当前位置:文档之家› 板料塑性成形理论及工程解析-第2讲-之1

板料塑性成形理论及工程解析-第2讲-之1

板料塑性成形理论及工程解析-第2讲-之1
板料塑性成形理论及工程解析-第2讲-之1

2012学年研究生课程

《板料塑性成形理论及工程解析》

第二讲:

板料塑性变形行为

一、塑性屈服理论二、弹塑性本构关系三、包辛格效应及强化模型四、塑性变形行为实验研究五、强化模型在板料成形中的应用

提纲

一、塑性屈服理论二、弹塑性本构关系三、包辛格效应及强化模型四、塑性变形行为实验研究五、强化模型在板料成形中的应用

提纲

4Fig. 1 is the stress -strain curve of uniaxial tension test.

一、塑性屈服理论

A

B

C

D

εp

εe ε

ε

σb Fig. 1

σs

σ

一、塑性屈服理论

1.1 引言

4问题

在塑性力学中,我们必须知道材料到什么程度才开始发生塑性变形,即发生屈服。在简单拉伸时,问题比较简单,即当材料所受应力达到屈服极限应力时发生塑性变形。在材料所受应力为复杂应力状态时,问题就变得复杂。

4屈服准则

是关于应力分量的某个函数。对于一定的材料,在一定的变形温度和变形速度下,当应力分量的组合满足该函数关系时,应力状态所构成的外部条件,与金属屈服时的内在因素恰好相符,金属即从弹性变形转变为塑性变形,即发生屈服。

一、塑性屈服理论

4表达式:

在不考虑时间和温度效应时屈服准则一般可以写为

以的6个应力分量为坐标轴,则在应力空间中,该式表示一个包含原点的曲面,成为屈服表面。4主要内容

各向同性屈服准则各向异性屈服准则4Tresca Hill 系列4Mises Barlat 系列4其他

其他

()0

ij F σ=ij σ

一、塑性屈服理论

1.2 各向同性屈服准则

4Tresca 屈服准则

第一种用于金属材料组合应力状态的屈服准则,由Tresca 于1864年提出。a该准则认为,材料的最大剪应力达到剪切屈服极限时开始发生塑性变形。

a应用剪应力表示为a应用主应力表示为

注:为材料单向拉伸屈服强度

s

12

s 23

s 312

22στστστ?=±??

?=±??

?

=±??

122331s

max(,,)σσσσσσσ???=s σ4Von Mises 准则——常数形变能量理论

a1913年Mises 从纯粹数学的观点出发,对Tresca 准则提出了修正

aHencky 的修正

等式左端为等式右端为

其值等于单向拉伸材料开始屈服时所吸收的弹性形变能屈服条件为

——常数形变能量理论

一、塑性屈服理论

2222

122331s ()()()2σσσσσσσ?+?+?=2221223311[()()()]6E μ

σσσσσσ+?+?+?22

s s 11263E E μμσσ++×==常数U φ=常数一、塑性屈服理论

aTresca 准则和Mises 准则理论上都只适用于各向同性材料a由于对于很多工程材料与工程计算而言,采用这两种屈服准则的精度已够,而其他屈服准则在数学上要复杂得多,所以到现在这两种屈服准则仍然被很多人沿用,甚至包括一些各向异性问题

a试验证明:Mises 准则更加接近韧性材料的实际情况

4其他各向同性屈服准则

aPrager 、Drucker 和Betten 等提出了能够描述后继屈服面的大小和形状同时改变的屈服准则。a应用很少

一、塑性屈服理论

1.3 各向异性屈服准则

板料成形所用的材料,是经过多次辊轧和热处理所取

得的,由于轧制时出现纤维性组织和结晶的优择取向形成组织结构,具有明显的各向异性。能够反应材料各向异性的屈服准则:

?Hill 系列屈服准则?Barlat 系列屈服准则?Hosford 屈服准则

?Gotoh (后藤)屈服准则?Karafillis -Boyce 屈服准则?其他屈服准则

各向异性屈服准则以Hill 系列和Barlat 系列最具代表性,应用最为广泛。

一、塑性屈服理论

4Hill 系列屈服准则

aHill48aHill79aHill90aHill93

4Barlat 系列屈服准则

aBarlat89aBarlat91aYld94aYld96aYld2000aYld2004

aHill ’48屈服准则:1948年Hill 提出,是最早的各向异性屈服准则,应用十分广泛

?一般表达式

?平面应力状态表达式

?主应力空间表达式

一、塑性屈服理论

222

222

2()()()() 222ij yy zz zz xx xx yy yz zx xy

f F G H L M N σσσσσσσσσσ=?+?+?+++22()2()21

x x y xy f G H H H F N σσσσ=+?+++=2222331122()()()()1

ij f F G H σσσσσσσ=?+?+?=

一、塑性屈服理论

?应力强度(等效应力):

?应变强度(等效应变):

222233112()()()()32ij i f F G H p

F G H

σσσσσσσσ?+?+?=

=

?++2221223312()(d d )(d d )(d d )3

d i F G H H F G F G H G H F FH GF HG

εεεεεεε??++?+?+???=

++?仅考虑厚向异性情况下的表达式

设厚向异性指数

则有此时应力应变强度分别为

一、塑性屈服理论

222

1122s 2H

G H

σσσσσ?

+=+2

w

t t s 21

H r G εσεσ??===?????

22

2

1122s 21r r

σσσσσ?+=+22

1122

21i r r

σσσσσ=?

++22

112212d (d )d d (d )112i r r

r

r

εεεεε+=

+

+++一、塑性屈服理论

?“反常现象”

等双拉屈服应力式中

和分别为单拉和等双拉时的屈服应力。

当时,,与试验结果不符,

?因此,对于r 值小于1的材料,Hill ’48屈服准则精度较低.以后又有很多试验数据证明,对于很多r 值大于1的材料Hill48屈服准则精度也较低。

?但是,由于Hill48屈服准则能够较合理的反应材料的各向异性,应用仍然十分广泛。如,大型商业有限元软件ABAQUS 中只包含了Mises 和Hill48屈服准则。

b u 12

r

σσ+=

u σb σ1r

1σσ

?三种简化形式一、塑性屈服理论

233112123231321

s 2 22m

m

m

m

m

m

m

f g h a b c σσσσσσσσσσσσσσσσ?+?+?+??+??+??=0

a b f g ====1212

s (12)2(1)m m

m

r r σσσσσ+++?=+0,a b h f g ====1212s 121()m m m

m r r r r

σσσσσ+++?+=

0,a b c f g

====1212

s (1)m m m

m

r r σσσσσ++?=+1r <一、塑性屈服理论

?m 值可由液压胀形试验确定

a当m =2时,即还原为Hill ’48屈服准则的主应力表达式?尽管Hill ’79屈服准则承认平面各向异性,但由于式中不包括剪应力分量,因此只能用于材料各向异性主轴和应力主轴重合的情形,不能用于实际问题。

