当前位置:文档之家› Ultraluminous X-ray Sources, High Redshift QSOs and Active Galaxies

Ultraluminous X-ray Sources, High Redshift QSOs and Active Galaxies

Ultraluminous X-ray Sources, High Redshift QSOs and Active Galaxies
Ultraluminous X-ray Sources, High Redshift QSOs and Active Galaxies

数字化X射线成像系统参数

数字化X射线成像系统参数 一、设备名称:数字化X射线成像系统 二、设备用途说明:能完成全身各部位、各体位、各角度的全数字X线摄影检查,满足医院临床和体检工作需求。 三、设备主要构成: 3.1非晶硅平板探测器 3.2 X射线管 3.3高压发生器 3.4摄影机架 3.5滤线栅 3.6图像采集处理系统(含图像处理软件、工作站、显示器) 3.7热敏胶片打印机一台 四、具体技术要求 4.1非CCD数字平板探测器 4.1.1探测器成像介质:非晶硅;尺寸≥14″×17″ 4.1.2探测器TFT成像板结构:非拼接TFT整板 4.1.3动态范围:≥16bit 4.1.4最大极限空间分辨率:≥3.4Lp/mm 4.2 X射线管 4.2.1焦点功率:≥50KW 4.2.2阳极热容量:≥150kHu 4.2.3双焦点:0.6mm(小焦点)/ 1.2mm(大焦点) 4.3高压发生器 4.3.1 类型:高频高压发生器,功率:≥50kW,最大mAs:≥630mAs

4.3.2 输入电源:380V 50HZ 三相电源 4.3.3最大摄影mA:≥630mA 4.3.4最大加载时间:≥6s 4.4 摄影机架 4.4.1 具有摄影机架 4.4.2横臂(水平时)上下竖直移动行程:≥1100mm 4.4.3横臂旋转范围:0°~90° 4.4.4焦点与接收器输入屏间距(SID):1000mm~1800mm,可实现一键到位 4.4.5配备摄影床,床面尺寸符合国家相关标准 4.4.6配备集成控制台 4.5 配备滤线栅 4.6 图像采集处理系统 4.6.1 基于WINDOWS操作系统的专业图像工作站 4.6.2 配置:Intel CPU主频≥3.5GHz、内存容量≥4G、硬盘容量≥500G 4.6.3 工作站显示器≥21″液晶显示器 4.6.4中文操作界面 4.6.5 DICOM接口 4.7图像采集处理软件功能 4.7.1打印胶片上可显示摄影曝光kV、mA、mAs等设置条件 4.7.2 工作站具备3D摆位示意图 4.7.3 图像采集工作站和图像诊断工作站均应支持分格打印输出 4.7.4 支持无损压缩的高速传输、支持在线解压 4.7.5 支持DICOM 服务功能:如存储、传输、接收、WORKLIST;打印功能:标准 DICOM 打印、存档。 4.7.6 采集、控制软件与整机品牌一致 五、热敏成像相机一套

X射线衍射与电子衍射比较

采用波长小于或接近于其点阵常数的电子束照射晶体样品,由于入射电子与晶体内周期地规则排列的原子的交互作用,晶体将作为二维或三维光栅产生衍射效应,根据由此获得的衍射花样研究晶体结构的技术,称为电子衍射。 1电子衍射和X射线衍射一样,也遵循布喇格公式2dsinθ=λ(见X射线衍射)。当入射电子束与晶面簇的夹角θ、晶面间距和电子束波长λ三者之间满足布喇格公式时,则沿此晶面簇对入射束的反射方向有衍射束产生。电子衍射虽 电子衍射 与X射线衍射有相同的几何原理。但它们的物理内容不同。在与晶体相互作用时,X射线受到晶体中电子云的散射,而电子受到原子核及其外层电子所形成势场的散射。除以上用布喇格公式或用倒易点阵和反射球来描述产生电子衍射的衍射几何原理外,严格的电子衍射理论从薛定谔方程Hψ=Eψ出发,式中ψ为电子波函数,E表示电子的总能量,H为哈密顿算子,它包括电子从外电场得到的动能和在晶体静电场中的势能。 2电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。由于电子衍射强度远强于X射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。会聚束电子衍射的特点是可以用来测定晶体的空间群(见晶体的对称性)。 物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。所以这里笔者在这里抛砖引玉式的尝试探讨:哪一种衍射技术对于什么样的解结构问题最有说服力为什么在对这些问题展开讨论之后,小结在最后将会被给出。希望大家在我的话题后面踊跃发表不同观点,如果我有什么疏漏、错误之处,还望不吝指教,笔者这里先多谢了! 首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law): 2d*sinθ=nλ(n是自然数)。前面已经明确本文的动机,所以这里着重分析它们的差异。

