,随着TiO2的增加,烧结体密度也随之增加,强度也有明显差别。结果表明,1350℃下Al2O3+0.5%MgO+3%MnO2+1.5%TiO2体系烧结效果最好,断口为沿晶断裂,无明显气孔,晶粒分布均匀,平均粒径为2μm,无晶粒异常长大现象。烧结体密度达到3.80g/cm^3,抗弯强度为243MPa。 结果表明,添加TiO2 5%、在1300oC时的常压烧结密度可达到理论值的97%. 固定CuO(0.4%)和TiO 2(4%)的添加量、改变TiO 2 (0--32%)和CuO(0--3.2%)的添加 量(质量分数, 下同), 研究了CuO--TiO 2 复合助剂对氧化铝陶瓷烧结性能、微观结构、物相组成以及烧结激活能的影响, 以揭示复合助剂的低温烧结机理。结果 表明, 在1150--1200℃TiO 2固溶入Al 2 O 3 生成Al 2 Ti 7 O 15 相, 并生成大量正离子空 位提高了扩散系数, 从而以固相反应烧结的作用机理促进了氧化铝陶瓷的致密 化; TiO 2在Al 2 O 3 中的极限固溶度为2%--4%, 超过固溶极限的TiO 2 对陶瓷烧结没 有促进作用; 添加适量的CuO(0.4%)可将TiO 2在Al 2 O 3 中的固溶温度降低到 1100℃以下, 并以液相润湿作用促进氧化铝陶瓷的致密烧结。陶瓷烧结激活能的 计算结果定量地印证了上述烧结机理; 当在Al 2O 3 中添加4%的TiO 2 和2.4%的CuO, 可将烧结激活能降低到54.15 kJ ? mol-1。 研究了单独引入TiO2、CAS(CaO-Al2O3-SiO2)及协同引入TiO2和CAS时3种情形对氧化铝材料显微结构影响。实验表明,单独引入TiO2时,随添加量从0.15%(质量分数,下同)增加到0.60%,Al2O3样品的晶粒形貌由正常生长逐渐向异向生长和异常长大转变;而单独引入CAS,即使添加量达到2.0%,Al2O3晶粒也没有出现异向生长和异常长大;实验还表明,在添加TiO2,同时引入CAS时,可以有效抑制TiO2添加所引起的Al2O3晶粒异常长大和异向生长。对CAS添加剂抑制晶粒异常长大和异向生长的原因进行了讨论。 高温球阀喷涂 Al2O3-TiO2 和 WC-Co 涂层的耐磨粒磨损 性能研究 上海沪工阀门厂 2010-07-19 摘要:采用激光等离子喷涂技术在已失效的高温球阀基体材料上制备 Al2O3-TiO2与WC-Co 金属陶瓷涂层,在摩擦磨损试验机上时涂层的耐磨粒磨损性能进行研究,利用扫描电镜、光学显微镜对涂层的显微组织结构、磨损表面及其相组进行分析,并采用维氏显微硬度

纳米氧化铝的研究

纳米氧化铝的研究及应用 [摘要] 纳米技术是当今世界最有前途的决定性技术,纳米科学与技术将对其他学科、产业和社会产生深远的影响。文章概述了纳米氧化铝的结构、性能、用途、制备等方面,更深入地了解了纳米氧化铝材料,并展望了纳米氧化铝材料的应用前景。 [关键字] 纳米氧化铝结构性能用途制备方法 [前言] 近年来, 纳米氧化铝材料备受到人们普遍关注,其广阔的应用前景引起了世界各国科技界和产业界的高度关注,因此作为21世纪具有发展前途的功能材料和结构材料之一,纳米氧化铝材料一直都是纳米材料研究领域的热点。 1 纳米氧化铝的结构与性质 Al2O3有很多同质异晶体,常见的有三种,即:α- Al2O3、β- Al2O3、γ- Al2O3。除β- Al2O3是含钠离子的Na2O-11Al2O3外,其他几种都是Al2O3的变体。β- Al2O3、γ- Al2O3晶型在1000~1600℃条件下,几乎全部转变为α- Al2O3。 ①α-Al2O3 α- Al2O3为自然界中唯一存在的晶型,俗称刚玉。天然刚玉一般都含有微量元素杂质,主要有铬、钛等因而带有不同颜色。刚玉的晶体形态常呈桶状、柱状或板状,晶形大都完整,具玻璃光泽。α- Al2O3

