当前位置:文档之家› 超导材料综述

超导材料综述

超导材料综述
超导材料综述

超导材料综述

前言

人类在享受现代文明的同时,面临着日益严重的能源危机、资源危机。在被称为数字时代的今天,人们却依赖着为昨天设计的电力系统,唯一的变化是电缆越来越粗、机组越来越大。一方面,能源供应越来越紧张,另一方面,大量电能却被浪费在所使用的传统材料上。当前,我国电网的电能损耗约占总发电量的9%,其中90%左右是由电缆损耗的。到2010年,按预测的装机容量,中国在输配电网上将损失二到三个三峡电站的发电量;在美国,每年仅在输电线路上的损失就高达40亿美元。如果使用高温超导线材,不仅可以避免这些损失,而且可以节约大量的金属材料。

◆超导的发展历史【1】

1、超导电性的发现

本世纪初, 随着科学的发展和技术的革新, 纯金属的电阻在绝对零度附近的变化情况引起人们极大的兴趣。1908 年, 荷兰物理学家恩纳斯( O nnes ) 首次成功地将氦气液化, 征服了最后一种“永久性”气体, 获得了4125~1115 K 的低温。为此, 人们就有条件进行纯金属电阻在绝对零度附近变化规律的研究实验, 由于汞比其它金属更容易提纯,1911 年, 恩纳斯就选用了汞作为实验对象进行低温电性实验, 结果发现汞的电阻在412K左右会突然消失, 此即人们首次看到的超导电性。此后, 恩纳斯、兰道( L andau ) 等人又相继发现了锡、铅、钽、钍、钛、铌等在低温下的超导电性。随着更多金属在低温下超导电性的发现, 人们着手深入认识超导体的特性, 并试图从理论上作出合理的解释。但因条件的限制, 人们对超导体基本性质的认识, 只局限于零电阻(即电阻为零)。直到1933 年德国物理学家梅斯勒(M eissner ) 等人发现超导体的完全抗磁性, 人们才认识超导体的两大性质: 零电阻和抗磁性。由于这一阶段的工作主要是认识性的基础工作, 所以, 通常认为1911~1932 年是超导电性的发现阶段。

2、低温超导阶段

在梅斯勒发现超导体的抗磁性之后, 相继有荷兰物理学家埃伦弗斯特根据有关的超导体在液氦中比热不连续现象, 提出热力学中二级相变的概念; 柯特和卡西米尔提出超导的二流体模型; 德国物理学家F·伦敦和H·伦敦兄弟提出超导电性的电动力学唯相理论(即伦敦方程) ; 度海森伯根据电子间的库仑相互作用, 提出了一种超导微观理论, 波尔提出了另一种微观理论; 前苏联物理学家阿布里科索夫提出第二类超导体的概念; 巴丁、库伯和施里费提出了BCS 理论; 贾埃弗发现超导体中的单电子隧道效应; 约毖夫森提出了约毖夫森效应等等。在理论研究的同时, 新超导材料的开发也有了突破性的进展。其中最引人注目的是第二类超导体的问世、N b3Ge 超导薄膜的研制成功以及有机超导体的发现。事实上, 在20 世纪30 年代, 人们对超导合金的一些研究已涉及第二类超导体的问题。在1936~1937 年, 前苏联物理学家舒布尼科夫等人的实验工作尤为突出, 他们做出了接近理想第二类超导体的材料, 但由于历史的原因, 这方面的研究中断了数年, 直至1950 年, 前苏联物理学家阿布里科索夫完善了第二类超导体理论。在此基础上, 人们认识到第二类超导体的重要特性, 由于它具有较高的临界电流密度和临界磁场, 使超导材料初步进入应用阶段。此后, 人们更多的研究如何使超导材料实用化。1972 年美国科学家泰斯塔迪研制成临界转变温度(T C) 为2312 K 的N b3Ge 超导薄膜, 迈开了超导材料实用化的第一步。1980 年, 法国科学家

热罗姆等人首次发现有机超导体, 尽管没有得到很大的实际应用, 但开拓了人们的思维, 为后来高温超导的发现起到一定的启发作用。1934~1985 年, 人们对超导体在理论上和实验上都作了广泛的研究, 使超导物理学理论逐步发展, 超导材料逐步应用于实际科学技术领域。由于人们在一定条件下认识水平的局限性以及其它一些原因, 直到今天, 超导物理学理论尚不完善, 实际应用也不广泛。在这一阶段, 人们研究的超导材料临界转变温度较低, 所以, 在超导史上, 这一时期属于低温超导阶段。

3、高温超导

从1986 年至今的一段时期为高温超导阶段。1986 年, 前西德物理学家柏格茨和瑞士物理学家缪勒经过 3 年多的合作努力, 发现了钡—镧—铜—氧系的超导电性, 在超导史上作出了划时代的贡献, 也在世界范围掀起了超导研究的热潮, 受他们的启发, 自1986 年以来, 各种新的超导材料相继问世,超导转变温度T C被一再突破。1987 年, 美籍华人科学家朱经武发现了93 K 的超导材料; 一个星期后, 中国科学院举行中外记者招待会, 物理研究所的赵中贤宣布他获得了100 K 以上的超导体, 并公布为钇—钡—铜—氧, 从此, 温区超导体问世。1988 年初, 日本金属材料研究所用新的超导物质铋—钙—锶—铜—氧系, 观察到80 K和105 K 的超导转变温度, 紧接着美国物理学家用铊—钡—铜—氧系开发出120 K 的新超导体材料。此后, 我国访美学者盛正直等人又将超导转变温度提高到125 K 。在随后的研究工作中, 有人宣称研制出130 与150 K 以上, 甚至室温超导体材料, 但由于实验结果不能重复而不为人们所承认。高温超导体虽然有着光明前景, 但它难以成型, 且低电流密度(与低温超导比较) 也给科学家们带来不少麻烦, 此外, 超导转变温度离室温还有很大一段差距, 因而阻碍了高温超导材料的广泛应用。

◆超导材料分类

超导元素

在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的主要是铌和铅(Pb,Tc=7.201K),已用于制造超导交流电力电缆、高Q值谐振腔等。

表一13 种超导元素临界温度T c 计算值和测量值比较【2】

合金材料

超导元素加入某些其他元素作合金成分,可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc =9.3K,Hc=12特(4.2K)。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。

超导化合物

超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。

超导陶瓷

20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。

图一超导材料的研究

◆超导材料的特性

零电阻现象

当把某种金属或合金冷却到某一确定温度c T 以下,其直流电阻突然降到零,把这种在低温下发生的零电阻现象称为物质的超导电性,具有超导电性的材料称为超导体。电阻突然消失的某一确定温度Tc 叫做超导体的临界温度。在 c T 以上,超导体和正常金属都具有有限的电阻值,此时超导体处于正常态。由正常态向超导态的过渡是在一个有限的温度间隔里完成的,即有一个转变宽度面 C DT ,它取决于材料的纯度和晶格的完整性。理想样品的DT £ 10 -3 K 。基于这种电阻变化,可以通过电测量来确定c T 。为了应用方便,通常是把样品的电阻降到转变前正常态电阻值一半时的温度定义为超导体的临界温度 c T 。超导体的零电阻特性在实验上是很难观察的,一个观测的最好办法是超导环中的持续电流实验。它是将一超导环先置于磁场中,然后冷却使之转变为超导态,然后撤去外场,这时在超导态的环中感生出一电流:I ( t ) = I ( 0 )e ( - t / t )