x射线衍射仪原理

x射线衍射仪原理及应用 课程名称材料分析测试技术 系别金属材料工程系 专业金属材料工程 班级材料**** 姓名______ * *_ 学号******** 化学工程与现代材料学院制

x射线衍射仪原理及应用 基本原理: x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物理学家劳厄提出的一个重要科学预见,随即被实验所证实。1913年,英国物理学家布拉格父子,在劳厄发现的基础上,不仅成功的测定了NaCl,KCl等晶体结构,还提出了作为晶体衍射基础的著名公式——布拉格方程:2dsinθ=nλ。 基本特征: X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰 基本构成: 1,高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。

X射线衍射分析思考题

X射线衍射分析思考题 1.X射线学有几个分支?每个分支的研究对象是什么? 2.什么叫"相干散射"、"非相干散射"? 3.产生X射线需要什么条件? 4.连续X射线谱是怎样产生的?其短波限由什么决定? 5.特征X射线谱是怎样产生的?为什么特征谱对应的波长不变? 6.试推导布拉格方程 7.什么是结构因子(结构振幅)? 结构因子表征了什么? 8.写出面心立方点阵中能产生衍射的前5个晶面(干涉面). 9.物相定性分析的原理是什么? 10.若待测物质中有两种物相,定性分析时有哪些步骤? 透射电镜与高分辨显微方法思考题 1.电子波长由什么决定?常用透射电镜的电子波长在什么范围内? 2.透射电镜主要由哪几部分组成?各部分的主要功能? 3.比较光学显微镜和电子显微镜的异同点。 4.影响透射电子显微镜分辨率的因素? 5.球差、像散和色差是怎样造成的?如何减小这些像差?哪些是可消除的像差? 6.有几种主要的透射电镜样品制备方法?各自的应用范围?双喷减薄和离子减薄各适用于制备什么 样品? 7.发生电子衍射产生的充要条件是什么? 8.说明体心立方和面心立方晶体结构的消光规律,分别写出两种结构前10个衍射晶面。 9.何为质厚衬度?说明质厚衬度的成像原理。 10.试推导电子衍射的基本公式. 11.如何利用已知参数的多晶样品标定透射电镜有效相机常数? 12.说明已知相机常数及晶体结构时单晶衍射花样标定的基本步骤. 13.何为明场像?何为暗场像?画出明场成像和中心暗场成像光路图。 14.何为相位衬度?相位衬度条件下可获得什么图像? 15.有几种常见的高分辨电子显微像?说明形成不同高分辨像所需的衍射条件 1.电子束与固体样品相互作用时能产生哪些信号?它们有什么特点?各自的产生机理是什么? 2.入射电子束强度与各激发信号强度之间有什么关系?为什么吸收电子像衬度与二次电子像和背散射 电子像衬度相反? 3.扫描电镜的分辨率与什么因素有关?为什么不同信号成像的分辨率不同? 4.与透射电镜相比,扫描电镜有什么特点?其主要用途是什么? 5.扫描电镜的主要性能指标有哪些?各代表什么含义? 6.说明扫描电镜中二次电子像的形貌衬度是怎样形成的?颗粒尺寸大小对衬度有何影响? 7.分别说明波谱仪和能谱仪的工作原理,它们各有什么优缺点? 8.电子探针仪主要有几种分析方法?各用于进行什么检测? 9.俄歇电子有什么特点?俄歇电子能谱仪的主要用途? 10.扫描隧道显微镜有几种工作模式?请分别加以说明