属六方晶系,氧离子近似于六方密堆排列,即ABAB???二层重复型。在每一晶胞中有4个铝离子进入空隙,下图为α- Al2O3结构中铝离子填入氧离子紧密堆积所形成的八面体间隙。 由于具有较高的熔点、优良的耐热性和耐 磨性,α- Al2O3被广泛的应用在结构与功 能陶瓷中。 ②β- Al2O3 β- Al2O3是一种含量很高的多铝酸盐矿物,它不是一种纯的氧化铝,其化学组成可近似用MeO-6 Al2O3和Me2O-11Al2O3表示(MeO 指CaO、BaO、SrO等碱土金属氧化物;Me2O指的是Na2O、K2O、Li2O)。β- Al2O3(Me2O-11Al2O3)由[NaO]-层和[Al11O12]+类型尖晶石单元交叠堆积而成,氧离子排列成立方密堆积,钠离子完全包含在[Na0]-层平面内,并且可以很快扩散。适当条件下,它具有很高的离子电导率,因而被广泛地应用于电子手表、电子照相机、听诊器和心脏起博器的生产中。 ③γ- Al2O3 γ- Al2O3是最常见的过渡型氧化铝,属立方晶系,为尖晶石结构,在自然界中是不存在的物质。由氧离子形成立方密堆积,Al3+填充在间隙中。γ- Al2O3得密度为3.42~3.62g/ cm3,在1000℃时可以缓慢的转变为α- Al2O3,是水铝矿(Al2O3?H2O或Al2O3?3H2O)或氢氧化铝在加热中生成的过渡氧化铝物质。γ相粒子主要用途是作为催化剂的载体,目前多采用在γ相中添加稀土元素等微量元素来改善它的表面

纳米陶瓷技术

纳米陶瓷技术 摘要:纳米陶瓷粉体是介于固体与分子之间的具有纳米数量级尺寸的亚稳态中间物质。随着粉体的超细化,其表面电子结构和晶体结构发生变化,产生了块状材料所不具有的特殊的效应。纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。本文对纳米陶瓷的这些主要的特异性能及其制备进行了阐述。 关键词:纳米陶瓷;性能;制备 陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。所以随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。 一、纳米陶瓷 纳米陶瓷是80年代中期发展起来的先进材料。利用纳米技术开发的纳米陶瓷材料是指在陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平,使得材料的强度、韧性和超塑性大幅度提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,为替代工程陶瓷的应用开拓了新领域。 二、纳米陶瓷材料的性能研究 2.1 力学性能 研究表明当陶瓷材料成为纳米材料后,材料的力学性能得到极大改善,主要表现在以下三个方面: 1)断裂强度大大提高;2)断裂韧性大大提高;3)耐高温性能大大提高。与此同时,材料的硬度、弹性模量、热膨胀系数都会发生改变。 不少纳米陶瓷材料的硬度和强度比普通陶瓷材料高出4~5倍。在陶瓷基体中引入纳米分散相并进行复合,不仅可大幅度提高其断裂强度和断裂韧性,明显改善其耐高温性能,而且也能提高材料的硬度、弹性模量和抗热震、抗高温蠕变的性能。 2.2 低温超塑性 陶瓷的超塑性是由扩散蠕变引起的晶格滑移所致,扩散蠕变率与扩散系数成正比,与晶粒尺寸的3次方成反比,普通陶瓷只有在很高的温度下才表现出明显的扩散蠕变。而纳米陶瓷的扩散系数提高了3个数量级,晶粒尺寸下降了3个数量级,因而其扩散蠕变率较高,在较低的温度下,因其较高的扩散蠕变速率而对外界应力做出迅速反应,造成晶界方向的平移,表现出超塑性,使其韧性大为提高。

氧化铝陶瓷的烧结动力学研究

氧化铝陶瓷的烧结动力学研究 摘要:本文概述了陶瓷的烧结,介绍了氧化铝陶瓷的烧结动力学背景及研究和发展现状。介绍了烧结动力学的理论研究,举例说明了氧化铝陶瓷烧结过程中的动力学,及添加剂对其烧结性能的影响。 关键词:氧化铝陶瓷 烧结动力学 添加剂 1 前言 陶瓷制品的烧结,是其制备过程中的一个重要环节,是其在高温下通过一系列内部物理化学过程,获得一定密度、微观结构、抗弯强度和断裂韧度等性能的一个过程。。对陶瓷烧结理论的研究已有近百年的历史,自从Kuczynski 开创烧结理论以来,多种烧结理论与模型相继被提出[1]。 众所周知,Al 2O 3陶瓷具有许多优良性能,用途广泛,因而迄今仍然是受到人们青睐的重要材料之一。Al 2O 3,熔点高、离子键较强,从而导致其质点扩散系数低、烧结温度较高,因而材料晶粒较粗大,残余气孔也聚集长大,导致材料力学性能降低,同时造成材料气密性差。为此许多学者一直不遗余力从事降低氧化铝陶瓷烧结温度、获得细晶结构的材料研究[2]。 Al 2O 3作为一种研究较早、应用广泛的陶瓷材料;具有高硬度、耐高温、耐磨损、耐腐蚀等优异性能,来源广泛,价格低廉,倍受青睐,其价格低廉越不易氧化和腐蚀。单相Al 2O 3,脆性大、韧性低,材料研究者在Al 2O 3基体中加入不同的增韧补强相,在一定程度上改善了Al 2O 3陶瓷材料的力学性能,使得其应用领域进一步扩大。目前,Al 2O 3基陶瓷材料的制备主要依靠热压烧结,其制品形状简单,嫩产效率低;同时,烧结制品的微观结构具有各向异性,导致其使用性能也具有备向异性[3]。添加剂通过2种作用方式促进氧化铝陶瓷的烧结:(1)与氧化铝基体形成固溶体,通过增加氧化铝的晶格畸变,使扩散速率变大,从而促进烧结;(2)添加剂本身或者添加剂与氧化铝基体之间形成液相。液相的存在方便了氧化铝颗粒的重排,同时通过融解一沉淀机理促进烧结,甚至可以实现氧化铝陶瓷的低温烧结,使氧化铝陶瓷的烧结温度降低到1400℃以下[4]。本文通过动力学基本理论及模型,研究了氧化铝陶瓷的烧结动力学及不同添加剂对其烧结性能的影响及动力学分析。 2 烧结理论 2.1 烧结过程

