当前位置:文档之家› 太原地区水文地质概念模型_冯玉明

太原地区水文地质概念模型_冯玉明

太原地区水文地质概念模型_冯玉明
太原地区水文地质概念模型_冯玉明

增刊(总第114期)山西水利科技(To tal No.114) 1996年12月SHANXI HYDROT EC HNICS Dec.1996太原地区水文地质概念模型

冯玉明 常发强

(太原市水利科学研究所) (山西省水利职工大学)

文摘 本文在系统全面分析了太原地区的地质条件、构造发育特征、水文地质条件、地下水含水介质的岩性特征、地下水类型及其赋存分布规律、地下水流系统及水动力场、水文地球化学特征和水同位素特征的基础上,对太原地区的水文地质概念模型进行了概化,尤其对多年来人们一直争论的兰村泉域、晋词泉域以及东山娘子关泉域及其边界和它们之间的联系进行重新划分和充分的论述。

主题词 地下水 泉 水文地质 概念模型 水补给 水文分析

自由词 兰村泉域 晋祠泉域 娘子关泉域。

1 前 言

一个地区的水文地质概念模型是在全面系统地分析该区含水介质的岩性特征、水循环条件、水化学场、水动力学特征及水同位素分布特征的基础上建立的,是地下水资源评价的基础和依据。

同时,一个地区水文地质概念模型的合理概化,对于该地区地下水资源的科学规划,合理开发利用,水污染的防治和水源保护以及水行政主管部门对水资源进行分区目标管理,总量控制等都是至关重要的。

笔者在国家“七五”科技攻关项目75570306《太原市水资源系统规划和调度优化》中,对太原地区水文地质概念模型进行了概化,依此进行地下水资源评价,取得了满意的结果。太原地区水文地质概念模型图见图1。

图1 太原地区水文地质概念模型

·

·6

2 系统分区

根据地下水类型、含水层岩性、富水特征、水流型式、水循环条件、水化学及水同位素特征将太原地区地下水系统进一步划分为五个系统,即西山岩溶裂隙水系统、北山岩溶水系统、东山岩溶裂隙水系统、娄烦裂隙岩溶水系统及盆地区孔隙水系统。

3 系统边界

太原地区地下水系统边界:北部以石岭关、康家会至柳科府断裂构造带为界,与北部变质岩地区接壤,为二类隔水边界;北东部边界受系山断裂带的控制,北部为变质岩地区,为二类隔水边界;东部边界位于杨兴乡善都至盂县西烟一带,为一地下水分水岭,边界水位约1020m,东侧的温川水位980m,西侧阳曲盆地水位小于820m,东南边界由北东向的寺家坪张家河断裂带组成,断裂带伴有岩脉侵入,东段边界上寒武系高于1600m以上,远高于两侧地下水位,为一隔水边界,其西段龙王堂至张家河为一开放段。南部孔隙水边界以行政区划为界。西部边界南段以狐堰山山字型挤压构造带为界,为二类隔水边界。北段以娄烦县与外地区的行政区划界线为界,边界含水层均为变质岩系,亦视其为隔水边界。总体上看,系统的西、北、东三面高,向南及东南倾伏,呈簸箕状,下面就系统内部边界作一简述:

娄烦裂隙岩溶水系统与西山岩溶裂隙水系统以狐堰山山字型构造为分界,为二类隔水边界,位于柳科府、罗家曲至白家滩一线。

西山岩溶裂隙水系统与北山岩溶水系统的分界:北段以柳林河为界,河谷中出露地层为下奥陶统,主要含水岩层奥陶系中统上下马家沟组均被切割,而下奥陶统在太原地区普遍具有相对隔水,可视为隔水边界,南段以横跨汾河的北石横背斜至王封地垒为界,北石横背斜核部地层为寒武系,出露于汾河河谷,由于该背斜的阻隔作用,形成玄泉寺泉群,并与兰村泉分开。

北山岩溶水系统的南部边界为三给隐伏地垒,地垒上岩溶水位616m,北侧兰村水位800m,南侧白家庄岩溶水位806m,亦为一地下分水岭。

北山岩溶水系统与东山岩溶裂隙水系统的分界:北部为田家梁背斜,南部为东山背斜,背斜核部奥陶系被抬升于区域岩溶水位之上,可视其为隔水边界。

山区岩溶裂隙水系统与盆地区孔隙水系统的分界为东西边山断裂带,一般为弱透水边界,唯土堂断裂北段(兰村)为一强透水边界。

4 含水介质

(1) 娄烦裂隙岩溶水系统,地下水类型为变质岩裂隙水和少量碳酸盐岩类岩溶水,含水介质主要为前寒武系变质岩。

(2) 西山岩溶裂隙水系统,地下水主要为奥陶系碳酸盐岩类岩溶水,上覆石碳二迭系碎屑岩裂隙孔隙水,含水介质主要为奥陶系中统上下马家沟组和峰峰组石灰岩,径流排汇区上覆石炭二迭系碎屑岩。

(3) 北山岩溶水系统,地下水类型为碳酸盐岩类岩溶水,含水介质主要为奥陶系中统上下马家沟组石灰岩。

(4) 东山岩溶裂隙水系统,地下水类型主要为碳酸盐岩类岩溶水,含水介质主要为奥陶系统上下马家沟组和峰峰组石灰岩,上覆石岩二迭系碎屑岩。

(5) 盆地区孔隙水系统,含水介质为第四系下更新统至全新统松散堆积物砂砾石层和砂层。

5 水流型式及水动力特征

·

·7

总体上来看,山区裂隙岩溶水主要接受大气降水和河流的入渗补给,沿地层倾向、构造裂隙及岩溶裂隙发育方向运移,其中存在着两种运移型式即沿岩溶、构造裂隙、孔隙发育方向的径流和沿构造天窗、断裂带的下渗或顶托,补给相邻的含水岩层,山区岩溶裂隙水接受大气降水和河流的入渗后,沿东、西、北三个方向向盆地方向径流,从补地区到径流排泄区,地下水由无压水即潜水向承压水逐步过渡;排泄区岩溶水承压水头由于受地形地貌及地质条件的控制,承压水头从几米到几百米不等,局部地段如白家庄岩溶水承压水头306m,三给地垒上岩溶承压水头高达400m以上。

裂隙水多由于地表河流的切割作用,就地以小泉小水的形式排泄,小部分通过断裂、构造天窗下渗补给岩溶水。

岩溶水进入边山地段,由于含水介质的突然改变,少部分侧向径流补给孔隙水,大部分以岩溶泉水的形式排泄,现状条件下则以大型水源地集中开采为主要排泄方式。

盆地区孔隙水主要接受大气降水入渗、农田灌溉入渗、渠道入渗、河流入渗及边山岩溶裂隙水的侧渗补给。排泄则以人工开采、潜水蒸发为主,侧向径流排泄相对较弱。由于70年代以来的大规模开发,己形成面积达400km2的区域性降落漏斗,漏斗中心水位降最大己愈百米。习惯上将盆地区孔隙含水层分为三个含水岩组,下含水岩组主要通过第一含水岩组潜水含水层获得得补给,其次为侧向径流补给。

5.1 娄烦裂隙岩溶水系统

该系统以前寒武系基岩裂隙水为主,当地补给,就近排泄,岩溶水分布范围很小,且与西山岩溶水系统无联系,孤立于大面积变质岩之上,接受大气降水的补给后向东径流以泉的形式排入汾河。

5.2 西山岩溶裂隙水系统

含水层接受大气降水和汾河罗家曲至寺头段汾河的渗漏补给(裂隙水大部分以小泉小水排泄,少部分补给下覆岩溶水),向西边山断裂带径流,从岩溶水等水位线图上看,有两个主径流带,第一主径流带古交晋祠,第二主径流带古交寺头,前者在径流量上占主导地位,晋祠泉为该主径流带的集中排泄点,50年代平均流量 1.95m3/s,后者的集中排泄点为寺头泉群,60年代泉流量为 1.0m3/s。由于王封地垒银角东段的阻水作用和北石横背斜的阻水作用,使得其岩溶水在下槐至玄泉寺段形成一局部汇流排泄区,从泉群的出露位置看,多数分布在汾河北岸,说明泉水除有西部古交径流而来的岩溶水外,主要是汾河以北山区降水补给的地下水,由于汾河的切割作用,在北岸以下降泉的形式排泄。