X射线实时成像系统的应用

X射线实时成像系统的应用 X射线照相法操作简单、结果显示直观,是企业常用的无损检测方法之一。但该方法检测成本高,检测图像不能动态可调,因此目前国外已普遍采用X射线实时成像系统和工业CT 成像系统。X 射线照相法是作者单位使用最广泛的无损探伤方法,仅胶片一项,每年就需要十几万元,而X 射线实时成像系统的检测费用还不及照相法的1 % ,每年节约成本在十万元以上。但该系统价格昂贵,一次成本高,以及技术标准不全面等原因,限制了其在国内的普及和使用。作者单位从长远利益出发,为降低生产成本,提高产品质量,引进了一套飞利浦X 射线实时成像系统,该系统由飞利浦MG325 X 射线系统、XRS232 型图像增强器和PXV2200 型图像处理系统组成。 同传统照相法相比,X 射线实时成像的检测原理变化很大。传统照相法是将穿过零件的X 射线在胶片上感光,根据胶片的灰白程度判定零件内部质量,得到的图像是静态不可调的。而X 射线实时成像系统是将穿过零件的X 射线经图像增强器、CCD(电荷耦合器件) 摄像系统以及计算机转换成一幅数字图像,这种图像是动态可调的,电压、电流等参数实时可调,同时计算机可对动态图像进行积分降噪、对比度增强等处理,以得到最佳的静态图像。 X射线实时成像在国外应用比较成熟,而国内近几年才有应用,技术经验还不很成熟,相关的技术标准还很欠缺,这些因素一直影响着该系统的推广应用。国外相关技术资料和国内的应用经验表明,2. 0~30mm 厚金属材料的实时成像检测灵敏度已接近或超过了照相法,但

过薄和过厚两个极限厚度的灵敏度与照相法还有差距。实时成像实际应用的瓶颈问题是如何使实时成像系统符合“三度四性”(三度指厚度灵敏度、清晰度和像质计灵敏度,四性指环境适应性、周期连续性、规格覆盖性和机械传动性)的要求,尽可能使该系统完全适用于各种零件的检测;同时根据试验研究,结合现行标准,在不降低标准要求的 前提下,实现产品的在线检测。

X射线衍射分析

X-射线衍射分析 化学系 0907401班贺绍飞 [摘要] 研究晶体材料,X-射线衍射分析非常理想也非常有效,而对于液体和非晶态固体,这种方法也能提供许多基本的重要数据。所以X-射线衍射分析被认为是研究固体最有效的工具。本文首先对X-射线衍射分析技术进行了简单介绍,然后分别举例说明X-射线衍射分析在晶体分析中的作用。 [关键词] X-射线衍射分析;晶体;晶体分析 1 引言 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X 射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示: λ θn 2 d= sin 式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。 2 X-射线衍射分析 2.1 X-射线衍射分析的原理 X-射线衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。 将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。衍射X射线满足布拉格(W.L.Bragg)方程: θn λ 2 sin d= 式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。 2.2 X-射线衍射分析的方法 在各种X-射线衍射实验方法中,基本方法有单晶法、多晶法和双晶法。

X射线数字成像检测系统

X射线数字成像检测系统X射线数字成像检测系统

(XYG-3205/2型) 一、设备基本说明 X射线数字成像系统主要是由高频移动式(固定式)X射线探伤机、数字平板成像系统、计算机图像处理系统、机械电气系统、射线防护系统等几部分组成的高科技产品。它主要是依靠X射线可以穿透物体,并可以储存影像的特性,进而对物体部进行无损评价,是进行产品研究、失效分析、高可靠筛选、质量评价、改进工艺等工作的有效手段。 探伤机中高压部分采用高频高压发生器,主机频率40KHz为国际先进的技术指标。连续工作的高可靠性,透照清晰度高,穿透能力强,寿命长,故障率低等特点。X光机通过恒功率控制持续输出稳定的X射线,波动小,保证了优质的图像质量。高频技术缩短了开关机时间,有助于缩短检测周期,提高工作效率。 数字平板成像采用美国VEREX公司生产的Paxscan2530 HE型平板探测器,成像效果清晰。该产品已经在我公司生产的多套实时成像产品中使用,性能稳定可靠。 计算机图像处理系统是我公司独立自主研制开发的、是迄今为止国同行业技术水平最高的同类产品。主要特点是可以根据不同行业用户的需求,编程不同的应用界面及图像处理程序,利用高性能的编程技术,使操作界面简单易懂,最大限度的减少操作步骤,最快速度的达到操作人员的最终需求。 机械传动采用电动控制、无极变速,电气控制采用国际上流行的钢琴式多功能操作台,将本系统中的X射线机控制、工业电视监视、机械操作等集中到一起,操作简单、方便。 该系统的自动化程度高, 检测速度快,极大地提高了射线探伤的效率,降低了检验成本,检测数据易于保存和查询等优点,其实时动态效果更是传统拍片