?由,当时,可以描述前述“反常现象”

b

s

ln 2(1)

2ln r m σσ+=

1b u 2(1)[]2m

m r σσ+=121log r m +<+b u

1σσ>aHill ’90屈服准则:在Hill ’79屈服准则基础上添加剪应力分量

?表达式

?m 值的含义同Hill79,也可根据实验数据进行调节,但要求大于1。

?材料常数可由0、45、90度进行单拉时的屈服应力求得?新的屈服函数为铝合金材料提供了更为精确的屈服表面,并很快引起了人们的关注和认可,许多商业软件迅速将该屈服准则作为铝合金板材成形模拟的标准屈服函数。

?但是,可以证明,上述几种Hill 系列的屈服准则中的r 值和单拉屈服应力存在某种固定的关系,这种关系与试验不符。

一、塑性屈服理论

()()()122222b 22

22222b ()42 22m m m

m

i x y

x y xy x y xy m m x y x y i f a b σσσσσσσσστσσσσσ???=++?++++????

?????+?????

?

aHill ’93屈服准则:对Hill 系列进一步改进

?表达式

?D. Banabic 等人用值分别为1.5和0.5的两种材料对Mises 、Hill ’48、Hill ’93屈服准则进行了比较验证,结果表明Hill ’93符合得最好

?该准则为三次多项式,次数不可调,使得其精度有时甚至低于Hill90(次数可调)

一、塑性屈服理论

2211221212

22009090b 090

()1c p q p q σσσσσσσσσσσσσσσ??+?+++?=????0b 9090b 22

090b 00909002()2111(1)(1)r r c

p r r σσσσσσσσσ???+?=?+??++??

90b 00b 22090b 909000902()2111(1)(1)r r c q r r σσσσσσσσσ??

?+

?=?+??++??

222090

90

b

11

1

1

c

σσσσσ=

+

?

aHosford 屈服准则:1972年,Hosford 提出

?其表达式为

?1979年Logan 和Hosford 针对各向异性材料的平面应力状态,将上式写成

?Hosford 是先根据多晶体塑性模型计算得到的屈服轨迹,然后再将该屈服轨迹进行曲线拟合得到的。此外,Hosford 屈服准则的m 值不可调,对于体心立方金属,m =6,面心立方金属,m =8

一、塑性屈服理论

1223312m m m

m

i f σσσσσσσ=?+?+?=1212

(1)m m m

m

s r r σσσσσ++?=+?Graf 和Hosford 通过实验证明,该准则与实验符合较好,且应用该准则,r 值对理论成形极限曲线的影响较小。吴向东通过实验发现,对一些钢板和铝合金板应用该准则的计算结果与实验结果符合较好。

?,当r 小于1时,?可以看出同Hill48屈服准则一样,该准则并不能描述“反

常现象”,只是和更加接近。

一、塑性屈服理论

1

b u 1()2

m r σσ+=b u 1

σσ

日本学者Gotoh 后滕于1978年提出

?表达式

?Toshihiko Kuwabara 等人通过试验得到,该屈服准则在描述冷轧钢板的后继屈服轨迹时与试验结果符合得较好。但由于该准则中所涉及参数较多,计算比较麻烦?应用较少

一、塑性屈服理论

432234123452224

6789 ()x x y x y x y y

x x y y xy xy A A A A A A A A A f

σσσσσσσσσσσσσσ++++++++=aKarafillis -Boyce 屈服准则:1993年,Karafillis 和Boyce 提出

?可考虑复杂加载路径,能解决材料应力主轴和各向异性轴不一致的情形的各向异性屈服函数?表达式

?对几种铝合金板的研究表明,该屈服准则计算得到的屈服轨迹与试验符合得较好,而且还可以较准确地预测r 值的分布规律

?首次提出采用IPE (Isotropic Plasticity Equivalent )将各向异性问题转化为各向同性问题来解决,Barlat 在提出其YLD94以后(包括YLD94)的屈服准则时都借鉴了IPE 方法。

?应用较少,但颇具代表性。

一、塑性屈服理论

12s (1)2m

f c c φφσ=?+?aBarlat -Lian ’89屈服准则:1989年,Barlat 和连建设提出了在平面应力条件下考虑面内各向异性的屈服准则,能准确描述采用Biship 和Hill 晶体材料模型的得到的屈服轨迹?表达式

?Barlat 屈服准则尽管包含了剪应力分量,可以解决材料各向异性

主轴和应力主轴重合的情况,但是它只限于解决平面应力问题,对于平面应变问题则不适用。此外,参数p 无法显式确定,使用起来很不方便。

?同时,尽管该屈服准则可以很好地描述采用Bishop 和Hill 材料模型得到的屈服轨迹,但是在描述各向异性指数较大的材料时,并不准确,其意义在于考虑了平面应力状态的全部情形,也考虑了板面内的各向异性。

一、塑性屈服理论

12

12

2

s (2)22m

m

m

m

f a K K a K K a K σ=++?+??12xx xy

h K σσ+=

2

22

22xx xy xy

h K p σσσ???=+????

一、塑性屈服理论

aBarlat ’91屈服准则:Barlat ’89屈服准则只包含了三个应力分量,只能解决平面应力状态问题,1991年,给出其第二个屈服准则,具有更大的普遍性,可以解决三维应力状态的问题。?表达式

?I 2和为应力的函数

?Barlat 用该屈服准则对2024-T3合金板进行了不同方向(平行于轧制方向角度为0)的单向拉伸试验屈服应力预测,理论与试验结果较符合

?在预测r 值时与实验结果偏离较大,精度甚至低于Hill ’48屈服准则。他认为要提高预测的精度应该考虑放松等向强化假设的限制(考虑其他强化方式)。

/222π23π25π(3)2cos 2cos 2cos 2666m

m

m

m m I θθθσ???+?????+?

????????Φ=+?+=??????????????

???????????????

?

θaBarlat ’94屈服准则:由于Barlat ’89和Barlat ’91在描述铝-镁

合金等各向异性指数较大的金属变形行为时误差较大,同时受Karafillis -Boyce 屈服准则的启发,提出其称之为YLD94的屈服准则。?表达式

?1995年,Hayashida 采用Barlat ’91和Barlat ’94屈服准则,

用ABAQUS 对板料进行了杯形件拉深模拟,结果表明,Barlat ’91对拉深过程中制耳出现位置的预测与试验不符,而Barlat ’94则符合得很好,但是对于制耳的严重程度的预测则不令人满意。

一、塑性屈服理论

2a a

a a

x y z y z x z x y s s s s s s φααασ=?+?+?=323233113112333333333x x y z y x y z

z

x y z c c c c s c c c c S L s c c c c s σσσσσσσσσσ+?

=????

+?

==?+???