其中,t o L / R 是电流衰减时间常数,L 是环的自感,R 为电阻。对于正常金属t 值很少,环内电流很快衰减为零;对超导环则情况不同,电流衰减非常慢。这一衰减可通过精密的核磁共振方法来测量超导电流形成的磁场的微小变化,从而推出衰减时间。在0. 75 0. 25 Nb Zr 超导环中得到的结果是衰减时间大于10 万年,因此可以看成是零电阻。

完全抗磁性

当把超导体置于外加磁场时,磁通不能穿透超导体,而使体内的磁感应强度始终保持为零〔B o0 〕超导体的这个特性又称为迈斯纳(Meissner)效应。超导体的这两个特性既相互独立又有紧密的联系,完全抗磁性不能由零电阻特性派生出来,但是零电阻特性却是迈斯纳效应的必要条件。为了和超导体加以区分,我们把仅仅没有电阻的假想金属称做理想导体。图二表示出了它们的磁化过程。电阻为零的导体内部是不可能存在电场的(E o0),根据麦克斯韦方程,它又必须满足B = - rotE = 0 ,这就意味着理想导体内的磁通不应随时间而变(图二(a))。如果对理想导体采取不同于图二的另一过程,即先降温再加磁场,由电磁感应定律可以知道,当加外磁场时,在导体表面必然诱导出不衰减的感应电流而把磁场排斥在体外,保持体内的磁通不变(图二(b))。

图二超导体的完全抗磁性

比较这两种途径可以看到,对理想导体,它在磁场中的行为是不可逆的,在给定的条件下,它的状态不唯一,它依赖于降温和加外磁场的具体过程。1933 年迈斯纳在实验上发现,如果把处于外加磁场中的正常态冷却到超导态时,磁场分布发生了变化,己穿透到样品内部的磁通将完全被排斥出来,其内部的磁感应强度恒等于零(图二(c))。对于超导体,它在磁场中的行为仅仅取决于外加磁场和温度的具体数值,而与它如何达到这些值的过程无关。就是说,超导态是确定的热力学状态,无论是先降温还是先加磁场,磁场都不能透入超导体

内部【3】。所以,完全抗磁性是独立于零电阻特性的另一个基本属性。超导体的完全抗磁

性是由于表面屏蔽电流(也称迈斯纳电流)产生的磁通密度在导体内部完全抵消了由外场引起的磁通密度,使其净磁通密度为零,它的状态是唯一确定的。从超导态到正常态的转变是可逆的。

约瑟夫森效应

两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。

同位素效应

超导体的临界温度Tc与其同位素质量M有关。M越大,Tc越低,这称为同位素效应。例如,原子量为199.55的汞同位素,它的Tc是4.18开,而原子量为203.4的汞同位素,Tc

为4.146开

◆超导材料应用【4】

超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:

( 1 ) 产生强磁场:

由铜线和铁芯构成的电磁铁是传统的产生磁场方法, 由于受发热和绝缘等方面的限制, 想产生强磁场则极为困难。目前, 无铁芯常规电磁铁可达1 0 T , 需耗电1 . 6 M W , 为了冷却, 还需每分钟提供4.5t 纯水, 且电磁铁重达几十吨, 而利用超导材料产生1 0 T 的强磁场, 重仅几千克, 功率为几百瓦, 且不用冷却水, 这对需要强磁场的地方非常实用。( 2 ) 交通运输方面:

利用超导体的零电阻和抗磁性特点, 德国和日本制造的磁悬浮列车的时速可达5 5 0 k m / h , 与普通客机的速度差不多, 它是利用超导直线电机产生升举力, 导向力和推进力, 使车厢在轨道上悬浮起来, 大大减小了阻力, 节约了能耗。日本制造的超导船, 不需要螺旋桨, 无噪音产生, 时速已达到185km/h,其原理是在船底安装超导磁体, 在船体上安装电极,在海水中产生电流, 电流和磁场的作用使海水对船体产生推力。

(3)医疗器械方面:

近年来, 有科学家以Y B C O 陶瓷为材料, 做成的高温超导心磁图仪( H T - M C G ) 已应用于临床, 通过计算机将信号收集和处理后, 绘制出病人的心磁图波形等心电图形, 帮助医生了解病人的情况。仪器成本低, 效果好, 对冠心病的无创伤诊断、心肌缺血诊断、心肌影像形成等效果良好, 具有很好的应用前景。

(4)电力技术方面:

a) 高温超导电缆: 它是超导应用的一个重要方面, 电缆在电力设备市场份额中约占5 % ~

1 0 % , 可实现低损耗, 高效率和大容量输电。目前, 世界上长为5 0 0 m 的超导电缆已经安装使用, 其外经约1 3 0 m m , 耐压7 7 k V , 电流为1 k A , 用液态氮保持低温。

b)超导故障限流器: 它利用超导体的超导态—正常态转变的物理特性达到限流目的, 融检测、触发和限流为一体, 反应速度快, 损耗低, 可自动复位, 可大大降低电力系统短路故障率, 改善送变电质量。c) 超导电机: 采用超导线取代传统铜线绕制电机绕组, 其特点是电流承载能力可提高数百倍而且几乎无焦耳热损耗, 运行平稳, 无需铁芯, 使绝缘水平大大提高, 重量大为减轻, 可用于飞机和舰船等设备上,单机容量可达百万千伏安以上。

d ) 高温超导变压器: 用液氮冷却, 没有污染和火灾隐患、无铁芯, 体积小重量轻,过载能力强, 当发生短路时, 超导线圈还可限流。2001 年已应用于铁路机车上,我国2005年也研制出高温超导型6 3 0 k V A 、1 0 . 5 k V的变压器, 并已投入应用。

e) 超导磁储能器: 利用超导线圈作储能器, 几乎无损耗, 且能长久储存而几乎无衰减, 与其他储能器相比, 超导储能器转换效率高( 可达9 5 % 以上) , 反应速度快( 几毫秒),重量轻。

(5)电子通信方面:

a) 超导计算机: 传统计算机用半导体制成, 能耗大, 计算速度有限, 利用超导材料的隧道效应可以使其体积变小, 能耗降低,计算速度极大提高。与传统计算机相比,至少可提高数百倍的速度。1 9 9 1 年, 日本制造了第一台超导计算机。

b ) 超导滤波器: 可降低直到消除热噪音, 不引入新的热噪音, 极大提高信噪比,制作的元

器件使图像、语音等信号质量真正达到不失真传送。

c)超导量子探测器: 根据超导约瑟夫森效应制成的超导量子探测器, 是极其灵敏的磁场探测仪器, 可分辨相当于地球磁场的十亿分之一的变化, 因此, 可广泛应用于无损探伤、大地测量、生物磁学、找矿等行业。超导的应用十分广泛, 随着高温超导材料的发展, 许多科学家认为超导技术是2 1 世纪具有经济战略意义的新技术, 据预测,2020 年前后, 超导技术将会获得大规模应用, 今后10 年左右的时间, 将是超导技术产业国际竞争的关键时期。目前, 我国也非常重视这一历史性工作, 在9 7 3 、8 6 3 和国家自然科学基金的支持下, 有许多大学和科研单位在通力协作, 争取在这项技术中有重大突破, 占领技术制高点。

◆参考文献

【1】超导材料作者:李华、胡国程《湖南冶金》 2000年05期

【2】本征超导态的理论分析和计算超导临界温度T c 新方法作者:邹壮辉、周志敏、王明光、马常祥、祁阳《中国有色金属学报》2008年07期

【3】超导物理作者:章立源、张金龙电子工业出版社(1987)

参考文献

【4】]林良真. 我国超导技术研究进程及展望.电工技术学报.2005,20(1):1-7.