实验一-X射线衍射技术及物相分析

实验一 X射线衍射技术及物相分析 一、实验目的与要求 1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤; 3.给定实验样品,设计实验方案,做出正确分析鉴定结果。 二、实验仪器 本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。 1.X射线管 X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。此X射线管为密闭式,功率为2千瓦。X射线靶材为Cu。 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2.测角仪 测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。 (1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。 (2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。 (3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。 (4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。 (5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射线的垂直方向发散。索拉狭缝装在叫做索拉狭缝盒的框架里。这个框架兼作其他狭缝插座用,即插入DS,

X射线实时成像系统分辨率及其影响因素

X射线实时成像系统分辨率及其影响因素 1 X射线实时成像系统 X射线实时成像检测技术作为一种新兴的无损检测技术,已进入工业产品检测的实际应用领域。与其他检测技术一样,X射线实时成像检测技术需要一套设备(硬件与软件)作为支撑,构成一个完整的检测系统,简称X射线实时成像系统。X射线实时成像系统使用X射线机或加速器等作为射线源,X射线透过后被检测物体后衰减,由射线接收/转换装置接收并转换成模拟信号或数字信号,利用半导体传感技术、计算机图像处理技术和信息处理技术,将检测图像直接显示在显示器屏幕上,应用计算机程序进行评定,然后将图像数据保存到储存介质上。X射线实时成像系统可用金属焊缝、金属或非金属器件的无损检测。 2 X射线实时成像系统的基本配置及影响因素 X射线实时成像系统主要由X射线机、X射线接收转换装置、数字图像处理单元、图像显示单元、图像储存单元及 检测工装等组成。 2.1 X射线机 根据被检测工件的材质和厚度范围选择X射线机的能量范围,并应留有一定的的能量储备。对于要求连续检测的作业方式,宜选择直流恒压强制冷却X 射线机。X射线管的焦点尺寸对检测图像质量有较大的影响,小焦点能够提高系统分辨率,因此,应尽可能选用小焦点X射线管。 2.2 X射线接收转换装置 X射线接收转换装置的作用是将不可见的X光转换为可见光,它可以是图像增强器或成像面板或者线性扫描器等射线敏感器件。X射线接收转换装置的分辨率应不小于3.0LP/mm。 2.3 图像处理单元 图像处理单元应具有图像数据采集和处理功能。图像数据采集方式可以是图像采集卡或其它数字图像合成装置。图像采集分辨率应不低于768×576像素,且保证水平方向分辨率与垂直方向分辨率之比为4∶3;动态范围即灰度等级应不小于256级。 2.4 图像处理软件 图像处理软件应具有降噪、亮度对比度增强、边缘增强等基本功能。图像处

X射线衍射貌相技术介绍与分析

X 射线衍射貌相技术介绍 X 射线衍射貌相技术,是分析单晶结构材料的一种比较新的技术。它区别与比较传统的分析技术,如光学显微镜和SEM (扫描电子显微镜),有其自身的特点和优势。以下简介中,主要是对以蓝宝石(sapphire )为样品的一系列X 射线衍射貌相的分析实验。 X 射线衍射貌相技术 X 射线衍射貌相技术,是一种无损伤性的分析技术,可以对尺度在微米级到厘米级的单晶结构中的微缺陷进行分析。如下图,为它的装置工作示意图: 图中,入射X 射线照射到样品台上的样品,然后发生衍射,衍射线照射到底片上产生貌相图。这就是X 射线衍射貌相装置的基本工作示意图,现在,一般在成像部分,连接的是计数器和计算机,然后利用专门的计算机软件对计数器收集到的信息进行处理,可以方便的直接得到貌相图片。 X 射线衍射貌相技术,其原理,即基于晶体X 射线的衍射现象;主要有两个定理(在课上已经说过)劳厄(Laue)方程和布拉格(Bragg)方程。而由于劳厄方程有三个矢量方程组,且与布拉格方程是等价的,故不常用,此文中介绍了布拉格方程。 布拉格把晶体的衍射理解为晶体点阵平面族的选择性反射,产生衍射的条件如下: λθn d =sin 2 (摘自《晶体X 射线衍射学基础》) 取n=1,E hc /=λ时,得到 θsin 2/d hc E = 其中,E 为入射X 射线的能量,h 为普朗克常数,c 为光速,d 为晶面间距,θ为布拉格角。 从上式中可以看出,要使X 射线衍射条件成立,对入射X 射线的能量,单晶样品(入射晶