5.3 北山岩溶水系统

从等水位线图上看,该系统岩溶地下水由西北、北和东北三个方向向兰村径流,其中赤泥社以西地区岩溶水接受大气降水和汾河渗漏补给后以无压流向兰村运移,赤泥社兰村与棋子山地垒之间的北部地区,岩溶地下水由东、西、北三个方向向泥屯盆地汇流,尔后沿南及南偏西方向向山前径流,至兰村西焉边山断裂带后向西流向兰村,东北部岩溶水同样由东、西、北三上方向向阳曲断陷盆地汇流,向西南径流至阳曲镇一带后,一部分经西张断陷深部向兰村径流,一部分则沿兰村西焉边山断裂带流向兰村,等水位级图上也明显地反映出泥屯兰村和阳曲兰村两个主径流带。

天然状态下以泉水(兰村泉)为主排泄,侧向径流排泄次之,60年代以来,随着人工开采量的逐渐增大,到1988年为止,兰村泉己全部干枯,向西张的排泄量也随着西张孔隙水位的不断·

·8

下降而增大,1979~1982年期间,侧向径流量曾一度高达2.0m3/s。

5.4 东山岩溶裂隙水系统

从等水位线图看,系统接受大气降水入渗补给后向山前径流,大部分径流至东山山前杨家峪、观家峪一带,受纬向构造带和边山断裂带的控制,向东排入娘子关岩溶水系统,少部分侧向排入盆地。

5.5 盆地区孔隙水系统

主要接受大气降水入渗、河渠入渗、灌溉入渗、侧向径流补给。天然状态下以潜水蒸发水排泄为主。随着城市及工农业生产的发展,地下水的开采量逐年增加,孔隙水系统内部的水流型式发生了根本变化。

阳曲泥屯盆地,浅层水位埋深己由60年代的3~5m下降到10~30m。小于20mm/d的降水,含水层很少得到补给,70年代开凿的大锅井(深10~25m)全部干枯。

西张盆地,70年代以前,浅层水位埋深0~1m,承压水头高出浅层水位3~6m,形成自流,以向南径流和向浅层水的越流形式排泄。70年代以来,自来水四、七、八厂及太钢的水源地,众多的工农业自备井相继投产,人工集中大量的开采,致使浅层水位大幅度下降,自1980年形成水位降落漏斗以来,水位以每年 4.2m的速度下降,累计下降达45m之多,漏斗面积己由1982年的15km2迅速扩大为100km2。漏斗中心地段浅层含水层己近疏干状态,70年代开凿的一大批浅井己全部报废,绝大多数更新为深井或混采井。区域水流形式改由北向南径流为由四周向漏斗中心径流,同时由于盆地内水位大幅度下降,大量夺取了兰村岩溶水量,致使兰村泉干枯,岩溶水位随之逐年下降。

太原城区,在天然状态下,浅层水水位埋深0~2m,承压水位埋深5~15m,位差5~10m,由于70年代以来的大规模集中开采,使深层水水位大幅度下降,形成面积达300km2的区域性水位降落漏斗,漏斗中心分布于动物园菜园村一带,中心水位降深累计达85m之多。第一承压含水岩组己被疏干;第二承压含水岩组己变为承压无压含水层。天然状态下,向下的越流量受潜水水位与承压水水位差的控制,到目前,其越流量只受潜水位的制约,承压水位己失去制约能力,区域水流形式改由北向南径流为由四周向漏斗中心径流。

东边山北营地区,地处边山地带,含水层厚度小、颗粒细、富水性较差。由于集中大量的开采,己超过含水层的极限承受能力,水位持续大幅度下降,1982年前,水位降幅为 4.8m/a, 1982~1984年降幅为8.5m/a,1985年以来水位以每年近10m的速度下降,累计水位降高达100m之多,第二承压含水岩组基本接近疏干状态,因该区第三含水岩组发育不好,含水层很薄,故绝大部分水井己更新为基岩裂隙水井,最大开采深度己达500m,单井出水量由原来的1000m3/d,降为200~300m3/d。该区将面临严重的缺水危机,潜水与下覆承压水的水动力平衡到彻底破坏,变为两层潜水。

南郊南部及清涂盆地区孔隙水,基本保持了天然流态特征,即由边山向中心,由北向南径流,但水位也在下降。盆地深层水水位埋深由原来的5~10m下降为15~30m,局部达50m,浅层水位变化较小,埋深一般为1~3m,局部为5m,仍以蒸发排泄和向下越流为主要排泄方式,深层水则以人工开采为主要排泄方式。

6 富水特征

太原地区地下水系统富水性主要受含水层岩性、地质构造及地形地貌特征的控制,一般来说:边山强于山区,径流排泄区强于补给区,冲积扇及冲积平原区强于洪积扇及洪积平原区,碳

·

·9

酸盐岩岩溶裂隙含水岩组强于松散岩类孔隙水含水岩组,松散岩类孔隙含水岩组强于基岩裂隙含水岩组,本区碎屑岩类孔隙裂隙含水岩组富水性最弱。

(1) 西山岩溶裂隙水系统。汾河沿岸地区古交、镇城底、河口一带,单井涌水量为1000~2000m3/d,至边山断裂带,富水性激增,白家庄地区为5000m3/d,开化沟增为7000m3/d,洞儿沟为12500m3/d,平泉自流井最大单井自流量高达35000m3/d。

(2)北山岩溶水系统。汇流区阳曲泥屯盆地单井涌水量1000~2000m3/d,至阳曲镇、枣沟、东焉一带单井涌水量增为1000~20000m3/d,兰村单井涌水量高达50000m3/d。

(3)东山岩溶水系统。补给山区单井涌水量一般小于500m3/d,山前地带单井涌水量一般为2000~3000m3/d。

(4)盆地区孔隙水系统。总体上看,冲积扇强于洪积扇,如西张盆地单井涌水量高达5000m3/d,西边山洪积扇单井涌水量1000~1500m3/d,东边山洪积扇单井涌水量小于1000m3/d,盆地中部冲积平原区单井涌水量1000~2000m3/d,阳曲、泥屯盆地则单井涌水量小于800m3/d。

7 水化学及温度场

整个太原地区地下水系统水化学及水温等受含水层岩性、补给径流排泄条件的制约。从总体上来看,山区裂隙岩溶水在其补给区,在水温、水化学类型及矿化度上相差无几,东山、西山、北山及娄烦四个地下水系统基本相同,到径流排泄区呈明显的差异性,主要受含水层岩性及矿物成分、径流途径长短、循环深度、排泄条件等因素的制约。

北山系统,其主要富含水岩层为奥陶系中统上下马家沟组灰岩,很少有峰峰组出露,含水岩组中硫酸盐岩含量较少,水化学类型均为HCO3C a·M g型水,矿化度小于0.5g/L,地下水循环深度较小,一般小于500m,故水温相对较低,一般为13~15℃。

西山系统,径流排泄区:峰峰组地层大多处于岩溶水位之下,上覆石炭二迭系煤系地层裂隙水通过构造有利部位,下渗补给岩溶水,再加上径流途径较长,循环深度较大,一般在500~1500m,至交城一带及马兰向斜轴部深达2000m,排泄条件相对较差,水化学、矿化度及水温从径流区至西边山排泄区呈现明显的变化规律,见表1。

表1 西山系统地下水水化学要素对比表

位 置水 温

(℃)

矿 化 度

(g/L)

水 化 学 类 型

古 钢150.51HCO3·SO4CaM g

下槐泉140.29HCO3·SO4CaM g

白家庄14.50.73HCO3·SO4CaM g

开 化170.719SO4·HCO3CaM g

晋祠泉17.50.719SO4·HCO3CaM g

平 泉24.5 1.24 SO4·HCO3·CL-CaM g 梁 泉24 1.69 SO4·HCO3·CL Ca M g 覃 村25 3.58SO4·CL Ca M g Na

·

10

·

由表1看出,西山系统与东山、北山系统无论是富水性、水温、水化学、矿化度等方面,均存在着明显的差异。

东山系统径流排泄区水化学类型为HCO3·SO4Ca·Mg型水,矿化度0.53~0.73g/L,水温15~17℃,与北山具有明显的差异性,较之北山系统径流条件差,循环深度大,且有煤系统地层水的入渗补给。