+?=??+??

aBarlat ’96屈服准则:为了解决上述Barlat ’94的一些局限性

?表达式

aBarlat 对该准则和TBH 模型进行了比较后认为,Barlat ’96

能较好地描述铝合金板料的后继屈服轨迹

?YLD96里的很多参数不能解析获得,所以应用起来也很不方便。

?外凸性(屈服准则需满足的条件)未得到证明。

一、塑性屈服理论

1232313122a a

a

a

s s s s s s φααασ=?+?+?=S L σ

=3232313121124()/3 /3 /3 0 0 0 /3 ()/3 /3 0 0 0 /3 /3 ()/3 0 0 0 0 0 0 c c c c c c c c c c c c L c +???+???+=5

6 0 0 0 0 0 0 0 0 0 0 0 0 c c ????

??????

????

?????

?aBarlat ’2000屈服准则:为解决YLD96的问题,提出了称之为

YLD2000-2D 的屈服准则,该准则专门针对平面应力状态?表达式

?Barlat 指出该准则的精度不低于YLD96,并且该准则的外凸性得到了证明。同YLD96相比,YLD2000-2D 在数学形式上较为简单,故在有限元模拟中使用该准则相对方便。

?由于该准则是针对平面应力状态问题,故不能处理三维应力状态问题、弯曲问题以及板料成形数值模拟采用体单元的问题。?参数确定仍要采用数值方法,求解程序较为复杂。

一、塑性屈服理论

'''2a

s φφφσ=+=12'||

a

X X φ=?''''''''2112''|2||2|

a a

X X X X φ=+++''X L σ

=''''X L σ=11

12121222766 2/3 0 0-1/3 0 0 0 -1/3 0 0 2/3 0 0 0 1L L L L L βββ′????????′????????????′=????????′??????????

′?

???311124215226668-2 2 8 -2 0 1 -4 -4 4 01 4 -4 -4 1 09-2 8 2 -2 0 0 0 0 0 9L L L L L βββββ′′????????′′????????′′=????′′????????′′????

??

??????????

??????aBarlat ’2004屈服准则

?两个各向异性屈服准则,分别包含18个和13个参数,YLD2004-18P, YLD2004-13P

?Barlat 指出,YLD2004-18P 能够精确地描述单拉试验中的流动应力以及值,故在有限元模拟中能很好的预测“凸耳”。YLD2004-13P 虽然精度上低于YLD2004-18P ,但对主要趋势能够提供合理的描述。对板料而言,YLD2004-13P 应用更加方便,且具有足够的柔性来描述金属及合金的各向异性。

?目前板料成形中应用并不广泛,需要的试验数据很多。

一、塑性屈服理论

4其他屈服准则

aDrucker -Prager 屈服准则aBassani 屈服准则a周维贤屈服准则

aMontheillet 屈服准则aE.Chu 屈服准则aBanabic 屈服准则a统一屈服准则(王仲仁)

a各种屈服准则有其针对性,材料而言,相应适合的屈服准则也不尽相同,需要试验验证。屈服准则越来越精确,但是参数确定也越来越复杂。

一、塑性屈服理论

材料成型原理题库

陶瓷大学材料成型原理题库 热传导:在连续介质内部或相互接触的物体之间不发生相对位移而仅依靠分子及自由电子等微观粒子的热运动来传递热量。 热对流:流体中质点发生相对位移而引起的热量传递过程 热辐射:是物质由于本身温度的原因激发产生电磁波而被另一低温物体吸收后,又重新全部或部分地转变为热能的过程。 均质形核:晶核在一个体系内均匀地分布 凝固:物质由液相转变为固相的过程 过冷度:所谓过冷度是指在一定压力下冷凝水的温度低于相应压力下饱和温度的差值 成分过冷:这种由固-液界面前方溶质再分配引起的过冷,称为成分过冷 偏析:合金在凝固过程中发生化学成分不均匀现象 残余应力:是消除外力或不均匀的温度场等作用后仍留在物体内的自相平衡的内应力 定向凝固原则:定向凝固原则是采取各种措施,保证铸件结构上各部分按距离冒口的距离由远及近,朝冒口方向凝固,冒口本身最后凝固。 屈服准则:是塑性力学基本方程之一,是判断材料从弹性进入塑性状态的判据 简单加载;在加载过程中各个应力分量按同一比例增加,应力主轴方向固定不变 滑移线:塑性变形金属表面所呈现的由滑移所形成的条纹 本构关系;应力与应变之间的关系 弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段 最小阻力定律:塑性变形体内有可能沿不同方向流动的质点只选择阻力最小方向流动的规律 边界摩擦:单分子膜润滑状态下的摩擦 变质处理:在液态金属中添加少量的物质,以改善晶粒形核绿的工艺 孕育处理;抑制柱状晶生长,达到细化晶粒,改善宏观组织的工艺 真实应力:单向拉伸或压缩时作用在试样瞬时横截面上是实际应力 热塑性变形:金属再结晶温度以上的变形 塑性:指金属材料在外力作用下发生变形而不破坏其完整性的能力 塑性加工:使金属在外力作用下产生塑性变形并获得所需形状的一种加工工艺 相变应力:金属在凝固后冷却过程中产生相变而带来的0应力 变形抗力:反应材料抵抗变形的能力 超塑性: 材料在一定内部条件和外部条件下,呈现出异常低的流变应力,异常高的流变性能的现象

金属塑性成形原理习题集与答案解析

《金属塑性成形原理》习题(2)答案 一、填空题 1. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 2. 塑性是指:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 3. 金属单晶体变形的两种主要方式有:滑移和孪生。 4. 等效应力表达式:。 5.一点的代数值最大的__ 主应力__ 的指向称为第一主方向,由第一主方向顺时针转所得滑移线即为线。 6. 平面变形问题中与变形平面垂直方向的应力σ z = 。 7.塑性成形中的三种摩擦状态分别是:干摩擦、边界摩擦、流体摩擦。8.对数应变的特点是具有真实性、可靠性和可加性。 9.就大多数金属而言,其总的趋势是,随着温度的升高,塑性提高。 10.钢冷挤压前,需要对坯料表面进行磷化皂化润滑处理。 11.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂。 12.材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫超塑性。 13.韧性金属材料屈服时,密席斯(Mises)准则较符合实际的。 14.硫元素的存在使得碳钢易于产生热脆。 15.塑性变形时不产生硬化的材料叫做理想塑性材料。 16.应力状态中的压应力,能充分发挥材料的塑性。 17.平面应变时,其平均正应力σm 等于中间主应力σ2。