面)面和入射X射线到样品的布拉格角有要求。 实验中的应用 图中为半圆顶型蓝宝石样品。可以看得,样品看上去完美无缺,极为光洁,但是实际上,在样品的制作和后续处理中,常常会引入更多肉眼看不见的缺陷。此时,就要借助各种分析技术来进行分析。 应用X射线貌相技术后,看得的缺陷: 可以看到,在光洁的表面上,用X射线貌相得到的貌相图上看到了类似与划痕的缺陷。这些就是样品近表面的缺陷的X射线貌相图。在通过进一步的分析,可以得到具体是什么缺陷(一般可以配合其他工具使用,如光学显微镜和扫描电子显微镜)。 X射线衍射貌相仪和光学显微镜: 图中显示的是长条状的蓝宝石样品的图像:第一张是用X射线衍射貌相仪器得到的貌相图;第二三张是光学显微镜得到的。光学检测运用了35倍的放大率,但是只是看见了在X射线貌相图中得到的双线中的一条。这两条线,代表了样品中有由于机械处理过程中所引入的缺陷,用X射线貌相术能发现两条,但光学则对较为弱(weaker,较小较细)的不敏感,超出

单元3激光、光信息处理和光学测量

参考文献 单元1 原子物理 1.1 弗兰克-赫兹实验 1.当内容1中温度条件满足时,记录的K G P 2~V I 曲线应具有什么特征?影响此曲线 的因素是哪些?为什么温度低时充汞F-H 管的P I 很大? 2.实验内容2(2)中取不同的灯丝电压时,曲线K G P 2~V I 应有何变化?为什么? 3.实验内容2(3)中取加热炉的几个不同温度时,曲线K G P 2~V I 有何变化?为什么? 是否出现了电离现象? 4.在原有实验装置的基础上,要用光谱实验方法测算汞的第一激发态和基态间的能量差,如何改进现在装置,并配置什么设备才能完成实验? 5.在F-H 管的K G P 2 ~V I 曲线上第一个峰的位置,是否对应于汞原子的第一激发电位?为什么? 1.2 氢与氘原子光谱 1.在拍摄所得的光谱底片上如何判别波长短的方向? 2.在实验中你应怎样判别各线系的谱线以及各谱线所对应的主量子数? 1.3 钠原子光谱 1.加上电压后,油滴在电容器内可能出现哪些运动?请分别说明原因. 2.为什么不挑选带电量很大的油滴测量? 1.4 塞曼效应 1.请注意546.1nm 谱线在加磁场后能级的分裂及光谱线的分裂和光强分布,裂距的大小与什么有关?谱线的偏振状态如何? 2.本实验所用光源比较弱,应该怎样优化光路来提高谱线的亮度? 3.已知F-P 标准具二平行玻璃板内表面之间的间距d=5mm ,本实验怎样得到磁感应强度B ?这样做科学吗?如果不科学,那么科学的办法是什么? 4. 为了求电子的荷质比,你应该测量记录哪些量? 1.5 拉曼光谱 1.应该怎样调节外光路? 2.如何判断激光束照射4C C l 样品处于最佳位置?

X射线衍射与电子衍射比较讲解学习

X射线衍射与电子衍 射比较

采用波长小于或接近于其点阵常数的电子束照射晶体样品,由于入射电子与晶体内周期地规则排列的原子的交互作用,晶体将作为二维或三维光栅产生衍射效应,根据由此获得的衍射花样研究晶体结构的技术,称为电子衍射。 1电子衍射和X射线衍射一样,也遵循布喇格公式2dsinθ=λ(见X射线衍射)。当入射电子束与晶面簇的夹角θ、晶面间距和电子束波长λ三者之间满足布喇格公式时,则沿此晶面簇对入射束的反射方向有衍射束产生。电子衍射虽 电子衍射 与X射线衍射有相同的几何原理。但它们的物理内容不同。在与晶体相互作用时,X射线受到晶体中电子云的散射,而电子受到原子核及其外层电子所形成势场的散射。除以上用布喇格公式或用倒易点阵和反射球来描述产生电子衍射的衍射几何原理外,严格的电子衍射理论从薛定谔方程Hψ=Eψ出发,式中ψ为电子波函数,E表示电子的总能量,H为哈密顿算子,它包括电子从外电场得到的动能和在晶体静电场中的势能。 2电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。由于电子衍射强度远强于X射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。会聚束电子衍射的特点是可以用来测定晶体的空间群(见晶体的对称性)。