【5】石勇. 超导材料的制备与特性研究综述.山西煤炭管理干部学院学报,2006.(2):17-18. 【6】信赢. 超导电力技术及其发展前景. 国际电力,2005.9(1):62-64.

【7】邓隐北. 高温超导电缆的研制动态与发展前景.电线电缆,2005,(3):8-10.

【8】王自强, 陈惟昌, 杨乾声, 陈赓华, 等. 高温超导心磁图仪临床应用的初步研究.中日友好医院学报,2006,20(5):284-286.

【9】林良真, 肖立业. 超导电力技术新进展及其未来发展的思考.物

理,2006,35(6):491-496.

【10】张永,牛潇晔,王洋,信赢.超导故障限流器.超导技术,2005,9(2):57-60.

※超导简介与超导材料的历史

神奇的超导:超导简介与超导材料的历史 神奇的超导 罗会仟周兴江 一、什么是超导? 电阻起源于载流子(电子或空穴)在材料中运动过程中受到的各种各样的阻尼。按照材料的常温电阻率从大到小可以分为绝缘体、半导体和导体。绝大部分金属都是良导体,他们在室温下的电阻率非常小但不为零,在10-12 mΩ?cm量级附近。自然界是否存在电阻为零的材料呢?答案是肯定的,这就是超导体。当把超导材料降到某个特定温度以下的时候,将进入超导态,这时电阻将突降为零(图1),同时所有外磁场磁力线将被排出超导体外,导致体内磁感应强度为零,即同时出现零电阻态和完全抗磁性。超导态开始出现的温度一般称为超导临界温度,一般定义为Tc。微观上来说,当超导材料处于超导临界温度之下时,材料中费米面附近的电子将通过相互作用媒介而两两配对,这些电子对将同时处于稳定的低能组态,叫“凝聚体”。在外加电场驱动下,所有电子对整体能够步调一致地运动,因此超导又属于宏观量子凝聚现象。对于零电阻态,实验上已经证实超导材料的电阻率小于10-23 mΩ?cm,在实验精度允许范围内已经可以认为是零。如果将超导体做成环状并感应产生电流,电流将在环中流动不止且几乎不衰减。超导体的完全抗磁性并不依赖于超导体降温和加场的次序,也称为迈斯纳(Meissner)效应。一个材料是否为超导体,零电阻态和完全抗磁性是必须同时具有的两个独立特征。

超导态下配对的电子对又称库珀(Cooper)对。配对后的电子将处于凝聚体中,打破电子对需要付出一定的能量,称为超导能隙,它反映了电子间的配对强度。一般来说,超导态在低外磁场及低温下是稳定的有序量子态。超导体的一系列神奇特性意味着我们可以在低温下稳定地利用超导体,比如实现无损耗输电、稳恒强磁场和高速磁悬浮车等。正因如此,自从超导发现以来,人们对超导材料的探索脚步一直不断向前,对超导微观机理和超导应用的研究热情也从未衰减。随着对超导研究的深入,一系列新的超导家族不断被发现,它们展现的新奇物理现象也在不断挑战人们对现有凝聚态物理的理解,同时实验技术手段也因此得以加速进步,理论概念更是取得了诸多飞跃。已逾百年的超导研究,在诸多科学家的推动下,依旧不断展示新的魅力! 金属Hg在4.2K以下的零电阻态

材料化学论文

材料化学论文题目:高温超导材料研究 班级:2009级3班 姓名:梁秋菊 学号:200910140315

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧(YBCO)和铋锶钙铜氧(BSCCO)。钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林·昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A 15型超导体和三元系超导体,如Nb 3 Sn、V 3 Ga、Nb 3 Ge,其中Nb 3 Ge超导 体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T 1 系高温超导体,将超导临界温度提高到当时公认的最高记录125K。瑞士苏黎世的希林等发现在HgBaCaCuO超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。 二、高温超导体的发展现状 目前,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。其中最有实用价值的是铋系、钇系(YBCO)

无机材料研究进展综述

无机材料最新研究进展 摘要 无机材料指由无机物单独或混合其他物质制成的材料,一般可以分为传统的和新型的无机材料两大类。本文介绍了无机材料分类、方法及最新研究进展。 关键词:无机材料、分类、方法、展望 前言 无机材料一般可以分为传统的和新型的无机材料两大类。传统的无机材料是指以二氧化硅及其硅酸盐化合物为主要成分制备的材料,因此又称硅酸盐材料。新型无机材料是用氧化物、氮化物、碳化物、硼化物、硫化物、硅化物以及各种非金属化合物经特殊的先进工艺制成的材料。无机材料根据不同用途其特性也不同。总体来说无机材料有耐高温、耐腐蚀、耐磨性好、强度高。有些材料导电性能好,有些材料光导性好,有些材料有自洁功能。由于无机材料的多样性并有着各色各样的性质,其应用也相当广泛并得到了人们足够的重视,尤其是近些年新型的新材料,引起了我们广大的兴趣。 新材料是发展高新技术的物质基础, 新材料及与其直接相关的研究领域, 如信息存储材料、微电子材料、生物材料、纳米材料、超导材料及高温电子学等, 在当今高新技术领域及未来技术中均占有重要地位。因此世界各国都给予高度重视, 很多国家把新材料的研究与开发列为关键技术。而在新材料中, 新型无机非金属材料又是特别活跃的领域, 在整个新材料中占据主要地位[1]。 1.无机材料分类 无机材料分为新型无机材料和传统无机材料。传统无机材料分为玻璃、水泥、陶瓷;新型无机材料分为高性能结构陶瓷、电子功能陶瓷材料、敏感功能(陶瓷)材料、光功能陶瓷材料、人工晶体、功能玻璃、催化及环保用陶瓷等。