18.钢材中磷使钢的强度、硬度提高,塑性、韧性降低。 19.材料经过连续两次拉伸变形,第一次的真实应变为ε1=0.1,第二次的真实应变为ε2=0.25,则总的真实应变ε=0.35 。 20.塑性指标的常用测量方法拉伸试验法与压缩试验法。 21.弹性变形机理原子间距的变化;塑性变形机理位错运动为主。 二、下列各小题均有多个答案,选择最适合的一个填于横线上 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响 A 工件表面的粗糙度对摩擦系数的影响。 A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做 A 。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B 。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时, A 准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.由于屈服原则的限制,物体在塑性变形时,总是要导致最大的 A 散逸,这叫最大散逸功原理。 A、能量;B、力;C、应变; 6.硫元素的存在使得碳钢易于产生 A 。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的 B 应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力σm B 中间主应力σ2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性 B 。 A、提高;B、降低;C、没有变化; 10.多晶体经过塑性变形后各晶粒沿变形方向显著伸长的现象称为 A 。 A、纤维组织;B、变形织构;C、流线; 三、判断题 1.按密席斯屈服准则所得到的最大摩擦系数μ=0.5。(×) 2.塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响。

重庆理工大学材料成型原理试卷及答案

重庆理工大学考试试卷 材料成型原理(金属塑性成形部分) A 卷 共 7 页 一、填空题(每空1分,共 16 分) 1. 塑性成形中的三种摩擦状态分别是: 、 、 。 2. 物体的变形分为两部分:1) , 2) 。其中,引起 变化与球应力张量有关,引起 变化与偏应力张量有关。 3. 就大多数金属而言,其总的趋势是,随着温度的升高,塑性 。 4. 钢冷挤压前,需要对坯料表面进行 润滑处理。 5. 在 平面的正应力称主应力。该平面特点 ,主应力的方向与主剪应力方向的夹角为 或 。剪应力在 平面为极值,该剪应力称为: 。 6. 根据变形体的连续性,变形体的速度间断线两侧的法向速度分量必须 。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共13分) 一般而言,接触面越光滑,摩擦阻力会越小,可是当两个接触表面非常光滑时,摩擦阻力反而提高,这一现象可以用哪个摩擦机理解释 。 A、表面凹凸学说; B、粘着理论; C、分子吸附学说 计算塑性成形中的摩擦力时,常用以下三种摩擦条件,在热塑性变形时,常采用哪个 。 A、库伦摩擦条件; B、摩擦力不变条件; C、最大摩擦条件 下列哪个不是塑性变形时应力—应变关系的特点 。 A、应力与应变之间没有一般的单值关系; B、全量应变与应力的主轴重合 C 、应力与应变成非线性关系 4. 下面关于粗糙平砧间圆柱体镦粗变形说法正确的是 。 A、I 区为难变形区; B 、II 区为小变形区; C 、III 区为大变形区 5. 下列哪个不是动可容速度场必须满足的条件 。 A、体积不变条件; B、变形体连续性条件; C、速度边界条件; D 、力边界条件 6. 韧性金属材料屈服时, 准则较符合实际的。 A、密席斯; B、屈雷斯加; C密席斯与屈雷斯加; 7. 塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做 。 A、理想弹性材料; B、理想刚塑性材料; C、塑性材料; 8. 硫元素的存在使得碳钢易于产生 。 A、热脆性; B、冷脆性; C、兰脆性; 9. 应力状态中的 应力,能充分发挥材料的塑性。 A、拉应力; B、压应力; C、拉应力与压应力; 10. 根据下面的应力应变张量,判断出单元体的变形状态。 ??????????=80001000010ij σ ??????????--=4-0001-2027-ij σ ????? ?????=10000000020-ij σ ( ) ( ) ( ) A 、平面应力状态; B 、平面应变状态; C 、单向应力状态; D 、体应力状态 11. 已知一滑移线场如图所示,下列说法正确的是: 。 A 、C 点和B 点的ω角相等,均为45°; B 、如果已知B 、 C 、 D 、 E 四点中任意点的平均应力,可以求解其他三点的平均应力; C 、D 点和E 点ω角相等,均为-25°

材料成型原理考试试卷B-答案

2.内应力按其产生的原因可分为 热应力 、 相变应力 和 机械应力 三种。。 11、塑性变形时不产生硬化的材料叫做 理想刚塑性材料 。 12、韧性金属材料屈服时, 密席斯屈服 准则较符合实际的。 13、硫元素的存在使得碳钢易于产生 热脆 。 14、应力状态中的 压 应力,能充分发挥材料的塑性。 15、平面应变时,其平均正应力 m 等于 中间主应力 2。 16、钢材中磷使钢的强度、硬度提高,塑性、韧性 降低 。 17、材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫 超塑性 。 18、材料经过连续两次拉伸变形,第一次的真实应变为 1=0.1,第二次的真实应变为 2=0.25,则总的真实应变 =0.35。 19、固体材料在外力作用下发生永久变形而不破坏其完整性的能力叫材料的 塑性 。 1、液态金属的流动性越强,其充型能力越好。 ( √ ) 2、金属结晶过程中,过冷度越大,则形核率越高。 ( √ ) 3、实际液态金属(合金)凝固过程中的形核方式多为异质形核。 ( √ ) 4、根据熔渣的分子理论,B>1时氧化物渣被称为碱性渣。 ( √ ) 5、根据熔渣的离子理论,B2>0时氧化物渣被称为碱性渣。 (√ ) 6、合金元素使钢的塑性增加,变形拉力下降。 ( × ) 7. 合金钢中的白点现象是由于夹杂引起的。 ( × ) 8 . 结构超塑性的力学特性为m k S 'ε=,对于超塑性金属m =0.02-0.2。 ( × ) 9. 影响超塑性的主要因素是变形速度、变形温度和组织结构。 ( √ ) 10.屈雷斯加准则与密席斯准则在平面应变上,两个准则是一致的。 ( × ) 11.变形速度对摩擦系数没有影响。 ( × ) 12. 静水压力的增加,有助于提高材料的塑性。 ( √ ) 13. 碳钢中冷脆性的产生主要是由于硫元素的存在所致。 ( × ) 14. 塑性是材料所具有的一种本质属性。 ( √ ) 15. 在塑料变形时要产生硬化的材料叫变形硬化材料。 ( √ ) 16. 塑性变形体内各点的最大正应力的轨迹线叫滑移线。 ( √ ) 17. 二硫化钼、石墨、矿物油都是液体润滑剂。 ( × ) 18.碳钢中碳含量越高,碳钢的塑性越差。 ( √ ) 3. 简述提高金属塑性的主要途径。 答:一、提高材料的成分和组织的均匀性 二、合理选择变形温度和变形速度 三、选择三向受压较强的变形方式 四、减少变形的不均匀性