物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力?很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。所以这里笔者在这里抛砖引玉式的尝试探讨:哪一种衍射技术对于什么样的解结构问题最有说服力?为什么?在对这些问题展开讨论之后,小结在最后将会被给出。希望大家在我的话题后面踊跃发表不同观点,如果我有什么疏漏、错误之处,还望不吝指教,笔者这里先多谢了! 首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law):2d*sinθ=nλ(n是自然数)。前面已经明确本文的动机,所以这里着重分析它们的差异。 i)表观上的差异,X-ray是光子(电磁波)、不带电没有磁性,电子带负电,中子不带电、质量较大而且具有磁性,这些是显而易见的常识,不多说。 ii)本质上的差异,参考图1所示:X射线是电磁波,没有静止质量,均匀介质中速度不变,波动行为在时空上的dispersion呈现简单的线性关系;而电子、中子是物质波,具有质量,均匀介质中运动速度可以变化,时空上的dispersion呈现平方项。正是这样的本质差别导致波长(动量)与频率(能量)之间的关系在电磁波(这里是X-ray)和物质波(这里是电子、中子)之间的截然不同。当然,物质波在运动速度接近光速的时候其dispersion 会发生本质的转变,转变点如图1所示,不过这样的情况在实际的结构分析中碰不到,所以不用担心电子/中子在和光子的dispersion完全一致时的异常,反正迄今还没有见过这样的实验。

X射线衍射图

X射线衍射分析的实验方法及其应用 自1896年X射线被发现以来,可利用X射线分辨的物质系统越来越复杂。从简单物质系统到复杂的生物大分子,X射线已经为我们提供了很多关于物质静态结构的信息。此外,在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用,人们对晶体的研究日益深入,使得X射线衍射分析成为研究晶体最方便、最重要的手段。本文主要介绍X射线衍射的原理和应用。 1、 X射线衍射原理 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。 衍射线空间方位与晶体结构的关系可用布拉格方程表示: 1.1 运动学衍射理论 Darwin的理论称为X射线衍射运动学理论。该理论把衍射现象作为三维Frannhofer衍射问题来处理,认为晶体的每个体积元的散射与其它体积元的散射无关,而且散射线通过晶体时不会再被散射。虽然这样处理可以得出足够精确的衍射方向,也能得出衍射强度,但运动学理论的根本性假设并不完全合理。因为散射线在晶体内一定会被再次散射,除了与原射线相结合外,散射线之间也能相互结合。Darwin不久以后就认识到这点,并在他的理论中作出了多重散射修正。 1.2 动力学衍射理论 Ewald的理论称为动力学理论。该理论考虑到了晶体内所有波的相互作用,认为入射线与衍射线在晶体内相干地结合,而且能来回地交换能量。两种理论对细小的晶体粉末得到的强度公式相同,而对大块完整的晶体,则必须采用动力学理论才能得出正确的结果。动力学理论在参考文献里有详细介绍。 2 X射线衍射方法: 研究晶体材料,X射线衍射方法非常理想非常有效,而对于液体和非晶态物固体,这种方法也能提供许多基本的重要数据。所以X射线衍射法被认为是研究固体最有效的工具。在各种衍射实验方法中,基本方法有单晶法、多晶法和双晶法。 2.1 单晶衍射法 单晶X射线衍射分析的基本方法为劳埃法与周转晶体法。 2.1.1 劳埃法 劳埃法以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的