1.1水泥 水泥,粉状水硬性无机胶凝材料。加水搅拌后成浆体,能在空气中硬化或者在水中更好的硬化,并能把砂、石等材料牢固地胶结在一起。水泥的历史最早可追溯到5000年前的中国秦安大地湾人,他们铺设了类似现代水泥的地面。后来古罗马人在建筑中使用的石灰与火山灰的混合物,这种混合物与现代的石灰火山灰水泥很相似。用它胶结碎石制成的混凝土,硬化后不但强度较高,而且还能抵抗淡水或含盐水的侵蚀。长期以来,它作为一种重要的胶凝材料,是建筑工业三大基本材料之一[2]。水泥行业中球磨工艺应用于两个生产环节,一个环节与火电行业相同,应用于磨制煤粉,为生产提供燃煤;另一个环节应用于将烧结成块的水泥熟料磨制成粉状,这一环节对于水泥企业的生产效率与产品品质起着至关重要的作用。近几年,由于固定资产投资增加,基础设施建设、房地产业的快速发展对水泥产量的拉动作用十分明显。在巨大的需求拉动下,水泥产量仍将保持较为稳定的增长。据相关数据统计,2012年水泥行业产量已达到21亿吨。 1.2陶瓷 陶瓷是以粘土为主要原料以及各种天然矿物经过粉碎混炼、成型和煅烧制得的材料以及各种制品。人们把一种陶土制作成的在专门的窑炉中高温烧制的物品叫陶瓷,陶瓷是陶器和瓷器的总称。陶瓷的传统概念是指所有以粘土等无机非金属矿物为原料的人工工业产品。陶瓷的主要产区为景德镇、高安、丰城、萍乡、佛山、潮州、德化、醴陵、淄博等地。新型功能陶瓷材料是以电、磁、光、声、热、力学、化学和生物等信息的检测、转换、耦合、传输、处理和存储等功能为其特征的新型材料,已成为微电子技术、激光技术、光纤技术、传感技术以及奎间技术等现代高级技术发展不可替代的重要支撑性材料,在通信电子、自动控制、集成毫路、计算槐、信息处理等方嚣的应用墨益及。功熊陶瓷材料是电予材料中最重要的一个分支,其产值约占整个新型陶瓷产业产饭的70%。随着现代新技术的发展,功能陶瓷及其应用正向着高可靠、微型化、薄膜化、精细化、多功能、智能化、集成化、高性能、高功能和复合结构方向发展[3]。 1.3 玻璃 玻璃是无机非金属材料的又一重要产品, 它和我们的生活密切相关, 几乎每一个人都要接触和使用玻璃产品. 玻璃具有良好的光学和电学性能, 有较好的化

齿轮发展状况综述

摘要:齿轮传动是机械传动中最重要的传动之一,其形式很多,运用广泛大至宇宙飞船, 小至手表、精密仪器,从国防机械到民用机械,从重工业机械到轻工业、农业机械, 无不广泛地采用齿轮传动。本文旨在介绍齿轮的起源与发展历程以及发展趋势。 关键字:齿轮发展传动前景

概述: 齿轮传动是机械传动中最重要的传动之一,其形式很多,运用广泛大至宇宙飞船, 小至手表、精密仪器,从国防机械到民用机械,从重工业机械到轻工业、农业机械, 无不广泛地采用齿轮传动。齿轮的车主要有以下几大特点:1、传动效率高,在常用的机械传动中,以齿轮的传动效率最高,如一级圆柱齿轮的传动效率可以达到99%。这对大功率传动十分重要。2、结构紧凑,在同样的使用条件下,齿轮所需要的空间尺寸一般比较小。3、工作可靠寿命长,设计制造正确合理、使用维护良好的齿轮传动,工作十分可靠寿命可以达到一二十年,这也是其他机械传动所不能比的。4、传动比稳定,传动比稳定往往是对传动性能的基本要求。 但是齿轮传动的制造以及安装精度要求很高,价格较贵,而且不适于传动距离较大的场合。 齿轮机构的类型很多,根据一对齿轮在啮合过程中及其瞬时传动比(i12=ω1/ω2)是否恒定,将齿轮机构分为圆形(i12=常数)齿轮机构和非圆形齿轮机构(i12≠常数)。应用最广泛的是圆形齿轮机构,而非圆形齿轮机构则应用与一些有特殊要求的机械传动中。根据齿轮两轴间的相对位置不同,圆形齿轮结构可以分成如下几类:1、用于平行轴间传动的齿轮机构。下图中(a)为外齿啮合齿轮机构(external meshing gears mechanism),两齿轮转向相反;图(b)为啮合齿轮机构(internal meshing gears mechanism),两转轮转向相同。图(c)为齿轮与齿条结构(pinion and rack mechanism),齿条

超导体论文

超导体的原理、性质及其应用 …(…) (..,南京 211189) 摘要:1911年,荷兰莱顿大学的卡末林—昂内斯意外地发现,将汞冷却到-268.98℃时,汞的电阻突然消失; 后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林—昂内斯称之为超导态。低温时,导体导电度急剧增加,即电阻值为零时,我们称之为超导状态。而处于超导状态的导体我们称之为超导体。超导电性和抗磁性是超导体的两个重要特性。为了实现超导材料的实用性,科学家们经过数十年的努力,跨越了超导材料的磁电障碍,开始了探索高温超导的历程。 关键词:超导应用原理 Principles, Properties and Applications of Superconductors … (…, Nanjing 210000) Abstract: In 1911, H.Kamerlingh Onnes from the University of Leiden finds that when the mercury cooled to -268.98 ℃, the resistance of it suddenly disappeared. Later he found that many metals and alloys are similar to the above mercury at low temperatures. Due to its special conductive properties H.Kamerlingh Onnes calls it the superconducting state. AT low temperatures, the conductor conductivity increased dramatically, we call it the superconducting state. While in the superconducting state, we call the conductor superconductors. Superconductivity and anti-magnetic superconductors are two important features. In order to achieve practical superconducting materials, scientists have spent decades exploring the course. key words: Superconductors Applications Principles 一般材料在温度接近绝对零度的时候,物体分子 热运动几乎消失,材料的电阻趋近于0,此时称为超导体,达到超导的温度称为临界温度。超导体的一系列应用与发展正是基于超导体这一特殊的性质。本文对超导体的原理、性质以及它在现代技术的广大应用进行具体的介绍。超导体原理的介绍 1911年,卡末林发现了零电阻的现象。1914年,他又发现,将超导体置于磁场中,当磁场增大到某一临界值B C时,或者在超导体中通过的电流密度超过某一临界值j C时,超导体都将从超导态转

传统超导体简介

2014年5月24日 传统超导体简介 LH·ZW 摘要:如今超导体在社会生产中扮演着越来越重要的作用,不管是急速发展着的电子工业 还是磁悬浮列车的发展都与超导体的发展息息相关。并且一直以来有着神秘色彩超导体在我们心目中都是高端得遥不可及的,而当今社会的发展却因之而大放异彩,所以对于超导体的机制及其应用我们还是应该学习的。 关键词:电磁学超导体零电阻现象迈斯纳效应超导发电磁悬浮列车 引言 超导体与电磁相关原理不无关系。超导体没有电阻是一材料宏观表现出来的性质,并且在我们现有的认知当中,当温度到达(升高或降低)该材料的某一临界值时,其温度会变为让人们一直以来都不为理解且震惊的零值,即是不可思议的没有电阻现象。且超导的最具特点与价值的是其完全导电性和完全抗磁性,由此使得其在社会生活生产中扮演着重要的角色。 一.超导体分类 现在对于超导体的分类并没有统一的标准,通常的分类方法有以下几种: ?通过材料对于磁场的相应可以把它们分为第一类超导体和第二类超导体:对于第一类超导体只存在一个单一的临界磁场,超过临界磁场的时候,超导性消失;对于第二类超导体,他们有两个临界磁场值,在两个临界值之间,材料允许部分磁场穿透材料。 ?通过解释的理论不同可以把它们分为:传统超导体(如果它们可以用BCS理论或其推论解释)和非传统超导体(如果它们不能用上述理论解释)。 ?通过材料达到超导的临界温度可以把它们分为高温超导体和低温超导体:高温超导体通常指它们的转变温度达到液氮温度(大于77K);低温超导体通常指它们需要其他特殊的技术才可以达到它们的转变温度。 ?通过材料可以将它们分为化学材料超导体比如:铅和水银;合金超导体比如:铌钛合金;氧化物超导体,比如钇钡铜氧化物;有机超导体,比如:碳纳米管。 二.一般超导体(即第一类超导体)的微观机制 1.电阻成因:很多宏观现象可以从微观领域中得到解释。电流是导体中电子的定向移动。电子在原子间移动时,由于电子与原子核间的电磁力的作用,会引起原子振动。众所周知,在正常导体中,一些电子没有被束缚到个别原子上,而是可以通过正离子的晶格自由运动。而电流通过晶格运动时),特别是金属中电子与晶格缺陷碰撞散射,以及在运动过程中其会与晶格振动相互作用而带来宏观上的电阻现象(1)(2)。这就是电阻的成因。 2.超导形成:由电阻成因知我们欲形成超导则要使得那电磁力的作用得到消除进而使得原子消除振动,从而使得电阻为零形成超导。并且由科学研究知在低温下核外电子运转速率