金属塑性成形原理习题集

《金属塑性成形原理》习题集 运新兵编 模具培训中心 二OO九年四月

第一章 金属的塑性和塑性变形 1.什么是金属的塑性?什么是变形抗力? 2.简述变形速度、变形温度、应力状态对金属塑性和变形抗力的影响。如何提高金属的塑性? 3.什么是附加应力? 附加应力分几类?试分析在凸形轧辊间轧制矩形板坯时产生的附加应力? 4.什么是最小阻力定律?最小阻力定律对分析塑性成形时的金属流动有何意义? 5.塑性成形时,影响金属变形和流动的因素有哪些?各产生什么影响? 6.为什么说塑性成形时金属的变形都是不均匀的?不均匀变形会产生什么后果? 7.什么是残余应力?残余应力有哪几类?会产生什么后果?如何消除工件中的残余应力? 8.摩擦在金属塑性成形中有哪些消极和积极的作用?塑性成形中的摩擦有什么特点? 9.塑性成形中的摩擦机理是什么? 10. 塑性成形时接触面上的摩擦条件有哪几种?各适用于什么情况? 11. 塑性成形中对润滑剂有何要求? 12. 塑性成形中常用的液体润滑剂和固体润滑剂各有哪些?石墨和二硫化钼 如何 起润滑作用? 第二章 应力应变分析 1.什么是求和约定?张量有哪些基本性质? 2.什么是点的应力状态?表示点的应力状态有哪些方法? 3.什么是应力张量、应力球张量、应力偏张量和应力张量不变量? 4.什么是主应力、主剪应力、八面体应力? 5.什么是等效应力?有何物理意义? 6.什么是平面应力状态、平面应变的应力状态? 7.什么是点的应变状态?如何表示点的应变状态? 8.什么是应变球张量、应变偏张量和应变张量不变量? 9.什么是主应变、主剪应变、八面体应变和等效应变? 10. 说明应变偏张量和应变球张量的物理意义? 11. 塑性变形时应变张量和应变偏张量有和关系?其原因何在? 12. 平面应变状态和轴对称状态各有什么特点? 13. 已知物体中一点的应力分量为???? ??????---=30758075050805050ij σ,试求方向余弦为21==m l ,2 1=n 的斜面上的全应力、正应力和剪应力。 14. 已知物体中一点的应力分量为???? ??????---=10010010010010ij σ,求其主应力、主剪应力、八面体应力、应力球张量及应力偏张量。 15. 设某物体内的应力场为

金属塑性成形原理试卷及答案

《金属塑性成形原理》试卷及答案 一、填空题 1. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 2. 塑性是指:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 3. 金属单晶体变形的两种主要方式有:滑移和孪生。 4. 等效应力表达式:。 5.一点的代数值最大的 __ 主应力 __ 的指向称为第一主方向,由第一主方向顺时针转所得滑移线即为线。 6. 平面变形问题中与变形平面垂直方向的应力σ z = 。 7.塑性成形中的三种摩擦状态分别是:干摩擦、边界摩擦、流体摩擦。 8.对数应变的特点是具有真实性、可靠性和可加性。 9.就大多数金属而言,其总的趋势是,随着温度的升高,塑性提高。 10.钢冷挤压前,需要对坯料表面进行磷化皂化润滑处理。 11.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂。 12.材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫超塑性。 13.韧性金属材料屈服时,密席斯(Mises)准则较符合实际的。 14.硫元素的存在使得碳钢易于产生热脆。 15.塑性变形时不产生硬化的材料叫做理想塑性材料。 16.应力状态中的压应力,能充分发挥材料的塑性。 17.平面应变时,其平均正应力m等于中间主应力2。 18.钢材中磷使钢的强度、硬度提高,塑性、韧性降低。 19.材料经过连续两次拉伸变形,第一次的真实应变为1=0.1,第二次的真实应变为2=0.25,则总的真实应变=。 20.塑性指标的常用测量方法拉伸试验法与压缩试验法。

21.弹性变形机理原子间距的变化;塑性变形机理位错运动为主。 二、下列各小题均有多个答案,选择最适合的一个填于横线上 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响A工件表面的粗糙度对摩擦系数的影响。 A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做A。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为B。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,A准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.由于屈服原则的限制,物体在塑性变形时,总是要导致最大的 A 散逸,这叫最大散逸功原理。 A、能量;B、力;C、应变; 6.硫元素的存在使得碳钢易于产生A。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的B应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力mB中间主应力2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性 B 。 A、提高;B、降低;C、没有变化; 10.多晶体经过塑性变形后各晶粒沿变形方向显着伸长的现象称为A。 A、纤维组织;B、变形织构;C、流线; 三、判断题 1.按密席斯屈服准则所得到的最大摩擦系数μ=。(×) 2.塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响。(×) 3.静水压力的增加,对提高材料的塑性没有影响。(×) 4.在塑料变形时要产生硬化的材料叫理想刚塑性材料。(×) 5.塑性变形体内各点的最大剪应力的轨迹线叫滑移线。(√) 6.塑性是材料所具有的一种本质属性。(√) 7.塑性就是柔软性。(×)

材料成形原理课后习题解答

材料成型原理 第一章(第二章的内容) 第一部分:液态金属凝固学 1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。原子集团的空穴或 裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部 存在着能量起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡 组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外, 还存在结构起伏。 1.2答:液态金属的表面张力是界面张力的一个特例。表面张力对应于液-气的交界面,而 界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。 表面张力?和界面张力ρ的关系如(1)ρ=2?/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=?(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确 定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂 质含量决定,与外界因素无关。而冲型能力首先取决于流动性,同时又与铸件结构、 浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大; ④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度; ②降低结构复杂程度。 1.4 解:浇注模型如下:

材料成型原理试卷一B试题及答案

. 重庆工学院考试试卷(B) 一、填空题(每空2分,共40分) 1.液态金属本身的流动能力主要由液态金属的、和等决定。2.液态金属或合金凝固的驱动力由提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为,当温度梯度为负时,晶体的宏观生长方式为。 5.液态金属凝固过程中的液体流动主要包括和。6.液态金属凝固时由热扩散引起的过冷称为。 7.铸件宏观凝固组织一般包括、和 三个不同形态的晶区。 8.内应力按其产生的原因可分为、和三种。9.铸造金属或合金从浇铸温度冷却到室温一般要经历、和三个收缩阶段。 10.铸件中的成分偏析按范围大小可分为和二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响工件表面的粗糙度对 摩擦系数的影响。

. A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称 为。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力 m中间主应力 2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性。 A、提高;B、降低;C、没有变化; 三、判断题(对打√,错打×,每题1分,共7分) 1.合金元素使钢的塑性增加,变形拉力下降。()