氧化铝纳米材料+-教学教材

氧化铝纳米材料+-

沉淀法制备纳米级Al2O3中的团聚控制 学号:姓名: 自从Gleiter等在20世纪80年代中期制得纳米级Al2O3,人们对这一高新材料的认识不断加深并陆续发现它的更多特性。作为一种多功能的超微粒子,纳米Al2O3已广泛应用于结构及功能陶瓷、复合材料、催化剂载体、荧光材料、红外吸收材料等[1]。由于氧化铝陶瓷来源廉价,且具有耐腐蚀、耐高温、高硬度、高强度、抗磨损、抗氧化和绝缘性好等良好特性,在冶金、化工、电子、国防、航天及核工业等高科技领域得到了广泛的应用。制备纳米Al2O3是为进一步制备纳米Al2O3高分子复合材料提供优质原料。如何制备出价格低廉、工艺简单、性能优良的纳米氧化铝粉体一直是国内外研究的热点[2,3]。目前,制备纳米Al2O3粉体主要有固相法、气相法和液相法三大类。固相法操作简单,但生成颗粒粒径难以控制,且分布不均;气相法设备要求严格,操作复杂;液相法成本较低,生产设备和工艺过程简单,生成颗粒纯度高,粒径小且分布均匀,是制备纳米陶瓷粉体最常用的方法[4]。常用的液相法有:溶胶-凝胶法,水热法,微乳液法,沉淀法[5]。本文主要介绍沉淀法制备纳米氧化铝粉体的不同反应体系,并着重介绍了近几年在颗粒细化、减少团聚等研究方面取得的主要进展。 沉淀法就是在金属盐溶液中加入适当的沉淀剂,得到前驱体沉淀,再经过过滤、洗涤、干燥、煅烧等工艺得到所要的产物。沉淀法因原料成本低,设备及工艺简单,易于工业化,在生产高纯超细氧化铝粉末时有其优势[6]。近年来研究使用的不同反应体系主要有以下三种: (1)铝盐+碳酸铵体系

a.以硝酸铝为母液,碳酸铵为沉淀剂,其反应方程为: A1(NO3)3+2 (NH4)2CO3+H2O= NH4AlO(OH)HCO3+3NH4NO3+CO2该反应体系在酸性(pH>5)和碱性条件下都可以得到纳米粉体,但在碱性条件下结果较好。两种添加顺序,将A1(NO3)3溶液加(NH4)2CO3溶液或相反,都可以得到碳酸铝胺NH4AlO (OH)HCO3沉淀,在1150℃下煅烧沉淀可得到粒径小于50nm 的粉体[7]。 b.以硫酸铝铵为母液,碳酸氢铵为沉淀剂,其反应方程式为: NH4A1(SO4)2+4NH4HCO3 = NH4AlO (OH)HCO3 +2 (NH4 )2SO4 +3CO2+H2O 这是目前研究最多的反应体系。两种添加顺序也都可以得到沉淀。采用先缓漫滴加碳酸氢铵至稍过量,然后以喷雾混合的方式,可使沉淀过程保持均相,获得平均粒径为30nm 的NH4AlO(OH)HCO3前驱体粉末。喷雾混合方式可使溶液的pH 值迅速上升,有利于晶核形成,而前驱沉淀物的晶核数目越多,产物的粒径就越小[8]。 (2)无机盐+尿素均相沉淀体系 在反应体系中加入尿素.随着温度升高,尿素分解生成沉淀剂 NH4OHCO(NH2)2+3H2O=CO2 +2NH4OH 沉淀剂NH4OH 在溶液中均匀分布,使沉淀均匀缓慢地生成,在沉淀过程中反应容器内一直保持均相。此方法制备的纳米氧化铝具有粒度小、粒径分布窄,制备成本低、工艺简单等优点,但同时由于其沉淀产物主要为氢氧化铝,因此存在较为严重的团聚问题。

相关主题
文本预览
相关文档 最新文档