论文综述

电化学沉积金属的二氧化钛纳米管的制备与表征 纳米材料一般是由1~100nm间的粒子组成,它介于宏观物质和围观分子﹑原子交界的过渡区域,是一种典型的介观系统。纳米材料研究主要分成两个方面: ①系统研究的纳米材料的性能﹑微结构和谱学特征,通过和常规材料相比较,找出纳米材料的特殊规律,建立表征纳米材料的新概念和新理论发展和完善纳米材料科学系统; ②开发研制新的纳米材料,纳米材料的特殊结构使之产生独特的物理化学性能。例如:小尺寸效应,表面效应,量子尺寸效应,宏观量子隧道效应,介电限域效应等,借助于纳米材料这种特殊的性质,使材料在光﹑电﹑力﹑磁﹑超导性乃至热力学等领域注入了新的活力。 1、1 二氧化钛 自二十世纪七十年代,日本科学家Fujishima发现二氧化钛半导体上的光催化分解水作用以来,二氧化钛由于具有独特的光物理和光化学性质,在光学材料、光电化学和光电池、光催化降解有机物方面有广泛的应用前景。引起了人们很大的兴趣。九十年代,纳米材料科学的兴起,发展了以二氧化钛为对象的基础理论和应用。由于纳米粒子的量尺子效应、表面效应等使得二氧化钛纳米材料的结构和性质都与常规二氧化钛有很大差别,在光物理学、光化学反面呈现出的特的应用前景,成为二十一世纪的一大研究热门。 1、1、1 二氧化钛的晶型结构 二氧化钛警惕有三种重要的不同结构:金红石、锐钛矿、和析钛矿。但是,仅是金红石和锐钛矿在二氧化钛的应用领域中起重要作用,表面科学技术的研究兴趣主要也是在金红石和锐钛矿上,在两种结构中,其基本的结构单元包含一个钛原子,该原子处于六个氧原子形成的异构八面体构型中,在每种结构的八面体结构中两个钛原子和氧原子间的化学键稍长一些,在锐钛矿中,键角90o有一个较大的偏离。在金红石中,相邻的八面体共用一个方向上的点沿着长轴在90o方向交替堆积,在锐钛矿中,共点的八面体形成面,它们还与下层的八面体面共边。 1、1、2 二氧化钛纳米材料的研究发展 自从1972年,A.fujishima等发现受辐射的二氧化钛表面能发生对水的持续氧化、还原反应以来,纳米二氧化钛作为光催化剂用来催化降解有机污染物,引起了人们的普遍关注,将这种材料做成空心小球浮在含有有机物的废水表面上,利用太阳光可以进行有机物的降解,美国、日本利用这种方法对海上石油泄漏造成的污染进行处理,将二氧化钛粉体添加到陶瓷的釉料中,具有保洁杀菌的功能,也可以添加到人造纤维中制成杀菌纤维;锐钛矿纳米二氧化钛表面Cu﹢、Ag﹢修饰,杀菌效果更好,在电冰箱、空调、医疗器械等方面有着广泛的应用前景。铂化的二氧化钛纳米粒子的光催化可以使丙炔与水蒸气反应,生成可燃性的甲烷、乙烷和丙烷;纳米二氧化钛的光催化效应可以从甲醇水溶液中提取H2而被广泛研究用于清洁氢能源的开发。近年来,纳米二氧化钛的光催化在有机污染物

材料化学论文

材料化学论文题高温超导材料研 班级:2009级3班 姓名:梁秋菊 学号:200910140315

高温超导材料研究 摘要:简要介绍了高温超导材料及其发展历史,对超导材料的发展现状和用途进行说明,对目前超导材料的主要研制方法进行了分析。 关键词:超导材料研究进展高温应用 一、高温超导材料的发展历史 高温超导材料一般是指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常可以在廉价的液氮(77K)制冷环境中使用,主要分为两种:钇钡铜氧( YBCO和铋锶钙铜氧(BSCCO)钇钡铜氧一般用于制备超导薄膜,应用在电子、通信等领域;铋锶钙铜氧主要用于线材的制造。 1911年,荷兰莱顿大学的卡末林?昂尼斯意外地发现,将汞冷却到-268.98 ° C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡末林?昂尼斯称之为超导态,他也因此获得了1913年诺贝尔奖。 1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导状态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973 年,发现了一系列A15型超导体和三元系超导体,如Nb s Sn V s Ga Nb s Ge,其中Nb s Ge超导体的临界转变温度(TJ值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuG g 导体,已高于液氮温度(77K) ,高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCu0,再后来又有人将Ca掺人其中,得到Bis尤aCuOg导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了「系高温超导体,将超导临界温度提高到当时公认的最高记录125&瑞士苏黎世的希林等 发现在HgBaCaCi超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。二、高温超导体的发展现状 目前,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K) 以及2001年1月发现的新型超导体二硼化镁(39 K)。其中最有实用价值的是铋系、钇系(YBCO) 和二硼化镁(MgB2)。氧化物高温超导材料是以铜氧化物为组分的具有钙钛矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂

高温超导材料的研究进展及前景展望论文正稿

兴义民族师范学院 2013届本科毕业生学位论文 高温超导材料的研究进展及 前景展望 姓 名: 马 关 爱 教 学 系: 物 理 系 专 业: 物 理 学 导师姓名: 张 星 中国﹒贵州﹒兴义 2013年5月

目录 摘要............................................................................................................................ I ABSTRACT .................................................................................................................. II 第一章绪论. (1) 1.1超导体的发现 (1) 1.2高温超导体的概述 (4) 第二章高温超导材料研究的内容 (6) 2.1高温超导材料的研究背景 (6) 2.2高温超导材料的特性 (7) 2.3高温超导材料的研究目标 (8) 2.4高温超导材料的研究状况 (9) 2.4.1高温超导的物理进展 (10) 2.4.2对BCS理论的修正[7] (11) 2.4.3RVB理论[7] (11) 2.4.4Luttinger液体理论[7] (12) 2.4.5铁磁自旋理论[7-10-11] (12) 2.4.6掺杂型高温超导体的研究进展 (12) 2.4.7高温超导材料其他方面的进展 (14) 2.5影响高温超导研究的因素 (14) 2.5.1交流损耗是一个影响高温超导材料应用的重要因素 (14) 2.5.2磁场是影响高温超导材料研究的一个重要因素 (15) 2.5.3量子限制效应对超导薄膜性质的影响 (15) 2.5.4超导体中的人工钉扎与磁通匹配效应 (15) 2.5.5薄膜表面等离子激元和增强透射效应 (15) 第三章高温超导材料的制备工艺 (16) 3.1高温超导材料的研究方法 (16) 3.1.1磁控溅射(MS)法 (16) 3.1.2脉冲激光沉积法 (16)