金属塑性成形原理复习题

一、名词解释 1. 主应力:只有正应力没有切应力的平面为主平面,其面上的应力为主应力。 2. 主切应力:切应力最大的平面为主切平面,其上的切应力为主主切应力。 3. 对数应变 答:变形后的尺寸与变形前尺寸之比取对数 4. 滑移线 答:最大切应力的方向轨迹。 5. 八面体应力:与主平面成等倾面上的应力 6. 金属的塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 7. 等效应力:又称应力强度,表示一点应力状态中应力偏张量的综合大小。 8. 何谓冷变形、热变形和温变形:答冷变形:在再结晶温度以下,通常是指室温的变形。热变形:在再结晶温度以上的变形。 温变形在再结晶温度以下,高于室温的变形。 9. 何谓最小阻力定律:答变形过程中,物体质点将向着阻力最小的方向移动,即做最少的功,走最短的路。 10.金属的再结晶 答:冷变形金属加热到一定的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 11. π平面 答:是指通过坐标原点并垂于等倾线的平面。 12.塑性失稳 答:在塑性加工中,当材料所受的载荷达到某一临界后,即使载荷下降,塑性变形还会继续,这种想象称为塑性失稳。 13.理想刚塑性材料:在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。P139 14.应力偏张量:应力偏张量就是应力张量减去静水压力,即:σij ′ =σ-δij σm 二、填空题 1. 冷塑性变形的主要机理:滑移和孪生 2. 金属塑性变形的特点:不同时性、相互协调性和不均匀性。 3. 由于塑性变形而使晶粒具有择优取向的组织称为:变形织构 。 4. 随着变形程度的增加,金属的强度 硬度增加,而塑性韧性降低,这种现象称为:加工硬化。 5. 超塑性的特点:大延伸率、低流动应力、无缩颈、易成形、无加工硬化 。 6. 细晶超塑性变形力学特征方程式中的m 为:应变速率敏感性指数。 7. 塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力 。 8. 塑性指标是常用的两个塑性指标是:伸长率和断面收缩率。 9. 影响金属塑性的因素主要有:化学成分、组织状态、变形温度、应变速率、应力状态(变形力学条)。 10. 晶粒度对于塑性的影响为:晶粒越细小,金属的塑性越好。 11. 应力状态对于塑性的影响可描述为:(静水压力越大)主应力状态下压应力个数越多,数值越大时,金属的塑性越好。 12. 通过试验方法绘制的塑性——温度曲线,称为:塑性图 。 13. 用对数应变表示的体积不变条件为: 0x y z εεε++=。 14. 平面变形时,没有变形方向(设为z 向)的正应力为: 21311=()=()=22 z x y m σσσσσσσ=++。 15. 纯切应力状态下,两个主应力数值上相等,符号相反 。

《金属塑性成形原理》习题答案

《金属塑性成形原理》 习题答案 一、填空题 1.衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2.所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3.金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4.请将以下应力张量分解为应力球张量和应力偏张量 =+ 5.对应变张量,请写出其八面体线变与八面体切应变的表达式。 =; =。 6.1864年法国工程师屈雷斯加(H.Tresca)根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果采用数学的方式,屈雷斯加屈服条件可表述为 。

7.金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。 8.变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力 不同,而各点处的最大切应力为材料常数。 9.在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。 10.设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 11、金属塑性成形有如下特 点:、、、。 12、按照成形的特点,一般将塑性成形分为和两大类,按照成形时工件的温度还可以分为、和 三类。 13、金属的超塑性分为和两大类。 14、晶内变形的主要方式和单晶体一样分为和。其中变形是主要的,而变形是次要的,一般仅起调节作用。

【材料课件】金属塑性成形原理试题集

1. 冷塑性变形的主要机理:滑移和孪生 2. 金属塑性变形的特点:不同时性、相互协调性和不均匀性. 3. 由于塑性变形而使晶粒具有择优取向的组织,称为:变形织构 4. 随着变形程度的增加,金属的强度 硬度增加,而塑性韧性降低,这种现象称为:加工硬化 5. 超塑性的特点:大延伸率 低流动应力 无缩颈 易成形 无加工硬化 6. 细晶超塑性变形力学特征方程式 中的m 为:应变速率敏感性指数 7. 塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力 8. 塑性指标是以材料开始破坏时的塑性变形量来表示,通过拉伸试验可以的两个塑性指标 为:伸长率和断面收缩率 9. 影响金属塑性的因素主要有:化学成分和组织 变形温度 应变速率 应力状态(变形力学 条件) 10. 晶粒度对于塑性的影响为:晶粒越细小,金属的塑性越好 11. 应力状态对于塑性的影响可描述为(静水压力越大)主应力状态下压应力个数越多 数值 越大时,金属的塑性越好 12. 通过试验方法绘制的塑性 — 温度曲线,成为塑性图 13. 用对数应变表示的体积不变条件为: 14. 平面变形时,没有变形方向(设为z 向)的正应力为:12132()z m σσσσσ==+= 15. 纯切应力状态下,两个主应力数值上相等,符号相反 16. 屈雷斯加屈服准则和米塞斯屈服准则的统一表达式为:13s σσβσ-=,表达式中的系数 β的取值范围为:1 1.155β= 17. 塑性变形时,当主应力顺序123σσσ>>不变,且应变主轴方向不变时,则主应变的顺序 为:123εεε>> 18. 拉伸真实应力应变曲线上,过失稳点(b 点)所作的切线的斜率等于该点的:真实应力Y b 19. 摩擦机理有:表面凸凹学说、分子吸附学说、粘着理论 20. 根据塑性条件可确定库伦摩擦条件表达式中的μ的极限值为(0.5---0.577) 21. 速度间断线两侧的法向速度分量:相等 22. 不考虑速度间断时的虚功(率)方程的表达式为:

材料成形原理经典试题及答案

《材料成形基础》试卷(A)卷 考试时间:120 分钟考试方式:半开卷学院班级姓名学号 一、填空题(每空0.5分,共20分) 1. 润湿角是衡量界面张力的标志,润湿角?≥90°,表面液体不能润湿固体;2.晶体结晶时,有时会以枝晶生长方式进行,此时固液界面前液体中的温度梯度为负。3.灰铸铁凝固时,其收缩量远小于白口铁或钢,其原因在于碳的石墨化膨胀作用。 4. 孕育和变质处理是控制金属(或合金)铸态组织的主要方法,两者的主要区别在于孕育主要影响生核过程,而变质则主要改变晶体生长方式。 5.液态金属成形过程中在固相线附近产生的裂纹称为热裂纹,而在室温附近产生的裂纹称为冷裂纹。 6.铸造合金从浇注温度冷却到室温一般要经历液态收缩、固态收缩和凝固收缩三个收缩阶段。 7.焊缝中的宏观偏析可分为层状偏析和区域偏析。 8.液态金属成形过程中在附近产生的裂纹称为热裂纹,而在附近产生的裂纹成为冷裂纹。 9.铸件凝固方式有逐层凝固、体积凝固、中间凝固,其中逐层凝固方式容易产生集中性缩孔,一般采用同时凝固原则可以消除;体积凝固方式易产生分散性缩松,采用顺序凝固原则可以消除此缺陷。 10.金属塑性加工就是在外力作用下使金属产生塑性变形加工方法。