X射线衍射实验报告

实验报告:X 射线衍射 一、实验原理 X 射线衍射分析技术是一种十分有效的材料分析方法,在众多领域的研究和生产中被广泛应用。X 射线衍射分析法是研究物质的物相和晶体结构的主要方法。当某物质(晶体或非晶体) 进行衍射分析时,该物质被X 射线照射产生不同程度的衍射现象,物质组成、晶型、分子内成键方式、分子的构型、构象等决定该物质产生特有的衍射图谱。X 射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。因此,X 射线衍射分析法作为材料结构和成分分析的一种现代科学方法,已逐步在各学科研究和生产中广泛应用。 X 射线与物质的相互作用 X 射线与物质的相互作用分为两个方面,一是被原子吸收,产生光电效应;二是被电子散射。X 射线衍射中利用的就是被电子散射的X 射线。 X 射线散射:当光子和原子上束缚较紧的电子相互作用时,光子的行进方向受到影响而发生改变,但它的能量并不损失,故散射线的波长和原来的一样,这种散射波之间可以相互干涉,引起衍射效应,这是相干散射,是取得衍射数据的基础。 X 射线的相干散射是XRD 技术应用的基础,接下来研究一下X 射线衍射的条件,找到其与物质本身结构之间的关系。 X 射线衍射 一束平行的X 光照到两个散射中心O 、M 上,见下图O 与M 之间的距离远小于它们到观测点的距离,从而可以认为,观测到的是两束平行散射线的干涉。 下面考查散射角为2θ时散射线的干涉情况。 0?s 和?s 分别表示入射线和散射线方向上的单位矢量。两条散射线之间的光程差为mo on δ=+ 即00????()s r s r s s r δ=-?+?=-? 其中r 为两个散射中心之间的 位置矢量,与δ相应的相位差φ应 为 0??22s s r π φδπλλ-=?=? 散射线之间的相位差φ是决定 散射线干涉结果的关键量。因此有 必要再进一步讨论。 定义 0??s s s λ-= 为散射矢量 如右图所示,散射矢量与散射角2θ的角平分线垂直,它 的大小为 2sin s θ λ= 由此可见,散射矢量的大小只与散射角和所用波长有关,

X射线衍射实验方法和数据分析

X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。 关键字:布拉格公式晶体结构,X射线衍射仪,物相分析 引言: X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。 实验目的:1. 了解X射线衍射仪的结构及工作原理 2. 熟悉X射线衍射仪的操作 3. 掌握运用X射线衍射分析软件进行物相分析的方法 实验原理: (1)X射线的产生和X射线的光谱 实验中通常使用X光管来产生X射线。在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为 (1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…

x射线衍射成像技术最新发展详解

课程论文 题目X射线衍射成像技术的 原理以及最新发展与应用学院 专业 班级 学生 学号 二〇年月日

摘要 随着科技的发展,基于傅里叶光学的X射线衍射技术发展越来越先进,形成了X射线衍射成像(X-ray diffraction imaging,XDI)和相干X射线衍射成像(coherent X-ray diffractive imaging,CXDI/CDI)等技术,它们广泛应用于材料、医学、生物、物理等领域,为人们探索微观世界的结构提供很好的工具。本文主要论述了X射线衍射的基本原理,并讲述了它们在不同应用中的最新发展,包括X 射线衍射成像和相干X射线衍射成像的二维、三维成像等技术,同时简单的说明了它们在一些领域的应用。 关键词:X射线衍射;X射线衍射成像;相干X射线衍射成像 1前言 近几十年来,X射线衍射成像技术得到快速发展,它具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点,大量的用于材料内部结构分析、生物分子探究、医学以及危险品扫描等领域。近一个世纪以来,科学家们不断探索测定物质结构的方法,希望能够看到物质内部的原子是如何排列的。而传统用的最多的方法是X射线晶体衍射分析的方法(XRD)能够实现物质的结构的测定,但它存在一定的局限性,然而在实际应用中,会受到很多的限制,为了更好的研究物质的结构,科学家们做了大量的工作,对X射线衍射技术进行改进升级,取得了一些最新的更成果,例如X射线衍射成像技术(X- ray diffraction imaging,XDI)、相干X射线衍射成像技术(coherent X-ray diffractive imaging,CXDI/CDI)等。 近年来,X射线衍射增强成像(X Ray Diffraction enhanced imaging,DEI)也发展迅速。射线相位衬度成像是一种新型的X射线成像技术,通过记录射线穿过物体后相位的改变对物体进行成像,可以提供比传统的X射线吸收成像更高的图像衬度以及空间分辨力。衍射增强成像方法(X Diffraction enhanced imaging,DEI)是X射线相位衬度成像方法之一,利用一块放置在物体和探测器之间的分析晶体提取物体的吸收、折射以及散射信息并进行成像。但是它跟X射线衍射成像方法不同,不是同一种技术。 2 X射线衍射基本原理

第4章 X射线衍射仪实验技术与应用.