超导材料论文

超导材料的研究进展 陈志义 2011326690110 应用物理11(1)班 摘要:超导是金属或合金在较低温度下电阻变为零的性质。超导材料是当代材料科学领域一个十分活跃的重要前沿,其发展将推动功能材料科学的深入发展。高温超导材料经过近 20年的研发,已经初步进入了大规模实际应用和产业化。随着超导材料临界温度的提高和材料加工技术的发展,它将会在许多高科技领域获得重要应用。 关键词:超导高温超导体进展超导超导材料临界温度进展 引言:随着社会的进步,工业的发展,人们对能源的需求量越来越大。但是,像石油、煤等能源储备有限且不可再生。故而,如何在有限能源的条件下使社会健康稳步地发展,亦即如何做到可持续发展成了当今人们亟需解决的问题。对于这些问题的解决方法,超导材料表现出了巨大的潜力。长期以来,如何找到一种完全没有电阻,能消除电能损耗的导电材料,一直是物理学家和材料科学工作者梦寐以求的愿望。1911年,荷兰物理学家卡麦林·昂尼斯首次意外地发现了超导现象:将水银冷却到接近绝对零度时,其电阻突然消失。这一现象的发现为解决电路损耗带来了福音。从此,对于超导材料的研究如火如荼。 一、超导材料的概念 超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导材料的发展经历了从低温到高温的过程,经过无数科学家的努力,超导材料的研究已经取得了巨大的发展。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。高温超导材料的制备工艺也得到了长足的发展,一些制备高温超导材料的材料陆续被科学家发现。现在,超导材料的研究主要集中在超导输电线缆,超导变压器等电力系统方面,还有,利用超导材料可以形成强磁场,是超导材料在磁悬浮列车的研究上有了用武之地,另外,超导材料在医学,生物学领域也取得了很大的成就。超导材料的研究未来,超导材料的研究将会努力向实用化发展。一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。 二、超导材料的分类 超导材料分为低温超导材料和高温超导材料。 1、低温超导材料 何谓低温超导材料?低温超导材料是具有低临界转变温度(T c<3OK=在液氦温度条件下工作)的超导材料,分为金属、合金和化合物。具有实用价值的低温超导金属是Nb(铌),T c 为9.3K已制成薄膜材料用于弱电领域。合金系低温超导材料是以Nb为基的二元或三元合金组成的β相固溶体,T c在9K以上。低温超导材料一般都需在昂贵的液氦环境下工作,由于液氦制冷的方法昂贵且不方便,故低温超导体的应用长期得不到大规模的发展。低温超导材料的应用分为:强电应用,主要包括超导在强磁场中的应用和大电流输送;弱电应用,主要包括超导电性在微电子学和精密测量等方面的应用。 2、高温超导材料 高温超导体材料(HTS)具有超导电性和抗磁性两个重要特性。要让超导体得到现实的应用,首先要有容易找到的超导材料。即主要研究方向就是寻找能在较高温度下存在的超导体材料。高温超导材料用途非常广泛,大致可分三大类:大电流应用、电子学应用和抗磁性应用。大电流应用是由于超导材具有零电阻和完全的抗磁性,因此只需消耗极少的电能,就可以获得的稳定强磁场。超导体的基本特性之一是当它处于超导态时具有理想的导电性,同时由于其载流能力远远强于常规导体,因此,利用超导体可以传输大电流和产生强磁场,并且没有电阻热损耗。电工设备的基本特点是大电流、强磁场和高电压,因此在电工设备中使用超导材料可以减少电气损耗、提高效率、缩小体积、减轻重量、降低成本,还可以提高装置

超导材料的现状及发展趋势分析

超导材料的现状及发展方向自1911年荷兰莱顿实验室的卡末林·昂纳斯首次在4.2K时发现水银零电阻现 象即超导现象以来。人们相继在超导 材料方面取得很多突破,后来在梅斯 勒发现超导体的抗磁性之后, 1934 —1985年后超导物理学理论逐步发 展,超导材料逐步应用于实际科学技 术领域。但由于种种原因,至今超导 物理学理论也不够完善。在这一阶段 人们研究的超导材料临界转变温度 较低。 后来进入高温超导研究阶段,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。高温超导体属于非理想的第II类超导体。临界磁场和临界电流且比低温超导体更高。同时已对高温超导材料进研究开发,氧化物复合超导材料具有耐用和稳定性好的特点。通过研究浸泡实验表明,超导电性的退化主要来自于杂相及时效过程中的析出相。为了改善薄膜对环境的敏感性,美国西北大学的Mirkin建议把分子单层表面化学改性引入到高温超导铜氧化合物中。 以铋锶钙铜氧系为第一代高温超导带材,它的可加工性优良,在超导强电应用领域占据重要位置。但铋系材料的实用临界电流密度较低,并且在77 K的应用磁场也很低。然而钇钡铜氧化物材料在77 K的超导电性比铋锶钙铜氧材料好的多;但它的可加工性极差,故要做出超导性好的带材通过传统的压力加工和热处理工艺就很难。 随着材料科学工艺技术的发展,近年来一种在轧制金属基带上制造钇钡铜氧超导带材的工艺被称作“第二代”带材。欧洲国家努力开展高温超导材料工艺及应用研究。丹麦已批量制造铋系超导带材。2003年11月我国第一个10m、 10.5kV/1.5kA 三相交流高温超导电缆系统日前在中国科学院电工研究所研制成功,并于成功地进行了试验运行。2011年5月信赢和公司团队研发的世界最大功率的超导限流器刚成功。2011年9月25日,特拉维夫大学的研究小组开发出了一种超导体材料——蓝宝石单晶体纤维,可用于高压电缆输电,输电量是相同直径铜线输电量的40倍。研究人员称这种超导材料将有可能彻底改变电力输送占空间、高损耗的状况。 高温超导材料主要有:膜材(薄膜、厚膜)、块材、线材和带材等类型。薄膜最常用、最有效的两种镀膜技术是:磁控溅射和脉冲激光沉积。还有金属有机