娄烦裂隙岩溶水系统地下水化学类型为HCO3-C a·N a及HCO3Ca·mg型水,矿化度小于0.5g/L,水温小于15℃。

盆地区孔隙水系统,浅层水由于60年代以来工业及城市污水的排放,已被大面积污染,很少人工开采,外加蒸发浓缩作用,致使常规离子及矿化度、有害离子含量不断升高,已不能作为生活用水。深层承压水水质,一般来说北部好于南部,西部好于东部,冲洪积扇好于冲洪积交接洼地,西张盆地矿化度一般为0.5~0.8g/L,三给至小店地区,矿化度一般为0.6~0.9g/L,为HCO3Ca·mg型水,小店至萧河地区矿化度一般大于1.0g/L,局部达3.0g/L以上,水化学类型一般为HCO3C a·mg及HCO3·SO4-C a·M g型。

8 水同位素

区内各含水系统地下水同位素存在明显的差异性,系统内部具明显的变化规律,近几年来在地下水同位素方面取得了大量的研究成果,下面只就 值分布特征作一简述。

总体上来看,北山系统 含量最小,排泄区兰村小于5TU,东山系统 含量为10~20T U,娄烦系统和孔隙水系统大于30TU,见表2。

表2 太原地区地下水同位素特征表

系统分区

水同位素特征( T U)

补给区径流区排泄区

北山系统>2010~20<5

西山系统20~7020~7020~40

东山系统>20>2010~20

娄烦系统>30>30>30

孔隙水系统>30>30>30

由表2可见,各系统内地下水中 含量的大小,反映了该系统地下水的补给、径流、排泄条件及地下水循环交替速度,进一步说明了前述系统分区的合理性。

从 含量的分布特征看,从补给区至径流区至排泄区,具逐渐变小的趋势,反映了排泄区地下水流比径流区的地下水流补给时间早的特征。

北山系统排泄区兰村泉 值一般小于5TU,如小海子泉为 3.4TU,S1号孔为 4.1TU,唯军库泉高达33.2T U,说明该泉主要接受西北部山区降水补给和汾河渗漏补给,同时也说明一个系统内部的地下水在进入排泄区仍不可能以一个点集中排泄,而局部区域可能有自己的排泄点。

西山系统 值比较高,1985年取样分析,古钢为73.34TU,玄泉为29.3TU,开化沟为21.5T U,晋祠泉为22.9TU,洞儿沟43.35TU,平泉为35.35TU,覃村9.52TU。表明该系统存在强烈的汾河渗漏补给作用,同时与上覆石炭二迭系裂隙水的下渗补给有关,另外从边山地带 值分布看,晋祠至平泉段 值较西侧高,也说明古交晋祠平泉为西山系统的主径流带。70年代前,洞儿沟平泉一带自流井未建成,且未见到有泉的出露,该段的排泄量是很小的,故此推断70年代以前主径流带应为古交晋祠,平泉洞儿沟自流井建成后,大量消耗了系统内的储存量,致使主径流带有南移的趋势。

·

11

·

水文地质参数计算公式

8.1 一般规定 8.1.1 水文地质参数的计算,必须在分析勘察区水文地质条件的基础上,合理地选用公式(选用的公式应注明出处)。 8.1.2 本章所列潜水孔的计算公式,当采用观测孔资料时,其使用范围应限制在抽水孔水位下降漏斗坡度小于1/4处。 8.2 渗透系数 8.2.1 单孔稳定流抽水试验,当利用抽水孔的水位下降资料计算渗透系数时,可采用下列公式: 1 当Q~s(或Δh2)关系曲线呈直线时, 1)承压水完整孔: (8.2.1-1) 2)承压水非完整孔: 当M>150r,l/M>0.1时: (8.2.1-2) 或当过滤器位于含水层的顶部或底部时: (8.2.1-3)

3)潜水完整孔: (8.2.1-4) 4)潜水非完整孔: 当>150r,l>0.1时: (8.2.1-5) 或当过滤器位于含水层的顶部或底部时: (8.2.1-6)式中K——渗透系数(m/d); Q——出水量(m3/d); s——水位下降值(m); M——承压水含水层的厚度(m); H——自然情况下潜水含水层的厚度(m); h——潜水含水层在自然情况下和抽水试验时的厚度的平均值(m); h——潜水含水层在抽水试验时的厚度(m); l——过滤器的长度(m); r——抽水孔过滤器的半径(m);

R——影响半径(m)。 2 当Q~s(或Δh2)关系曲线呈曲线时,可采用插值法得出Q~s 代数多项式,即: s=a1Q+a2Q2+……a n Qn (8.2.1-7) 式中a1、a2……a n——待定系数。 注:a1宜按均差表求得后,可相应地将公式(8.2.1-1)、(8.2.1-2)、(8.2.1-3)中的 Q/s和公式(8.2.1-4)、(8.2.1-5)、(8.2.1-6)中的以1/a1代换,分别进行计算。 3 当s/Q (或Δh2/Q)~Q关系曲线呈直线时,可采用作图截距法求出a1后,按本条第二款代换,并计算。 8.2.2 单孔稳定流抽水试验,当利用观测孔中的水位下降资料计算渗透系数时,若观测孔中的值s(或Δh2)在s(或Δh2)~lgr关系曲线上能连成直线,可采用下列公式: 1 承压水完整孔: (8.2.2-1) 2 潜水完整孔: (8.2.2-2) 式中s1、s2——在s~lgr关系曲线的直线段上任意两点的纵坐标值(m); ——在Δh2~lgr关系曲线的直线段上任意两点的纵坐标值(m2); r1、r2———在s(或Δh2)~lgr关系曲线上纵坐标为s1、s2(或)的两点至抽水孔的距离(m)。

中科院地理所自然地理学考博水文学试题及参考答案整理4_水资源学与生态水文学

一、流域水文模型 简述流域水文模型的类型及其应用问题 水文模型的基本类型有哪些?各有哪些作用? 论述流域水文模型的类型及其特征? 二、流域产流 流域产流过程及其方式有哪些? 我国南北方流域产流过程及其方式有哪些不同? 三、径流形成 影响径流形成的主要因素有哪些?气候变化及人类活动如何影响流域径流形成? 试述河川径流中的基流分割主要方法及研究基流的意义。 径流形成的基本原理及其影响条件。 四、下渗 影响下渗的因素由哪些? 五、蒸发能力 何为流域的蒸发能力?干旱与湿润地区的实际蒸发与蒸发能力之间有什么联系与区别? 实际蒸发与蒸发能力之间有什么联系与区别,如何计算? 六、水文循环 如何理解水资源可再生(可更新)性?其意义就是什么? 试述水量转化及其在水资源评价中的应用。 试述流域水文循环过程及其科学问题。 论述流域水文循环与水量转化过程及其在水资源评价中的应用?

七、水文学科理论 您认为生态水文学的科学问题有哪些 水文学的基础理论问题 水文学与水资源学的关系 八、人类活动对水文影响 试述人类活动的水文效应及其研究方法? 气候变化及人类活动如何影响流域径流形成? 九、水资源特点及开发利用 论述中国水资源开发利用问题及其对策。 论述中国水资源的时空分布特点及其开发利用对策? 十、区域水文 分析流域地下水的补给来源、地下水径流、地下水排泄,以及地下水动态的影响因素? 如何理解湖泊、沼泽的水量平衡与调节作用? 十一、新技术方法