第4章 X射线衍射仪实验技术与应用 Beijing China , 2010.09 He Chong Zhi 1. D8 X射线衍射仪系列系统与功能简介 2. 核心部件与功能 3. Bragg-Brentano 衍射几何 4. 光学系统及其参数选择对采集数据质量影响 5. 平行光束-Geobel 镜和掠射入射衍射 6. X射线透镜 7. 探测器 8. 控测、采集数据与测量条件 9. 非常态结构动态衍射分析 10. 应用X射线衍射仪衍射关心的具体问题1. D8 X射线衍射仪系列系统与功能简介 配置光学编码器的测角仪 高精度的Dovetail导轨, 模块化的 光学器件快速互换 射线防护好:0.2 Sv/h 通过欧 洲安全论证,2 套安全电路

配置各种特殊功能的附件,即 可组成具有各种功能的衍射 仪系统,如高低温及不同气氛 与压力下的结构变化的动态 分析等。 在 D8 Advance 基础上,组建 D8 X射 线衍射仪系列产品。 D8 Advance D8 DISCOVER 单晶外延膜、薄膜分析高分辨衍射分析单晶外延膜的结构特征, 用Bond法超精度地测点阵参数、点阵错 配、化学组份,用Rocking曲线测定测算 嵌镶结构、取向,作倒易空间测绘; 用 于分析薄膜的厚度、密度、表面与界面 粗糙度等。 高精度的尤拉环 高强度的织构及应力测量 D8 GADDS 系统Fast phase ID microdiffraction percent crystallinity 功能:Powders, Texture, Stress,SAXS.

特点:Fast speed,Micro-diffraction, Versatility. fast stress fast texture 2D SAXS GADDS - all applications with ONE instrument 18Kw 转靶 X射线衍射仪 X射线光源: X射线发生器最大输出功率≥18kW ;额定 电压20- 60kV; 最大额定电流450 mA;电流电压稳定度优于 ±0.01% (外电压波动10%时, X光源自旋转阳极; 光 源震动0.2 微米以下; 焦斑尺寸0.5 x 10 mm 测角仪: 扫描方式θ/2θ测角仪,测角仪垂直放置; 测角仪采用光学编码器技术;角度重现性 0.0001?, 驱动方式:步进马达驱动; 最高定位速度:1500?/min 狭缝系统:包括索拉狭缝、发散狭缝、防散射狭缝、 接受狭缝等 闪烁计数器;线性范围:≥2 x 106 cps; 背底噪声: <0.5 cps,可配备闪烁计数器、万特探测器、固体探测器、面探测器

实验一-X射线衍射技术及物相分析

一、实验目的与要求 1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤; 3.给定实验样品,设计实验方案,做出正确分析鉴定结果。 二、实验仪器 本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。 射线管 X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。此X射线管为密闭式,功率为2千瓦。X射线靶材为Cu。 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2.测角仪 测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。 (1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为毫米,成为×10平方毫米的线状X射线源。 (2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。 (3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给毫米、毫米、毫米宽的接收狭缝。 (4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS 配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。 (5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射

X射线衍射的应用

X射线衍射相分析(phase analysis of xray diffraction)利用X射线在晶体物质中的衍射效应进行物质结构分析的技术。每一种结晶物质,都有其特定的晶体结构,包括点阵类型、晶面间距等参数,用具有足够能量的x射线照射试样,试样中的物质受激发,会产生二次荧光X射线(标识X射线),晶体的晶面反射遵循布拉格定律。通过测定衍射角位置(峰位)可以进行化合物的定性分析,测定谱线的积分强度(峰强度)可以进行定量分析,而测定谱线强度随角度的变化关系可进行晶粒的大小和形状的检测。 发现衍射现象 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有 X射线衍射的产生 X射线衍射的产生 相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示: 2dsinθ=nλ 式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X 射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X 射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。 运动学衍射理论 Darwin的理论称为X射线衍射运动学理论。该理论把衍射现象作为三维Fraunhofer衍射问题来处理,认为晶体的每个体积元的散射与其它体积元的散射无关,而且散射线通过晶体时不会再被散射。虽然这样处理可以得出足够精确的衍射方向,也能得出衍射强度,但运动学理论的根本性假设并不完全合理。因为散射线在晶体内一定会被再次散射,除了与原射线相结合外,散射线之间也能相互结合。Darwin不久以后就认识到这点,并在他的理论中作出了多重散射修正。 动力学衍射理论 Ewald的理论称为动力学理论。该理论考虑到了晶体内所有波的相互作用,认为入射线与衍射线在晶体内相干地结合,而且能来回地交换能量。两种理论对细小的晶体粉末得到的强度公式相同,而对大块完整的晶体,则必须采用动力学理论才能得出正确的结果。 发展方向 X射线分析的新发展,金属X射线分析由于设备和技术的普及已逐步变成金属研究和有机材料,纳米材料测试的常规方法。而且还用于动态测量。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。 详细内容 原理

相关主题
文本预览
相关文档 最新文档