1.12.塑性变形时,由于外力所作的功转化为热能,从而使物体的温度升高的现象称为 温度效应。 2.13.在完全不产生回复和再结晶温度以下进行的塑性变形称为冷变形。 14.多晶体塑性变形时,除了晶内的滑移和产生,还包括晶界的滑动和转动。 3.15.单位面积上的内力称为应力。 4.16.物体在变形时,如果只在一个平面内产生变形,在这个平面称为塑性流平面。17.细晶超塑性时要求其组织超细化、等轴化和稳定化。18.轧制时,变形区可以分为后滑区、中性区和前滑区三个区域。19.棒材挤压变形时,其变形过程分为填充和挤压两个阶段。20.冲裁件的切断面由圆角带、光亮带、断裂带三个部分组成。 二、判断题(在括号内打“√”或“×”,每小题0.5分,共10分)1.酸性渣一般称为长渣,碱性渣一般称为短渣,前者不适宜仰焊,后者可适用于全位置焊。(√ ) 2.低合金高强度钢焊接时,通常的焊接工艺为:采取预热、后热处理,大的线能量。( x ) 3.电弧电压增加,焊缝含氮量增加;焊接电流增加,焊缝含氮量减少。(√ ) 4.电弧电压增加时,熔池的最大深度增大;焊接电流增加,熔池的最大宽度增大。( x ) 5.在非均质生核中,外来固相凹面衬底的生核能力比凸面衬底弱。( x ) 6.液态金属导热系数越小,其相应的充型能力就越好;与此相同,铸型的导热系数越小,越有利于液态金属的充型。(√ ) 7.在K0<1的合金中,由于逆偏析,使得合金铸件表层范围内溶质的浓度分布由外向内逐渐降低。(√ ) 8. 粘度反映了原子间结合力的强弱,与熔点有共同性,难熔化合物的粘度较高,而熔点较低的共晶成分合金其粘度较熔点较高的非共晶成分合金的低。 (√ ) 9.两边是塑性区的速度间断线在速端图中为两条光滑曲线,并且两曲线的距离即为速度间断线的间断值。(√ )

金属塑性成型原理部分课后习题答案 俞汉清主编

第一章 1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点? 塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力; 塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形; 塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能 的加工方法,也称塑性加工或压力加工; 塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。 Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次成型和二次加工。 一次加工: ①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;用于生产型材、板材和管材。 ②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。 ③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。 二次加工:

①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形 状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。 ②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从 而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。2)板料成型一般称为冲压。分为分离工序和成形工序。 分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。 Ⅱ.按成型时工件的温度可分为热成形、冷成形和温成形。 第二章 3.试分析多晶体塑性变形的特点。 1)各晶粒变形的不同时性。不同时性是由多晶体的各个晶粒位向不同引起的。2)各晶粒变形的相互协调性。晶粒之间的连续性决定,还要求每个晶粒进行多系滑移;每个晶粒至少要求有5个独立的滑移系启动才能保证。 3)晶粒与晶粒之间和晶粒内部与晶界附近区域之间的变形的不均匀性。 Add: 4)滑移的传递,必须激发相邻晶粒的位错源。 5)多晶体的变形抗力比单晶体大,变形更不均匀。 6)塑性变形时,导致一些物理,化学性能的变化。 7)时间性。hcp系的多晶体金属与单晶体比较,前者具有明显的晶界阻滞效应和极高的加工硬化率,而在立方晶系金属中,多晶和单晶试样的应力—应变曲线就没有那么大的差别。 4.试分析晶粒大小对金属塑性和变形抗力的影响。

材料成形原理试题

填空题: 1、铸件的宏观凝固组织主要是指 ,其通常包括 、 和 三个典型晶区。 2、金属塑性变形的基本规律有 和 。 3、铸件凝固组织中的微观偏析可分为 、 和 等,其均可通过 方法消除。 4、在塑性加工中润滑的目的是 , 模具寿命和产品质量, 变形抗力,提高金属的充满模腔的能力等。 5、材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫 。 6、钢冷挤压前,需要对坯料表面进行 润滑处理。 7、铸造应力有 、 和? 三种。 8、铸件的宏观凝固组织主要是指 ,其通常包 括 、 和 三个典型晶区。 9、铸件凝固组织中的微观偏析可分为 、 和 等,其均可通 过 方法消除。 10、在塑性加工中润滑的目的是 , 模具寿命和产品质量, 变形 抗力,提高金属的充满模腔的能力等。 11、材料的加工过程可以用相关的材料流程、 流程和 流程来描述。材料流程中,用来产生材料的形状、尺寸和(或) 变化的过程称为基本过程。材料流程中的基本过 程又分为机械过程、 过程和化学过程过程。 12、通常所说弹塑性力学三大基础方程指的是 方程、 方程和 方 程 。其中表达变形与应变之间关系的是 方程。 13、液态金属成形过程中在 附近产生的裂纹称为热裂纹,而在 附近产生的裂纹称为冷裂纹。 14、润湿角是衡量界面张力的标志。界面张力达到平衡时,杨氏方程可写为 =θcos 。当 时,液体能润湿固体;=θcos 时,为绝对润湿; 当 时,液体绝对不能润湿固体。 15、在塑性加工中润滑的目的是 ,提高模具寿命和产品质量, 变形 抗力,提高金属的充满模腔的能力等。 16、材料中一点的两种应力状态相等的充要条件是两应力状态的 分别相等。 17、采用主应力法分析宽度为B 的细长薄板在平锤下压缩变形。已知平衡方程为: 02=+h dx d k x τσ,接触表面摩擦条件y k f στ=,利用近似屈服条件为k y x 2=-σσ,方程的通解为: ,其中的积分常数,可根据边界条件: 确定,C = 。 18.液态金属或合金中一般存在 起伏、 起伏和 起伏。 19、铸件的宏观凝固组织主要是指 ,其通常包 括 、 和 三个典型晶区。

材料成型原理试卷一B试题及答案

重庆工学院考试试卷(B) 一、填空题(每空2分,共40分) 1.液态金属本身的流动能力主要由液态金属的、和等决定。2.液态金属或合金凝固的驱动力由提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为,当温度梯度为负时,晶体的宏观生长方式为。 5.液态金属凝固过程中的液体流动主要包括和。6.液态金属凝固时由热扩散引起的过冷称为。 7.铸件宏观凝固组织一般包括、和 三个不同形态的晶区。 8.内应力按其产生的原因可分为、和三种。9.铸造金属或合金从浇铸温度冷却到室温一般要经历、和三个收缩阶段。 10.铸件中的成分偏析按范围大小可分为和二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响工件表面的粗糙度对 摩擦系数的影响。

A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称 为。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力σm中间主应力σ2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性。 A、提高;B、降低;C、没有变化; 三、判断题(对打√,错打×,每题1分,共7分) 1.合金元素使钢的塑性增加,变形拉力下降。()