一、试题 您认为生态水文学的科学问题有哪些 水文学的基础理论问题 水文学与水资源学的关系 水文学与水资源学的关系 水文学主要就是研究地球上水的起源、存在、分布、循环运动规律,水资源学主要研究水资源的形成、演化、运动规律及水资源的合理开发利用的基础理论。水文学与水资源学即有区别又有密切的联系。水文学就是水资源学的重要科学基础,水资源学就是水文学服务于人类社会的重要应用。 水文学就是水资源学的基础。从水文学与水资源学的发展过程瞧,水文学具有悠久的发展历史,而水资源学就是在水文学的基础上,为了研究与解决日益窋的水资源问题而逐步形成的一个知识体系。因此,可近似的认为,水资源学就是在水文学的基础上衍生出来的。从研究内容上瞧,水文学就是一门研究地球上各种水体的形成、运动规律以及相关问题的学科体系;水资源学主要研究水资源评价、配置、综合开发、利用、保护以及对水资源的规划与管理,按照水资源的定义,水资源就是指可被人类利用的淡水资源,世界上大量的水中只有一小部分可以划归为水资源的范畴,水资源学对水资源的研究就是建立在水文学对地球上各种水体的研究的基础之上的。 水资源学就是水文学服务于人类社会的重要应用。人们研究水文现象的一个重要目的就就是为了更好的利用水资源,来实现水资源的可持续利用。水资源的开发利用规划与管理等工作就是水文学服务于人类社会的重要应用内容。水文学中的水循环理论支撑水资源可再生性研究,就是水资源可持续利用的理论依据。在对水资源进行量化进程中,根据水文规律与水文学基本理论,利用数学工具建立模拟模型,就是水资源承载能力量化研究、优化配置量化研究的基础。由于人类对水资源的开发利用,使水循环过程成为自然循环与社会循环的集合,在水资源配置、水资源管理、水资源承载能力计算等模型中,要充分体现这种集合,需要把水文模拟模型作为基础模型嵌入到水资源模型中。 对水文学若干基础研究领域的展望 1、气候变化对水文循环时空分布的影响:全球气候变化将影响到大气、 海洋与陆地的相互作用过程。近20年来波及许多国家与地区的水危 机与洪涝灾害与此有相当密切的关系,这就是因为由此引起的地球 上太阳辐射分布的改变将影响到自然的蒸发、大气中的水汽输送与 降水时空分布。水文学应对这种被称为大尺度水文学的科学研究作 出贡献。 2、水文时间序列演变机理及影响因子:水文时间序列的长期演变既有确 定性的一面,又有不确定性的一面,目前无论从哪个方面分析,都至多 只能识别水文时间序列的局部特性,而不能识别其全部特性,因此水 文时间序列的长期演变规律至今无法在衫精度范围内予以提示。这

储层地质模型

1、什么是储层地质模型?为什么要建立三维储层地质模型? 答:储层地质模型是指能定量表示地下地质特征和各种储层(油藏)三维空间分布的数据体,一个完整的储层地质模型应包括构造模型、沉积模型、储层模型和流体模型等。 三维储层地质建模是从三维的角度对储层的各种属性进行定量的研究并建立相应的三维地质模型,其核心是对井间储层进行三维定量化及可视化的预测,与传统的二维储层研究相比具有以下的优势: 1)更客观地描述并展现储层各种属性的空间分布,克服了用二维图件描述三维储层的局限性。三维储层建模可以从三维空间上定量的表征储层的非均质性,从而有利于油藏工程师进行合理的油藏评价及开发管理。 2)更精确地计算油气储量。在常规的储量计算时,储层参数(含油面积、有层厚度、孔隙度、含有饱和度等)均用平均值表示,这显然忽视了储层非均质性的影响。应用三维储层模型计算储量时,储量的基本计算单元是三维空间上的网格(分辨率比二维高得多),因为每一个网格均附有储集体(相)类型的孔、渗、饱等参数。因此,通过三维空间运算,可计算出实际的含油储集体(砂体)体积、孔隙体积及油气体积,其计算精度比二维储量计算高得多。 3)有利于三维油藏数值模拟。三维油藏数值模拟要求有一个把油藏各项特征参数在三维空间上定量表征出来的地质模型。粗化的三维储层地质模型可以直接作为油藏数值模拟的输入器,而油藏数值模拟成败的关键在很大程度上取决于三维储层地质模型的准确性。 2、如何理解储层概念模型、静态模型和预测模型?它们有何异同? 答:储层概念模型是指把所描述油藏的各种地质特征,特别是储层,典型化、概念化,抽象成具有代表性的地质模型。只追求油藏(储层)总的地质特征和关键性地质特征的描述,基本符合实际,并不追求所有局部的客观描述。 静态模型也称实体模型,是把一个具体研究对象(一个油田、一个开发区块或一套层系)的储层,依据资料控制点实测的数据将其储层表征在三维空间的变化和分布如实的描述出来而建立的地质模型,并不追求控制点间的预测精度。 预测模型不仅忠实于资料控制点的实测数据,而且追求控制点间的内插与外推值具有相当的精度,并遵循地质和统计规律,即对无资料点有一定得预测能力。 概念模型、静态模型和预测模型的区别: 1)研究阶段的区别。概念模型应用于油田的勘探与开发早期;静态模型应用于油田开发中期,一般是开发井网完成后进行;预测模型应用于油田开发后期。 2)研究方法的区别。概念模型一般以储层地质学(沉积学)和写实的描述方法为基本手段,尽可能直接利用岩心资料来建立概念模型,避免依赖测井解释等间接资料;静态模型的研究方法主要是在概念模型的基础上,充分应用开发井的各种资料,采用地质统计学方法来描述储层在二维或三维空间的实际特征;预测模型主要是采用随机建模技术,即将等概率的随机抽样方法(蒙特卡洛)与确定性的插值方法(克里金)相结合,所形成的地质统计学

流域水文模型

课程:流域水文模型姓名:xxx 专业:水利工程 学号:xxxxxxxxxxxx

流域水文模型研究的若干进展 摘要: 计算机技术和一些交叉学科的发展, 给水文模拟的研究方法带来了根本性的变化。文章阐述了分布式物理水文模型、地理信息系统( GI S) 和遥感( RS) 技术在流域模拟中的应用等方面的进展。指出分布式模型具有良好的发展前景,应用GI S的水文模型尽管有诸多优点, 但并不能代表模型本身的高质量, 遥感资料还没有完全融入水文模型的结构中, 给直接应用带来较大的困难。提出立足于产汇流机理研究, 建立基于RS和GI S的耦 合水文模型是研究的趋势, 尺度问题仍然是关注的焦点。 1引言 用数学的方法去描述和模拟水文循环的过程,产生了水文模型的概念[1],水文模型的产生是对水文循环规律研究的必然结果。水文模型在水资源开发利用、防洪减灾、水库、道路、城市规划、面源污染评价、人类活动的流域响应等诸多方面得到了广泛的应用,当今的一些研究热点,如生态环境需水、水资源可再生性等均需要水文模型的支持。流域水文模型是在计算机技术和系统理论的发展中产生的,20世纪60、70年代是蓬勃发展的时期, 涌现出了大量的流域水文模型,Stanford流域模型(SWM)、Sacramento模型、Tank模型、Boughton模型、前期降水指标(API)模型、新安江模型等是这一时期的典型代表[2]。其后一段时期,相对处于缓慢的发展阶段。随着计算机技术和一些交叉学科的发展,流域水文模拟的研究方法也开始产生了根本性的变化。流域水文模型研究的突出趋势主要反映在计算机技术、空间技术、遥感技术等的应用方面,分布式物理模型被广泛提出,遥感(RS)、地理信息系统(GIS)在水文模拟中的应用给传统的研究方法带来了创新。但由于受到技术等原因的制约,分布式模型目前的应用还较困难,应用GIS的水文模型尽管有诸多优点,但并不能代表模型本身的高质量,遥感资料还没有完全融入水文模型的结构中。 2 分布式水文模型 流域水文模型根据不同的标准有多种分类[3],根据模型结构和参数的物理完善性,目前常用的可分为概念性模型和分布式物理模型。概念性模型用概化的方法表达流域的水文过程,具有一定的物理基础,也具有相当的经验性,模型结构简单,实用性强。分布式物理模型的优点是模型的参数具有明确的物理意义,可以通过连续方程和动力方程求解,可以更准确的描述水文过程,具有很强的适应性。与概念性模型相比,分布式水文模型用严格的数学物理方程表述水文循环的各子过程,参数和变量中充分考虑空间的变异性,并着重考虑不同单元间的水平联系,对水量和能量过程均采用偏微分方程模拟。因此,在模拟土地利用、土地覆盖、水土流失变化的水文响应及面源污染、陆面过程、气候变化影响评价等方面应用显出优势。参数一般不需要通过实测水文资料来率定,解决了参数间的不独立性和不确定性问题,便于在无实测水文资料的地区推广应用。自1969年Freeze和Harlan[4]第一次提出了关于分布式物理模型的概念,分布式模型开始得到快速发展。三个欧洲机构提出的SHE模型[5]是最早的分布式水文模型的代表。SHE模型考虑了截留、下渗、土壤蓄水量、蒸散发、地表径流、壤中流、地下径流、融雪径流等水文过程。流域参数、降雨及水文响应的空间分布垂直方向用层表示,水平方向用方形网格表示。该模型的主要水文过程可由质量、动量和能量守恒偏微分方程的有限差分表示,也可由经验方程表示。模型有18个参数,部分具有物理意义,可由流域特征确定。它的物理基础和计算的灵活性使它适用于多种资料条件,在欧洲和其它地区得到了应用和验证[6]。这期间还有一些考虑流域空间特性、输入、输出空间变化的分布式物理模型,如, CEQUEAU模型[7],将流域分为方形网格,输入所有网格的地形、地貌、雨量等特征,对每一个网格进行计算,在水质模拟、防洪、水库设计等诸多方面有适用性;Susa流域模型[8]