数控技术发展状况及策略综述

数控技术发展状况及策略综述 摘要:随着当前科学技术的进一步发展,数控加工已经成为国家机械化和工业 化水平的重要标志。这项技术涉及到的领域范围很多,包括机械制造技术、信息 处理技术、自动控制技术以及相应的计算机软件处理技术等新技术的使用,改变 了传统的制造业,在未来,数控加工技术会朝着更好的方向发展,将会促使我国 制造业的发展进步。 关键词:数控技术;发展状况;策略;综述 对于数控系统而言,一方面由于传统数控系统的各个模块相互耦合,使得结 构变更和功能扩展异常困难;另一方面由于数控系统结构的开放程度低,其研发 过程无法充分利用先进的电子信息技术,极大降低了数控系统的研发效率,同时 基于小团队的数控系统研发不能充分调动社会的有效资源和积极性,包括工艺过 程实现在内的各模块难以全面细致,使得开发的高端数控并不高端。我国数控行 业的发展很大程度上受限于数控系统自身的封闭性,数控系统的不开放以及制造 工艺流程未体现等问题成为目前制约我国数控行业发展的主要瓶颈。随着先进计 算机和电子信息技术的发展,充分利用组件式软件技术、通过互联网手段把全社 会乃至全球的资源集中起来,有效发挥掌握工艺经验的一线人员等社会资源参与 开发和甄别成为可能。 1数控木工机械的发展现状 1.1数控木工机械发展现状 数控机床具有高精度、质量好、加工性能强、生产效率高、稳定性强等优点,并受到了越来越多企业的青睐。其中木材加工行业广泛应用起数控机床,且相关 研究也在逐步深入,在近几年,我国数控木工机械发展迅速,以下将会对一些具 有代表性的数控技术进行分析。①数控木工机械硬件发展现状。当前我国木工机械硬件仍未建立起系统的体系,基本是由背景文泰垄断中低档数控镂铣机,其不 但销售软件,同时还出处全套硬件。②数控木工机械软件发展现状。当前主要是由中国台湾恩德控制了大部分高档数控镂铣机数控软件,其销售软件时通常都是 配套硬件一同销售,基本在我国大陆形成了垄断局面。③木工机械数控机床技术发展现状。当前我国的数据砂光机、数控阶段锯切设备以及数控带锯机技术等发 展极为迅速,就以砂光机为例,当前我国已成为了生产砂光机最大的国家,基本 垄断中低端砂光机市场,且逐步实现了中低端砂光机数字控制功能。 1.2数控技术发展概况 数控该技术在我国发展时间尚短,最早是将其应用在金属加工行业,从发展 至今共经历了3个发展阶段:①初始阶段(1958~1979),在该阶段我国生产的 数控系统可靠性不足,且应用范围极为有限;②发展阶段(1980~1993),经历 改革开放,我国有效吸收与借鉴外国优秀生产经验,并积极引进先进的数控系统,在很大程度上促进了我国数控技术的发展;③缓慢发展阶段(1994至今),在 全球金融危机影响下,在20世纪末我国出现了负增长的情况,发展到21世纪逐 步得到了恢复,当前我国机械加工设备数控化率在85~90%范围内,其中木工机 械制造业其设备数控率约45%。 2数控加工技术的应用 2.1数控车加工的应用 ①精度要求较高的零件,数控车床整体的刚性很好,制造的精度极高,因此 对于尺寸强度要求较高的零件这项技术的使用十分有效;②超精密、超低表面粗

超导物理与诺贝尔奖

超导物理作为一个有近百年历史的学科,它是随着对超导电性的研究、认识不断发展起来的,特别是50年代以来取得了一系列重大突破,引发了今天的高温超导电性机理及超导材料研究的热潮。 昂内斯(中间白衣者)在他所创立的低 温实验室内 昂内斯(1853~1926) 荷兰低温物理 学家 1908年成功地液化了氦气,1911年 发现了某些金属在液氦温度下电阻 突然消失,即“超导电性”现象,于 1913年获奖。

巴丁(1908~1991) 美国物理学家 库珀(1930~) 美国物 理学家 施里弗(1931~) 美国物理学家 1957年巴丁、库珀和施里弗合作创建了超导微观理论,于1972年获奖。这一理论能对超导电性作出正确的解释,并极大地促进了超导电性和超导磁体的研究与应用。 用于电子对撞机的超导线圈,重达65吨。

。 约瑟夫森(1940~) 英国物理学家1962年预言存在超导电子对隧道电流,第二年这一预言被实验证实,并被命名为约瑟夫森效应,1973年获奖 贾埃弗(1929~) 挪威裔美国物理学家1957年完成了量子隧道效应实验,并于1963年完成了超导体隧道效应实验。于1973年获奖。 约瑟夫森和贾埃弗的发现,对于研制高性能的半导体和超导体元器件具有很高的应用价值,并导致超导电子学的建立。

K.A.缪勒(1927~) 瑞士物理学家 1983年缪勒和柏德诺兹合作进行超导研究,三年后发现了钡镧铜氧体系高温超导化合物。于1987年获奖。这一研究成果导致了多种液氮温区高温超导体材料的出现,并宣告了超导技术开发应用时代即将到来。 超导研究已长达近一个世纪,20年前超导应用在科学界还被认为是一种侈谈。而今天,它已在科研、医疗、交通、通信、军事、电力和能源等领域得到了应用。但这只是序幕,超导研究与应用在21世纪将为我们展现更加绚丽辉煌的前景。 柏德诺兹(1950~) 德国物理学家 应用超导体的磁悬浮列车实验装置

超导材料的主要应用

超导材料的主要应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。下面是有关于超导材料的主要应用的内容,欢迎阅读。 油田超导热洗技术的应用及效果分析【摘要】油井热洗清蜡是保证油井正常生产,是改善井下杆管泵工作环境的重要手段之一。常规热洗清蜡技术存在几方面的问题:1、是常规热洗含水恢复期长,对产量影响较大。2、是常规热洗容易污染地层。3、常规热洗动用车辆多,笨重,成本高。超导热洗工艺弥补了常规热洗的不足,取得了良好的效果。【关键词】油井清蜡超导热洗效果对比 1超导热洗简介 超导热洗工艺技术原理 超导加热器(俗称清蜡机)是油田抽油井洗井清蜡的专用设备。它采用超导传热技术,用油井套管气(天然气)或柴油为热源,将油井产出液(或其它井补充液或水)加热成高温蒸气(或高温液)注入套管环型空间。使油管内的产出液温度逐渐升高,管壁结蜡自上而下逐渐融化,随产出液进入输油管(或油罐)。内阻减小,以达到稳定、降耗、节约成本、不污染油层的目的。 本加热器可清洗日产液量的抽油机井。超导热洗可采用油井产出液自洗、补充水或其它井产出液方法洗井清蜡。两

种方式均采用低压力,低液量,慢升温的热洗工艺。不改变油层的油、水、气流动规律,不污染油层。 油井套压≥,自产气够用时,可用油井自产气为热源,油井有天然气管网,可用天然气做热源,无天然气可用柴油为热源。 超导热洗装置介绍 (1)产品为移动式设备。加热器安装在专用车上。 (2)本加热器按热源分为燃气型、燃油型、燃气燃油两用型三种。 ①燃气型:洗井现场有天燃气管网(压力),可配备全自动燃气燃烧器和温度自控系统。洗井现场无天然气管网、但附近油井套压≥,自产气够用时,可配备半自动燃气燃烧器和温度自控系统。 ②燃油型:无天然气或天然气不够用的油井,可用柴油为热源、配备全自动柴油燃烧器和温度自控系统。 ③燃气燃油两用型:在同一洗井区域内,有的井有天然气、有的井无天然气,可选择燃气燃油两用型。配备燃气系统、燃油系统各一套。配备温度自控系统一套,自产气够用就用自产气、自产气不够用则用柴油。 3自动控制系统和安全措施 (1)用加热器出口温控表控制燃烧器。温控装置会按照设定好的温度自动工作。温度高时自动关机停火,温度低时