金属塑性成形原理_总复习

一、1.加工硬化指经过塑性变形后,金属内部的组织结构和物理力学性能发生改变,其塑性、 韧性下降,强度、硬度增加,继续变形的力提高的现象。 2.加工硬化的后果: 强度提高,增加设备吨位; 塑性下降,降低变形程度,增加变形工序和中间退火工序; 强化金属材料(不能热处理的),提高金属零件的强度,改善冷塑性加工的工艺性能。 3.措施:经冷塑性变形后金属产生加工硬化,如将变形后的金属加热到一定温度,又 将产生软化,塑性韧性提高,强度硬度降低,即产生回复和再结晶—静态回复和再结晶。 二、1.金属的塑性指固体金属在外力的作用下产生永久变形而不破坏其完整性的能力。塑性 是一种状态、而不是一种性质 2.塑性的影响因素 ○1变形温度对塑性的影响 变形温度对塑性影响显著,总趋势:温度升高、塑性增加。 三个脆区低温脆区(蓝脆区)中温脆区高温脆区 主要原因: 回复和再结晶消除加工硬化 降低临界切应力,增加滑移系 金属的组织结构发生变化 增强热塑性作用 加强晶界滑动作用 ○2变形速度对塑性的影响 增加变形速度会使金属晶体的临界切应力升高,使塑性降低 增加变形速度,温度效应显著,金属温度升高,使塑性提高 增加变形速度,由于没有足够的时间进行回复和再结晶,使塑性降低 工艺过程中一般希望提高变形速度 降低摩擦改善不均匀性 减少热量损失 增强惯性流动 ○3应力状态对塑性的影响 主应力状态中,压应力个数越多,数值越大,金属的塑性越好;拉应力个数越多,数值越大,金属的塑性越差。 原因 拉应力促进晶间变形,加速晶界破坏; 三向压缩应力有利于愈合塑性变形过程中产生的各种损伤;而拉应力则相反,它促使损伤的发展; 压应力有利于抑制和消除晶体中塑性变形产生的各种微观破坏,拉应力相反; 三向压应力能抵消由于不均匀变形引起的附加拉应力。 ○4金属的化学成分和组织结构对塑性的影响 晶格类型的影响 面心立方晶格结构:塑性较好 体心立方晶格结构:塑性较差 密排六方晶格结构:塑性较差 组织结构的影响

材料成形原理试题总复习题

材料成形原理-金属塑性加工原理考试总复习 一、填空题 1.韧性金属材料屈服时,准则较符合实际的。 2、硫元素的存在使得碳钢易于产生。 2.塑性变形时不产生硬化的材料叫做。 3.应力状态中的应力,能充分发挥材料的塑性。 4.平面应变时,其平均正应力 m中间主应力 2。 5.钢材中磷使钢的强度、硬度提高,塑性、韧性。 6.材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫。 7.材料经过连续两次拉伸变形,第一次的真实应变为 1=0.1,第二次的真实应变为 2= 0.25,则总的真实应变 =。 8.固体材料在外力作用下发生永久变形而不破坏其完整性的能力叫材料的。 10、塑性成形中的三种摩擦状态分别是:、、。 11、就大多数金属而言,其总的趋势是,随着温度的升高,塑性。 12、钢冷挤压前,需要对坯料表面进行润滑处理。 13、为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫。 14、对数应变的特点是具有真实性、可靠性和。 15、塑性指标的常用测量方法。 16、弹性变形机理原子间距的变化;塑性变形机理位错运动为主。 17、金属塑性指标有:延伸率,断面收缩率,扭转转数,冲击韧性。 18、真实应变是用表示的变形,反映了工件的真实变形程度,即,工程应变(或名义应变)用绝对变形量与工件原始尺寸的比来表示,即。两者关系 为。 19、两向应力状态的米赛斯屈服轨迹在应力主空间为。 20、物体的变形分为两部分:1) , 2) 。其中,引起变化与球应力张量有关,引起变化与偏应力张量有关。 二、下列各小题均有多个答案,选择最适合的一个填于横线上 1.塑性变形时不产生硬化的材料叫做。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 2.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为。 A、解析法;B、主应力法;C、滑移线法; 3.韧性金属材料屈服时,准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 4.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料;

塑性成形原理习题及答案

一、名词解释(每题3分,共15分) 1.非均质形核 答:液态金属中新相以外来质点为基底进行形核的方式。 2.粗糙界面与光滑界面 答:粗糙界面:a≤2,固液界面上有一半点阵位置被原子占据,另一半位置则空着,微观上是粗糙的; 光滑界面:a>2,界面上的位置几乎被原子占据,微观上是光滑的。 3.内生生长与外生长 答:内生生长:晶体自型壁生核,然后由外向内单向延伸的生长方式 外生生长:在液体内部生核自由生长的生长方式。 4.沉淀脱氧 答:沉淀脱氧是指将脱氧元素(脱氧剂)溶解到金属液中与FeO直接进行反应而脱氧,把铁还原的方法。 5.缩孔缩松 答:缩孔:纯金属或共晶合金铸件中最后凝固部位形成的大而集中的孔洞; 缩松:具有宽结晶温度范围的合金铸件凝固中形成的细小而分散的缩孔。 二、填空(每空1分,共15分) 1.液体原子的分布特征为长程无序、短程有序,即液态金属原子团的结构更类似于固态金属。 2.界面张力的大小与界面两侧质点结合力大小成反比。衡量界面张力大小的标志是润湿角θ的大小。润湿角越小,说明界面能越小. 3.金属结晶形核时,系统自由能变化△G由两部分组成,其中相变驱动力为体积自由能的降低,相变阻力为表面能的升高。 4.一般铸件的宏观组织由表面细晶区、柱状晶区和内部等轴晶区三个晶区组成。 5.根据熔渣随温度变化的速率可将焊接熔渣分为“长渣”与“短渣”。“长渣”是指随温 命题教师注意事项:1、主考教师必须于考试一周前将试卷经教研室主任审批签字后送教务科印刷。2、请命题教师用黑色水笔工整地书写题目或用 A4 纸横式打印贴在试卷版芯中。 6.金属中的气孔按气体来源不同可分为析出性气孔、反应性气孔和侵入性气孔。三、间答(每题5分,共30分) 1.铸件的凝固方式及影响因素。 答:铸件凝固方式:体积凝固,中间凝固和逐层凝固方式 影响因素包括:金属的化学成分和结晶温度范围大小、铸件断面上的温度梯度。 2.用图形表示K0<1的合金铸件单向凝固时,在以下四种凝固条件下所形成的铸件中溶质元素的分布曲线: (1)平衡凝固; (2)固相中无扩散而液相中完全混合; (3)固相中无扩散而液相中只有扩散; (4)固相中无扩散而液相中部分混合。

相关主题
文本预览
相关文档 最新文档