流域生态水文研究

流域生态水文模型研究进展 摘要:流域生态水文模型是全球变化下流域生态水文响应研究的重要工具,通过定量刻画植被与水文过程的相互作用及全球变化对流域生态水文过程演变的影响机制,为流域水资源管理和生态恢复提供科学支撑,是生态水文研究的前沿和热点。基于植被与水文过程相互作用规律,流域生态水文模型一方面要充分描述植被与水文过程相互作用和互为反馈机制,另一方面要精确刻画流域的空间异质性。本文在分析流域尺度陆地植被与水文过程相互作用特点的基础上,将现有流域生态水文模型进行归纳和分类,剖析不同类型模型的优缺点,并总结现有模型应用的代表性研究成果,最后,对流域生态水文模型存在的关键问题(如植被与水文相互作用机制的描述、模型参数的估计、模拟结果的不确定性分析等)进行讨论。 在全球变化加剧水资源危机的背景下,传统的水文学研究难以解决流域出现的新问题,生态水文过程的耦合研究日益引起学者们的关注[1-6]。国际地圈生物圈计划及联合国教科文组织(UNESCO)国际水文计划(IHP)等都将陆地植被生态过程与水文过程的耦合研究作为核心内容 1992年召开的国际水和环境会议首次将生态水文学作为一个独立的学科提出,其核心是在不同的时空尺度上揭示不同环境条件下植物与水的相互作用关系,为解决流域水资源危机和生态环境问题提供理论支持。指出生态水文耦合研究将是21世纪水文学研究最前沿和最激动人心的创新领域。流域生态水文模型是定量评估环境变化流域生态水文响应的重要工具,通过定量刻画植被与水文过程的相互作用及全球变化对流域生态水文过程演变的影响机制,为流域水资源管理和生态恢复提供科学支撑。目前,国内外对流域生态水文模型已开展了一定深度的研

2.污染场地水文地质调查

第二章 地下水污染调查与监测 第二章 地下水污染调查与监测 (1) 第一节污染场地水文地质调查 (1) 一、初步场地勘察及初始评估 (2) 二、初步野外调查 (4) 三、详细场地调查 (4) 四、野外试验与室内实验 (6) 五、调查工作的总结及报告的编写 (11) 第二节 地下水污染调查与监测 (12) 一、污染源与污染途径的调查 (12) 二、调查范围与水化学监测网设计 (13) 三、地下水样采集与保存 (14) 四、现场分析与监测 (15) 五、地下水化学数据分析 (16) 第一节污染场地水文地质调查 污染场地水文地质调查是地下水污染研究的基础和出发点。其主要目的是: (1)探测与识别地下污染物; (2)测定污染物的浓度; (3)查明污染物在地下水系统中的迁移特性; (4)确定地下水的流向和速度,查明主径流向及控制污染物运移的因素,定量描述控制地下水流动和污染物运移的水文地质参数。 为实现以上目的,必须确定一个严格的、针对特定场地的调查程序。 表4-1污染场地水文地质调查的主要步骤 步骤工作内容 已有资料的搜集整理 步骤1初步场地踏勘和初始评估 场地踏勘 确立初步的水文地质概念模型 布置初始监测孔 步骤2初步野外调查 大体厘定含水层 开展其它野外工作 扩充监测孔网及沉积物采样 步骤3详细现场调查和试验 获取水文地质参数,评估污染物运移途径 步骤4编写报告 绘制平面及剖面流网 列出重要物理参数值

总结(报告)及对以后的监测工作进行安排 一、初步场地勘察及初始评估 这一阶段包括已有资料的搜集整理和场地踏勘。该阶段的目的是: (1)描述场地的基本地质特征及对已搜集整理资料信息进行验证; (2)搜集当地的水文资料,包括降雨和地表排水; (3)搜集有关污染源和污染特性的资料; (4)确立或改进地下水系统概念模型; (5)评价与健康和安全有关的潜在问题。 (一)搜集前人资料 1 污染现场历史资料 在第一阶段调查中最关键的资料涉及有以下几个方面: 1).已知污染物或可能存在的污染物的性质 2).污染物的来源或可能来源 3).污染程度 4).健康与安全 2 地质与水文地质资料 前人的现场调查报告可以提供有关地形、岩土体和填埋材料的厚度及分布、含水层的分布、基岩高程、岩性、厚度、区域地质条件、构造特征(例如基岩中的断层)等方面的资料。 3 水文资料 调查内容包括地表水的位置、流动情况、水质、与地下水的联系方式等。 如果可能的话,已有资料还应包括场地水文地质平面图、剖面图及初步的概念模型。 (二)初步现场踏勘 在这一阶段,应完成以下重要的踏勘任务:

数学模型在地质学中的应用

数学模型在地质学中的应用 一、绪论 数学模型是一门新兴学科,是数学理论与实际问题相结合的一门科学.数学模型就是通过研究观察到的现象及实践经验,将其归结成一套反映其内部因素数量关系的数学公式、逻辑准则和具体算法,用以描述和研究客观现象的运动规律.它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、理论和方法进行深入的分析和研究,从定性或定量的角度描述实际问题,并为解决现实问题提供精确的数据和可靠的指导.数学建模是指建立数学模型,是运用数学的语言和方法,通过抽象、简化等方法来建立能够近似描述和解决实际问题的一种强有力的数学手段. 数学模型的应用相当广泛,在分析与设计、预报与决策、控制与优化、规划与管理等方面都发挥了巨大的作用,取得了良好的社会效益和经济效益,为世人所瞩目,成为知识经济的推动力.同样,在广泛的地质学领域中,数学建模也处处存在,数学建模的存在,将地质学的发展推向了一个新的浪潮,可能有希望将地质学从一门定性科学转换成为一门定量科学[1].如今,在地质学的众多分支学科中,数学模型都得到了极其广泛的应用. 本文主要运用数学模型来分析地质学中的一些实际问题,并把两者有机的结合起来,拓宽数学模型的发展领域,增加其对实践的指导意义,并为地质学的研究与发展提供新的方法. 二、数学模型在矿产资源评价中的应用 在矿产资源评价中,地质模型和数学模型的结合点是按有效的成矿理论建立区域成矿模式,然后用数学模型逼近,确定成矿地质条件与矿产资源量之间的关系,建立定量评价模型.简言之,矿产资源定量评价模型是用数学语言阐明地质条件与矿产资源量之

间的关系[2].矿产资源评价中的数学模型是实现定量评价的工具,在矿产资源评价的实际工作中使用的数学模型可以是概率统计模型,也可以是确定性模型.1973年,D.P.Harris确定了矿产资源量(R)与地质条件(g1、g2、……、g n)之间的数学关系: R= f(g1、g2、……、g n)+ e + μ(1)式中,f为g1、g2、……、g n的函数,在一般情况下指评价使用的数学模型;e为函数f(g1、g2、……、g n)的估计误差;μ与g1、g2、……、g n以外的地质变量有关.公式(1)表明了地质模型转化为数学模型的基本原理,同时也表明了可以用数学模型来沟通矿产资源量与地质环境.从中也可以看到采用合理的数学模型描述矿产资源与地质条件之间关系是矿产资源评价实践的关键. 随着数学模型的引进,矿产资源的评价进入了新的时代,用数学模型评价矿产资源,用经济指标圈定矿体成为主流.对于用经济指标圈定矿体,一种指标代替多种指标,不仅方便快捷,而且是经济合理的.下面介绍评价矿产资源的几个常用模型.矿产资源经济指数计算公式: σt=[(P0+△P t)/P0]/[(Q0+△Q t)/Q0]=αt/βt (2)式中,σt为矿产资源经济指数;P0、αt分别为基准年和t年矿产资源工业储量潜在价值及指数;Q0、βt分别为基准年和t年沿海地区工业总产值及指数;△P t、△Q t分别为矿产潜在价值增量与工业总产值增量. 矿山资产评估模型(此处为期权定价的Black-Sholes模型): C=e-r T [FN(d1)-XN(d2)] (3)其中d1=[ln(F/X)- (σ2/2)T]/ σ[(T)1/2],d2= d1-σ[(T)1/2]. 式中,C为欧式看涨期权的价格;X为执行价格;T为一年表示的权利期间的长短;