超导材料的性能与应用综述

超导材料的性能及应用综述 班级:10粉体(2)班学号:1003012003 姓名:徐明明 摘要:回顾了超导现象的发现及发展,综述了超导电性的微观机理,超导物理学研究的历史和主要成果,介绍了超导电性的几种突出的应用,并指出目前对于超导电性的认识在理论、实验、研究上都是初步的 ,还需要进行更多的和更深入全面的研究。 关键词:超导电性;超导应用;BCS理论;应用 一、超导现象的发现及发展 1908 年, 荷兰莱登实验室在卡茂林- 昂尼斯的指导下, 用液氢预冷的节流效应首次实现了氦气的液化,从而使实验温度可低到4~1K 的极低温区, 并开始在这样的低温区测量各种纯金属的电阻率。1911 年,卡茂林- 昂尼斯[1] 发现Hg 的电阻在4. 2K 时突降到当时的仪器精度已无法测出的程度, 即Hg 在一确定的临界温度T c= 4. 15K 以下将丧失其电阻,这是人们第一次看到的超导电性。昂尼斯也凭这一发现获得了1913 年的诺贝尔物理学奖。后来的实验证明,电阻突变温度与汞的纯度无关,只是汞越纯,突变越尖锐。随后,人们在Pb及其它材料中也发现这种特性:在满足临界条件(临界温度 Tc、临界电流 Ic、临界磁场 Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。应该指出,只是在直流电情况下才有零电阻现象。从此,诞生了一门新兴的学科——超导。 一直到20世纪50年代,超导只是作为探索自然界存在的现象和规律在研究,1957年Bardeen、Cooper和Schrieffer[2]提出了著名的BCS理论,揭示了漫长时期不清楚的超导起因。1961年Kunzler将Nb3Sn制成高场磁体,开辟了超导在强电中的应用,特别是 1962 年Josephson效应的出现,将超导应用推广到一个崭新的领域。到20世纪70年代超导在电力工业和微弱信号检测应用方面的进展显示了它无比的优越性,但由于临界温度低,必须使用液氦,这就极大地限制了它的优越性。从20世纪70年代起人们就将注意力转向寻找高温超导体上,在周期表

商业模式发展现状综述

商业模式理论发展现状综述 1:商业模式理论经过十几年的发展之后,已经出现非常多的研究成本,这些研究成果包括了很多的方面,所以说,很多的学者都是通过不同的方向都对商业模式进行不同的研究,得出的成果也都不同。从总体上看,商业模式的理论都是围绕着企业的根本性质与目标进行的研究结论。现在商业模式理论涵盖的范围非常的广泛,包括了很多内容,例如:资源获取、生产、营销、售后、研究开发、客户资源、成本及收入等等。所以,商业模式是一个非常复杂的课题,他会涉及很多的经济学和管理学理论,所以商业模式的研究需要研究者都能够用创新性的思维,不会被局限在已有的理论基础上。事实上人们对商业模式研究的共同目标和共同理想,都是为了使人们能够对商业关系和经营管理理论有更进一步认知,让以后利用其理论更加的简便。 2国外商业模式理论相关研究成果 商业模式这个词语,第一次是出现在《经营研究》这一篇文章中的。而到了20世纪90年代才成为了被学者们所研究的热门话题。在20世纪90年代,著名管理学大师,彼得·德鲁克将商业模式称之为经营理论,而加拿大著名管理学家亨利·明兹伯格将商业模式称为战略思想。国外的学者加里·哈默尔以及C.K. 普拉哈拉德两人,所提出的“战略意向”这一概念也比较符合商业模式的实际意义。他们通过对世界上的成功企业进行分析和研究后指出,战略不应该是一种具体规划,因为成功的企业是不可能通过规划规划出来的,所以,战略在本质上应该是一种意象,它是企业渴望得到的远大前程和领先地位的一种意象。 而随着时间的发展,学者们对于商业模式研究的方向也越来越多,20世纪 90年代后国外的研究者们对商业模式理论的研究方向就是寻找商业模式的通用 性概念,找出商业模式的构成要素,在这个阶段研究者们对商业模式理论已经有一定的认知,理论研究已经进入了对商业模式概念的描述阶段。而随着时间的发展,学者们对商业模式的构成要素的总结越来越完善,提出的观点就越来越符合一般规律。当商业模式的概念比较清晰之后,学者们就开始对商业模式的一般模型进行研究,但是到目前为止还没有一个比较优秀、系统的观点出现。 3:国内商业模式理论相关研究成果 国内商业模式理论研究的起步阶段要远远晚于国外关于商业模式理论的研究,所以国内商业模式研究的成果、阶段,也是远远落后于国外的理论研究阶段的。在我国当前的理论研究阶段中,我国学者对商业模式的研究还主要是处于商业模式的跟踪研究阶段。王波和彭亚利2002年在《经济观察报》中提出的“何为商业模式”中,提出的理论都是应用性的研究理论,其最终成果缺乏相关理论成果的支持,并不能构成完整的理论体系。 国内后续商业模式理论的主要研究者有西南财经大学的罗珉教授、曾涛博士,以及厦门大学管理学院翁君奕教授、程愚博士。他们各自都在自己所著的文献中

固体物理论文 超导的应用

固体物理论文 -超导的应用 学院:物理与电气工程学院 专业:物理学 班级:10级 学号:101101086 姓名:仲小亚

超导的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。 超导在强电方面的应用 由于传统的电力输送过程中,送电、变电、配电的每一步都有电阻存在,大量的电力在输送过程中被白白浪费了,而且为了实现远距离送电,为了克服电阻还要用非常高的电压。而使用超导体输送电力既安全又省钱,一旦成功,将彻底改变目前电力工业的状况。在高温超导热的年头,室温超导似乎呼之欲出,如果使用室温超导体送电,不需要液氮,其优点是十分明显的。 超导在强磁方面的应用 由于用超导体可以实现磁体所达不到的大面积的或高磁强的磁强,所以它已被广泛地运用在各个领域中。目前人们已经能制造出最高达19万高斯的中小型超导磁体,如果将超导体和常规磁体以适当的方式结合使用,则已获得高达30多万高斯的磁强。目前,在一些已经建成的或正在建设的大型加速器中,也已经使用了或正准备使用超导磁体。在能源方面,聚变反应能释放出更多的能量。而为了使核聚变

反应持续进行,必须将处于1亿度到2亿度高温的等离子体高密度的约束起来,在如此高温的情况下,任何约束它的容器都会被熔化或气化。后来,人们想到用磁强作为一个“磁笼”的话,就可以把高温等离子约束起来。要造成这种高达几万甚至几十万高斯以上的强磁强,当然只能依靠超导体了。 利用超导约瑟夫森效应 随着60年代约瑟夫森效应的发现,超导体在弱磁强、弱电流的电子器件中也获得了广泛的应用。利用约瑟夫森效应制成的各种器件,具有灵敏度高、噪声低、响应速度快和损耗小等一系列优点,在某种意义上甚至可以说,超导电子学的出现也给电子工业带来了一场革命。由于约瑟夫森效应对电和磁的变化反应非常灵敏,它可以用于精密计量中。例如,它可以用来监视电压基准。 超导贮能 超导贮能与其他贮能技术相比有许多优点,贮能密度大,贮能效率高(90%~95%),释放能时没有效率损失。超导贮能技术有许多重要用途,它在节约电能、提高电网稳定性和调节电力系统尖峰负荷方面有重要作用;它还可作为宇宙站的电源,也可作为受控热核反应、激光武器、粒子束武器和电磁轨道炮等的脉冲电源。 超导发电 将常规发电机的转子以超导线圈替代则形成超导同步发电机。超导发电机与常规发电机相比,具有以下优点:机械与通风损耗少,虽然增加了冷却系统的功率损耗,但整个发电系统的损耗只是常规发电

相关主题
文本预览
相关文档 最新文档