三种水文模型比较

三种水文模型的比较 新安江模型是一个概念性水文模型,新安江水文模型在我国已经应用多年,且效果显著,随着水文学和信息技术的不断发展,萨克拉门托(SAC)模型、TOPMODEL模型也逐渐在我国得到应用。本文主要从产流机制、适用范围、参数以及汇流过程对三种水文模型进行了对比和总结。 下面结合表格从几方面来具体说明三个模型的相同点和不同点。 从产汇流原理及计算模式来说,新安江模型在每个子流域先进行蒸散发和产流计算,计算出子流域总产流量后通过自由水蓄水库结构进行三水源划分,对已经划分好的三种水源(地表径流、壤中流、地下水径流)分别按照各自的退水规律进行汇流计算(比如采用线性水库),得到子流域出口流量过程,对子流域出口的流量过程进行出口以下的河道汇流计算(比如马斯京根法)得到子流域在全流域出口的流量过程,然后将每块单元流域在全流域出口的流量过程同时刻线性叠加,即得到全流域出口总的流量过程,因此综合来看,是一个总—分—总的计算模式。 SAC模型中流域被划分为透水、不透水及变动不透水面积三部分,透水面积为主体;在透水面积上,根据土壤垂向分布不均土层分为上下两层;根据水分受力特征,上下土层蓄水量分为张力水蓄量和自由水蓄量,自由水可以补充张力水,但张力水不能补充自由水,上下土层通过下渗曲线连接,下渗计算是整个模型的核心。径流来源于永久不透水面积和可变不透水面积上的直接径流,透水面积和可变不透水面积上的地面径流,透水面积上的壤中流、浅层与深层地下水。汇流计算分为坡面汇流和河网汇流两部分,计算出的直接径流和地面径流直接进入河网,而壤中流、快速地下水和慢速地下水可用线性水库模拟。各种水源的总和扣

水文地质学知识点整理

地下水的概念P1:地下水是赋存于地表以下岩石(土)空隙中各种形态的水的总称。既有液态的水液,也有气态的水汽,也包括固态的水冰,还有介于它们之间其他形态的水。 地下水的功能属性P2:地下水的资源属性,地下水是生态因子,地下水是环境(灾害)因子,地下水是一种重要的地质营力,地下水是地球深部的信息载体。 水文地质学的研究方法P4:野外调查,野外试验,室内试验,遥感,地球物理勘察,信息技术的应用。 第一章水循环与地下水赋存 1、了解地球内部圈层构P7 地球圈层构造划分表 地球外部圈层:由五个大致成层分布的自然子系统组成,按照性质可以分成3类。即3个无机子系统———大气圈、水圈、岩石圈。1个类有机子系统———土壤圈。1个有机子系统———生物圈。 2、地球水圈可以划分为地质水圈和水文水圈。P9 3、地球上的水循环P10:地球各个圈层中的水相互联系、相互转化的过程统称为大气水的水循环,又叫做自然界的水循环。按其循环途径的长短、循环速度的快慢以及涉及层圈的范围,可分为地质循环和水文循环两类。 4、岩石(土)介质中水的存在形式P17页

5、赋存介质的水理性质P19-20:指与水的储容和运移有关的赋存介质的性质,主要包括空隙的大小、多少、连通程度及其分布的均匀程度,这些性质的差异,会使其储容、滞留、释放以及透过水的能力不同。表征介质水理性质的指标有容水度,给水度,持水度。 容水度:指介质能够容纳一定水量的性质。 给水性:指饱水介质在重力作用下,能够自由给出一定水量的性质持水性:指重力释水后,介质能够保持一定水量的性能。 二、地下水的基本类型及其特征 1、包气带和饱水带:P21 2、越流P22:把两个含水层透过该弱透水层发生垂直水量交换的现象称为地下水的越流。 按照地下水的埋藏条件,可以把地下水分为潜水、承压水、与上层滞水。其中潜水和承压水在一定条件下是可以相互转化的。P23 3、潜水的概念P26:潜水是地表一下埋藏在饱水带中第一个稳定隔水层智商的具有自由水面的重力水。

水文模型的分类

一、 试题 简述流域水文模型的类型及其应用问题 水文模型的基本类型有哪些?各有哪些作用? 论述流域水文模型的类型及其特征? 水文模型的分类 水文模型分为物理模型和数学模型两类。 物理模型是一种比尺或比拟模型模拟,前者将研究对象的原型按一定的比例在实验室内建成物理模型,先对模型进行观测分析,然后根据相似律再对原型的物理过程进行定性或定量分析,后者是以一些物理量来比拟水的某些特性的模型。 数学模型则首先针对人们已掌握的流域径流形成的物理机制,应用物理定律建立其数学描述方程式,然后用数学方法时行求解,从而获得各种情况下流域降雨与径流之间的定量关系。 数学模型又可分为确定性模型和随机模型两类。确定性模型是描述水文现象必然规律的数学结构;随机模型描述水文现象随机性规律的数学结构。确定性模型可分为集总式和分散式模型两种,前者忽略水文现象的空间分布差异。 ???? ????????????????随机模型分散式模型集总式模型确定性模型数学模型比拟模拟比尺模拟物理模型水文模型 数学模型相对于物理模型的优点: 1、数学模型的所有条件都可以由原型所观测的数据直接给出,不受比尺的限制,即数学模型无相似律问题。 2、数学模型的边界及其它条件既可严格控制,也可随时按实际需要改变。 3、数学模型的通用性强,只要研制出一种适合的软件就可用于解决不同的实际问题。 4、数学模型具有理想的抗干扰能力,只要条件不变,重复模拟可得到完全相同的结果,不会因人、因地而异。 5、数学模型的研制费用相对便宜,运行处理费用更加便宜。 流域水文模型的分类 流域水文模型以流域为研究对象,对流域内发生降雨径流这一特定的水文过程进行数学模拟,即把流域上的降雨过程,模拟计算出流域出口断面的流量过程。从流域水文模型的发展和应用来看,流域水文模型属于数学模型,可分为确定性模型和随机模型,我们通常所说的是指确定性模型。

太原地区水文地质概念模型_冯玉明

增刊(总第114期)山西水利科技(To tal No.114) 1996年12月SHANXI HYDROT EC HNICS Dec.1996太原地区水文地质概念模型 冯玉明 常发强 (太原市水利科学研究所) (山西省水利职工大学) 文摘 本文在系统全面分析了太原地区的地质条件、构造发育特征、水文地质条件、地下水含水介质的岩性特征、地下水类型及其赋存分布规律、地下水流系统及水动力场、水文地球化学特征和水同位素特征的基础上,对太原地区的水文地质概念模型进行了概化,尤其对多年来人们一直争论的兰村泉域、晋词泉域以及东山娘子关泉域及其边界和它们之间的联系进行重新划分和充分的论述。 主题词 地下水 泉 水文地质 概念模型 水补给 水文分析 自由词 兰村泉域 晋祠泉域 娘子关泉域。 1 前 言 一个地区的水文地质概念模型是在全面系统地分析该区含水介质的岩性特征、水循环条件、水化学场、水动力学特征及水同位素分布特征的基础上建立的,是地下水资源评价的基础和依据。 同时,一个地区水文地质概念模型的合理概化,对于该地区地下水资源的科学规划,合理开发利用,水污染的防治和水源保护以及水行政主管部门对水资源进行分区目标管理,总量控制等都是至关重要的。 笔者在国家“七五”科技攻关项目75570306《太原市水资源系统规划和调度优化》中,对太原地区水文地质概念模型进行了概化,依此进行地下水资源评价,取得了满意的结果。太原地区水文地质概念模型图见图1。 图1 太原地区水文地质概念模型 · ·6

2 系统分区 根据地下水类型、含水层岩性、富水特征、水流型式、水循环条件、水化学及水同位素特征将太原地区地下水系统进一步划分为五个系统,即西山岩溶裂隙水系统、北山岩溶水系统、东山岩溶裂隙水系统、娄烦裂隙岩溶水系统及盆地区孔隙水系统。 3 系统边界 太原地区地下水系统边界:北部以石岭关、康家会至柳科府断裂构造带为界,与北部变质岩地区接壤,为二类隔水边界;北东部边界受系山断裂带的控制,北部为变质岩地区,为二类隔水边界;东部边界位于杨兴乡善都至盂县西烟一带,为一地下水分水岭,边界水位约1020m,东侧的温川水位980m,西侧阳曲盆地水位小于820m,东南边界由北东向的寺家坪张家河断裂带组成,断裂带伴有岩脉侵入,东段边界上寒武系高于1600m以上,远高于两侧地下水位,为一隔水边界,其西段龙王堂至张家河为一开放段。南部孔隙水边界以行政区划为界。西部边界南段以狐堰山山字型挤压构造带为界,为二类隔水边界。北段以娄烦县与外地区的行政区划界线为界,边界含水层均为变质岩系,亦视其为隔水边界。总体上看,系统的西、北、东三面高,向南及东南倾伏,呈簸箕状,下面就系统内部边界作一简述: 娄烦裂隙岩溶水系统与西山岩溶裂隙水系统以狐堰山山字型构造为分界,为二类隔水边界,位于柳科府、罗家曲至白家滩一线。 西山岩溶裂隙水系统与北山岩溶水系统的分界:北段以柳林河为界,河谷中出露地层为下奥陶统,主要含水岩层奥陶系中统上下马家沟组均被切割,而下奥陶统在太原地区普遍具有相对隔水,可视为隔水边界,南段以横跨汾河的北石横背斜至王封地垒为界,北石横背斜核部地层为寒武系,出露于汾河河谷,由于该背斜的阻隔作用,形成玄泉寺泉群,并与兰村泉分开。 北山岩溶水系统的南部边界为三给隐伏地垒,地垒上岩溶水位616m,北侧兰村水位800m,南侧白家庄岩溶水位806m,亦为一地下分水岭。 北山岩溶水系统与东山岩溶裂隙水系统的分界:北部为田家梁背斜,南部为东山背斜,背斜核部奥陶系被抬升于区域岩溶水位之上,可视其为隔水边界。 山区岩溶裂隙水系统与盆地区孔隙水系统的分界为东西边山断裂带,一般为弱透水边界,唯土堂断裂北段(兰村)为一强透水边界。 4 含水介质 (1) 娄烦裂隙岩溶水系统,地下水类型为变质岩裂隙水和少量碳酸盐岩类岩溶水,含水介质主要为前寒武系变质岩。 (2) 西山岩溶裂隙水系统,地下水主要为奥陶系碳酸盐岩类岩溶水,上覆石碳二迭系碎屑岩裂隙孔隙水,含水介质主要为奥陶系中统上下马家沟组和峰峰组石灰岩,径流排汇区上覆石炭二迭系碎屑岩。 (3) 北山岩溶水系统,地下水类型为碳酸盐岩类岩溶水,含水介质主要为奥陶系中统上下马家沟组石灰岩。 (4) 东山岩溶裂隙水系统,地下水类型主要为碳酸盐岩类岩溶水,含水介质主要为奥陶系统上下马家沟组和峰峰组石灰岩,上覆石岩二迭系碎屑岩。 (5) 盆地区孔隙水系统,含水介质为第四系下更新统至全新统松散堆积物砂砾石层和砂层。 5 水流型式及水动力特征 · ·7

地质构造模型

实习七地质构造模型 目的:初步建立各种产状的岩层、褶皱、断层和角度不整合的立体概念。 要求: 在教师带领下,观察下列各种模型,并将观察结果填入实习报告。 1.三种基本产状的岩层在平面、剖面上的特点。 2.熟悉褶皱要素及背斜和向斜在平面及剖面上的表现。 3.熟悉断层要素及各种断层在平面、剖面上的表现。 4.观察角度不整合在平面、剖面上的表现。 注意事项:对地质构造,常需从平面和剖面上进行观察,这样才能全面掌握其形态特征。剖面按方向与地质构造的走向是垂直还是平行,分为横剖面和纵剖面。 在平面及剖面上观察地质构造特征的主要内容有: 1.地层层面界线的形状是直线还是曲线,界线是否连续。 2.不同时代的层面界线是平行还是相交,它们的倾角大小有无变化。 3.新老岩层出现的顺序和分布,有无缺失或重复,是对称重复出现还是不对称重复出现。 从平面上观察大体能反映地质构造的地表特征,如果知道各岩层的产状要素,一般就可推测剖面上的情况。如果在平面上看到不同时代的岩层有规律的对称生复出现时,则大多数情况下的褶皱;不对称重复或有缺失则说明有可能有断层存在。由于实习所用木块模型缺乏地形,因而不能反映地形对地质界线的影响。与地质图上的表现有一定差异。例如,水平岩层在地形起伏时可出现不同时代地层;倾斜岩的地质界线在地质图上往往是曲线等。 横剖面的方向与地质构造走向相垂直,因而能正确地、较全面地反映地质构造的主要

形态特征。在角地质构造所属的类型。 纵剖面的方向与地质构造走向相平行,因而一般不能反映地质构造的形态特征,岩层界线往往是水平的。只有当构造沿走向有变化时(如褶皱枢纽有起伏时),纵剖面上才有反映。 实习时,要分类观察地质构造模型,从简单到复杂,循序渐进,并填写实习报告。 实习用模型图示如下:

集总式水文模型与分布式水文模型的区别

集总式水文模型与分布式水文模型的区别 集总式水文模型(Lumped Hydrologic Model),不考虑水文现象或要素空间分布,将整个流域 做为一个整体进行研究的水文模型.集总式水文模型中的变量和参数通常采用平均值,使整 个流域简化为一个对象来处理.主要用于降水-径流(Rainfall-runoff)模拟. 由于参数合变量都取流域平均值,所以不能对某单个位置进行水文过程计算.通常模型参数 不能实际测量到,必须通过校准才能获得. 分布式水文模型是通过水循环的动力学机制来描述和模拟流域水文过程的数学模型,模型根据水介质移动的物理性质来确定模型参数,利于分析流域下垫面变化后的产汇流变化规律,与概念性模型相比,分布式水文模型以其具有明确物理意义的参数结构和对空间分异性的全面反映,可以更加准确详尽的描述和反映流域内真实的水文过程。 全面考虑降雨和下垫面空间不均匀性的模型, 能够充分反映流域内降雨和下垫面要素空间变化对洪水形成的影响。模型能全面地利用降雨的空间分布信息;模型参数的空间分布能够反映下垫面自然条件的空间变化;模型的输出具有空间不均匀性, 如蒸散发、土壤水分、径流深等[1]。 分布式流域水文模型的主要思路是:将流域划分成若干网格,对每个网格分别输入不同的降雨,根据各网格内植被、土壤和高程等情势, 对每个网格采用不同的产流计算参数分别计算产流量;通过比较相邻网格的高程确定各网格的流向, 根据各网格的坡度、糙率和土壤等情况确定参数, 将其径流演算到流域出口断面得到流域出口断面的径流过程。模型的参数由地形、地貌数据结合实测历史洪水资料率定得到。 分布式流域水文模型的研究和应用, 需要雷达测雨、遥感、地理信息系统、数值计算和计算机等技术的支撑: 雷达测雨技术能观测到流域内各网格的降雨量;遥感技术是获得地形、地貌等数据的有效途径之一;有效地使用和管理地形、地貌数据, 并根据空间与数据属性生成更多的有用信息离不开地理信息系统;对流域产汇流计算的偏微分方程求解需要数值计算法,同时实现这些计算离不开高性能的计算机。 分布式流域水文模型的发展趋势 (1)中尺度分布式流域水文模型是研究当前水文水资源管理中热点和难点问题的有效工具。

地质建模复习题2013-1-28

三维地质建模是从三维的角度对储层的各种属性进行定量的研究并建立相应的三维模型。其核心是对井间储层进行多学科综合一体化、三维定量化及可视化的预测。与传统的二维储层研究相比,三维地质建模具有以下明显的优势: 井数据的网格化:选择参与插值的井,并将单井相数据根据建模网格层进行网格化采样,生成沿井轨迹的网格化沉积相数据;选择参与模拟的井,并将单井储层参数数据根据建模网格层进行网格化采样,生成沿井轨迹的网格化储层参数数据。 参数截断变换是对井数据做统计直方图,查看数据分布情况。如分布图中存在奇异值的情况,可设置数据最大、最小值进行截断,超过最大值部分将变换为最大值,小于最小值部分将变换为最小值。截断变换还可针对建模结果进行设置。另外,如果选择相控参数建模,应分相统计分析并设置截断值。 变差函数是区域化变量空间变异性的一种度量,反映了空间变异程度随距离而变化的特征。强调三维空间上的数据构形,从而可定量描述区域化变量的空间相关性,是克里金技术以及随机模拟的一个重要工具。 变程(Range):指区域化变量在空间上具有相关性的范围。在变程范围之内,数据具有相关性;而在变程之外,数据之间互不相关,即在变程以外的观测值不对估计结果产生影响。 克里金方法是一种实用的、有效的插值方法。优于传统方法,在于它不仅考虑到被估点位置与已知数据位置的相互关系,而且还考虑到已知点位置之间的相互联系,因此更能反映客观地质规律,估值净度相对较高,是定量描述储层的有力工具。 序贯模拟:也为顺序模拟,其总体思路是沿着随机路径序贯地求取各节点的累积条件分布函数ccdf,并从ccdf中提取模拟值。其中用于求取ccdf的条件数据不仅包括原始的样品点,还包括已模拟好的点。 模型粗化是使细网格的精细“转化”为粗网格模型的过程。在这一个过程中用一系列等效的粗网格去“替代”精细模型中的细网格,并使该等效粗网格模型能反映原模型的地质特征及流动响应。 净毛比模型是指有效储层网格模型;根据有效储层的孔隙度截断值和三维孔隙度模型,对各三维网格的含油有效性进行分析,建立各小层的有效层网格模型。其中有效网格赋值为1,无效网格赋值为0 角点网格是目前应用较广的一种结构化网格类型,网格位置能用i , j , k 定义,并且单元网格的长、宽大小可变,垂向连接顶底网格点的网格面可以是倾斜的。角点网格的特点是网格的走向可以沿着断层线,边界线或尖灭线,也就是说网格可以是扭曲的。

(完整版)专门水文地质学期末考试题

一、水文地质调查的目的 1、查明地下水的形成、赋存和运移特征 2、查明地下水水量、水质的变化规律 3、为地下水资源评价、开发利用、管理和保护以及环境问题防治提供水文地质依据。 二、水文地质调查的任务 1.查明地下水的赋存条件-含水介质特征及埋藏分布. 2.查明地下水运动特征-地下水的补给、径流和排泄条件及渗流参数,为地下水资源定量评价和开采设计提供水文地质资料. 3.查明地下水的动态特征-地下水位、水量、水温和水质等随时间变化的规律及其控制因素,为地下水资源开发利用、管理和保护提供资料. 4. 查明地下水的水文地球化学特征-地下水和地表水的化学成分,为地下水水质评价、地下水的形成条件及运动特征提供资料. 三、水文地质调查工作阶段的划分 1.供水水文地质勘察共划分为:地下水普查、详查、勘探和开采四个阶段。 2. 农田供水水文地质勘察阶段的划分:区域水文地质勘察阶段、详细勘察阶段、开采阶段。 四、水文地质测绘的目的 1.水文地质测绘是认识水文地质条件的基础,是水调查的第一步工作。根据一定的精度要求,在地表对地下水和与其相关的地质—水文地质现象进行实地的观察、测量、描述、综合分析,并将它们绘制成图件,总结出该地区水文地质规律。 2.水文地质测绘成果是布置各种水文地质勘探、试验、动态观测等工作的主要依据。 五、水文地质测绘的基本任务 1.确定地下水的基本类型及各类型地下水的分布与相互联系; 2.确定主要含水层(带)及其埋藏和分布情况,隔水层的特征与分布; 3.查明褶皱构造和断裂构造的水文地质特征; 4.查明地下水的补给、径流与排泄条件; 5.查明地下水的水化学成分及水文地球化学环境; 6.概略评价各含水层(带)的富水性、区域地下水资源量、水化学特征及其动态变化规律; 7.查明与地下水有关的环境地质问题。 六、干旱半干旱、山间河谷地区地下水资源分布特征 七、地下水资源的特点 1、系统性:是指由一定的地质结构组织而成的、具有密切水力联系的统一整体。 2、流动性:地下水是流体,是动态资源,在补给、径流、排泄的过程中,不断循环流动。 3、可恢复性:地下水资源的可恢复性(可再生性)是地下水资源可持续利用的保证。 4、可调节性:可调节性主要针对水量,指地下水在系统结构的作用下,使不连续的降水和水量输入变为相对连续、均匀输出的这种自然特性。 八、地下水资源的分类 1.补给量:指天然状态或开采条件下,单位时间内,通过各种途径进入含水层(或含水系统)的水量。 2.储存量:指储存在单元含水层中的重力水体积。 3.可开采量:指通过技术经济合理的取水构筑物,在整个开采期内出水量不会减少,动水位不超过设计要求,水质和水温变化在允许范围内,不影响已建水源地正常开采,不发生危害性环境地质现象等前题下,单位时间内从含水系统或取水地段中能够取出的水量。 九、开采量由三部分组成 Q 开= ΔQ 补 +ΔQ 排 + μ·F·Δh/Δt 1.增加的补给量(ΔQ 补),可称为开采夺取量; 2.减少的天然排泄量(ΔQ 排),可称为开采截取量; 3.可动用的储存量(μ·F·Δh/Δt )。 十、地下水开采资源组成 :补给量、存储量、允许开采量 十一、生活饮用水评价 首先要按照规定进行取样、检测分析,分析项目应不少于生活饮用水水质标准中所列项目;其次要对分析结果和采用的分析方法进行全面的复查:然后按照《生活饮用水卫生标准》规定的指标逐项进行对比评价。只有全部项目符合标准要求时,才能作为生活饮用水。 )(Q Q 潜水-排补t h F ??±=μ)(Q Q 承压水-排补t h F ??±=*μ

第四章___新安江流域水文模型

第四章新安江流域水文模型 4.1 概述 流域水文模型可分为物理模型、概念性模型和系统模型。在水文预报中,概念性模型和系统模型应用较多,此处主要介绍概念性流域水文模型。 概念性流域水文模型属于数学模型,它与物理模型相比,具有许多优点:一是它的所有条件均可由原型观测资料直接给出,不受比尺的限制,即数学模型无相似律问题;二是它的边界条件及其它条件可严格控制,也可随时按实际需要改变;三是它的通用型较强,只要研制出一种适用的应用软件,就可用来解决不同的实际问题;四是它具有理想的抗干扰性能,只要条件不变,重复模拟可以得到相同的结果,不会因人、因地而异;五是它的研制费用相对较低。因此,流域水文模型的研制和应用受到水文学家和水文工作者的普普遍重视。 世界上第一个流域水文模型-Stanford模型出现在20世纪60年代,目前全世界已提出数以百计的流域水文模型。主要包括由美国天气局V. T. Sitten提出的API模型、N. H. Crawford和R. K. Linsley提出的斯坦福模型以及R. J. C. Bernash 等提出的萨克拉门托模型,日本国立防灾科学研究中心菅原正已教授提出的水箱模型,丹麦技术大学提出的NAM模型,以及原华东水利学院赵人俊教授提出的新安江模型。这些概念性水文模型对流域的降雨径流过程进行了较为细致的模拟。由于这些模型具有较好的结构形式和良好的模拟预报精度,因此在洪水实时预报中得到广泛地应用。本文主要介绍国内应用最为广泛的新安江三水源模型。 4.2 新安江模型的基本原理 原华东水利学院的赵人俊教授于1963年初次提出湿润地区以蓄满产流为主的观点,主要根据是次洪的降雨径流关系与雨强无关,而只有用蓄满产流概念才能解释这一现象。上个世纪70年代国外对产流问题展开了理论研究,最有代表性的著作是1978年出版的《山坡水文学》,它的结论与赵人俊先生的观点基本一致:传统的超渗产流概念只适用于干旱地区,而在湿润地区,地面径流的机制是饱和坡面流,壤中流的作用很明显。20世纪70年代初建立的新安江模型采用蓄满概念是正确的。但对于湿润地区,由于没有划出壤中流,导致汇流的非线性程度偏高,效果不好。80年代初引进吸收了山坡水文学的概念,提出三水源的新安江模型。 新安江模型是分散性模型,可用于湿润地区与半湿润地区的湿润季节。当

相关主题
文本预览
相关文档 最新文档