当前位置:文档之家› 基于BUCK电路的电源设计

基于BUCK电路的电源设计

基于BUCK电路的电源设计
基于BUCK电路的电源设计

现代电源技术

基于BUCK电路的电源设计

学院:

专业:

姓名:

班级:

学号:

指导教师:

日期:

目录

摘要 (3)

一、设计意义及目的 (4)

二、Buck电路基本原理和设计指标 (4)

2.1 Buck电路基本原理 (4)

2.2 Buck电路设计指标 (6)

三、参数计算及交流小信号等效模型建立 (6)

3.1 电路参数计算 (6)

3.2 交流小信号等效模型建立 (10)

四、控制器设计 (11)

五、Matlab电路仿真 (17)

5.1 开环系统仿真 (17)

5.2 闭环系统仿真 (18)

六、设计总结 (21)

摘要

Buck电路是DC-DC电路中一种重要的基本电路,具有体积小、效率高的优点。本次设计采用Buck电路作为主电路进行开关电源设计,根据伏秒平衡、安秒平衡、小扰动近似等原理,通过交流小信号模型的建立和控制器的设计,成功地设计了Buck电路开关电源,通过MATLAB/Simulink进行仿真达到了预设的参数要求,并有效地缩短了调节时间和纹波。通过此次设计,对所学课程的有效复习与巩固,并初步掌握了开关电源的设计方法,为以后的学习奠定基础。

关键词:开关电源设计 Buck电路

一、设计意义及目的

通常所用电力分为直流和交流两种,从这些电源得到的电力往往不能直接满足要求,因此需要进行电力变换。常用的电力变换分为四大类,即:交流变直流(AC-DC),直流变交流(DC-AC),直流变直流(DC-DC),交流变交流(AC-AC)。其中DC-DC电路的功能是将直流电变为另一固定电压或可调电压的直流电,包过直接直流变流电路和间接直流变流电路。直接直流变流电路又称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,主要包括六种基本斩波电路:Buck电路,Boost电路,Buck-Boost电路,Cuk电路,Sepic电路,Zeta 电路。其中最基本的一种电路就是Buck电路。

因此,本文选用Buck电路作为主电路进行电源设计,以达到熟悉开关电源基本原理,熟悉伏秒平衡、安秒平衡、小扰动近似等原理,熟练的运用开关电源直流变压器等效模型,熟悉开关电源的交流小信号模型及控制器设计原理的目的。这些知识均是《线代电源设计》课程中所学核心知识点,通过本次设计,将有效巩固课堂所学知识,并加深理解。

二、Buck电路基本原理和设计指标

2.1 Buck电路基本原理

Buck变换器也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器,主要用于电力电路的供电电源,也可拖动直流电动机或带蓄电池负载等。其基本结构如图1所示:

图1 Buck电路基本结构图

在上图所示电路中,电感L和电容C组成低通滤波器,此滤波器设计的原则

是使V

s (t)的直流分量可以通过,而抑制V

s

(t)的谐波分量通过;电容上输出电压

V(t)就是V

s (t)的直流分量再附加微小纹波V

ripple

(t)。由于电路工作频率很高,

一个开关周期内电容充放电引起的纹波V

ripple

(t)很小,相对于电容上输出的直流电压V有:。电容上电压宏观上可以看作恒定。电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小扰动近似原理。

一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡。

当开关管导通时,电感电流增加,电感储能;而当开关管关断时,电感电流减小,电感释能。假定电流增加量大于电流减小量,则一个开关周期内电感上磁链增量为:。此增量将产生一个平均感应电势:。

此电势将减小电感电流的上升速度并同时降低电感电流的下降速度,最终将导致一个周期内电感电流平均增量为零;一个开关周期内电感上磁链增量小于零的状况也一样。这种在稳态状况下一个周期内电感电流平均增量(磁链平均增量)为零的现象称为:电感伏秒平衡。

2.2 Buck电路设计指标

基于如上电路基本原理,设定如下指标:

输入电压:25v

输出电压:5v

输出功率:10W

开关频率:100KHz

电流扰动:15%

电压纹波:0.02

根据上述参数可知:R=2.5Ω

三、参数计算及交流小信号等效模型建立

3.1 电路参数计算

根据如图2所示Buck电路开关等效图可知:

图2 Buck电路的开关等效图

Buck有两种工作状态,通过对开关管导通与关断时(即开关处于1时和2时)的电路进行分析可计算出电路的电感值。其开关导通与关断时对应的等效电路图如图3、4所示:

图3 导通时等效电路

图4 关断时等效电路

开关处于1位置时,对应的等效电路为图3,此时电感电压为:

(1)根据小扰动近似得:

(2)同理,开关处于2位置时,对应的等效电路为图4,此时电感电压为:

(3)根据小扰动近似得:

(4)根据以上分析知,当开关器件位于1位置时,电感的电压值为常数,

当开关器件位于2位置时,电感的电压值为常数。故Buck电路稳态电感电压波形为下图5:

图5 Buck电路稳态电感电压波形

再根据电感上的伏秒平衡原理可得:

(5)

代入参数可得:

占空比D=0.2。

根据电感公式知:

(6)在电路导通时有:

(7)对应关断时为:

(8)

根据式7和8,结合几何知识可推导出电流的峰峰值为:

(9)其中是指扰动电流,即:

(10)通常扰动电流值是满载时输出平均电流I的10%~20%,扰动电流的值要求尽可能的小。在本次设计中选取。根据式8可以得出:

(11)代入参数可得:电感。则可选取电感值为:L=300uH。

由于电容电压的扰动来自于电感电流的扰动,不能被忽略,因此在本Buck 电路中小扰动近似原理不再适用,否则输出电压扰动值为零,无法计算出滤波电容值。而电容电压的变化与电容电流波形正半部分总电荷电量q有关,根据电量公式可以得:

(12)电容上的电量等于两个过零点间电流波形的积分(电流等于电量的变化率),在改电路中,总电量去q可以表示为:

(13)将式12代入式13中可得输出电压峰值为:

(14)再将式10代入式14中可得:

(15)

根据设计中参数设定电压纹波为2%,即,代入式15中可得:

,因此选取电容值为C=300uF。

故电路参数为:占空比D=0.2,L=300uH,C=300uF。

3.2 交流小信号等效模型建立

根据定义,分别列出电感电流和电容电压的表达式。在图3对应状态时:

(16)在图4对应状态时:

(17)利用电感与电容的相关知识可以得出:

(18)化简得:

(19)在稳态工作点(V,I)处,构造一个交流小信号模型,假设输入电压和占空比的低频平均值分别等于其稳态值、D加上一个幅值很小的交流变量

、,则可代入化简得出:

(20)根据上式建立建立交流小信号等效模型,如图6:

图6 交流小信号等效模型

四、控制器设计

根据所建立的交流小信号等效模型可知,Buck电路中含有两个独立的交流输入:控制输入变量和给定输入变量。交流输出电压变量可以表示成下面两个输入项的叠加,即

(21)

式21描述的是中的扰动如何通过传递函数传送给输出电压

。其中,控制输入传递函数和给定输入传递函数为:

(22)

已知输入输出传递函数和控制输入输出传递函数的标准型如下:

(23)

(24)将式23和24进行比较可得:

(25)将3.1中计算所得参数D=0.2,C=300uF,L=300uH代入式25可得:

依据小信号等效模型的方法,建立可以buck变换器闭环控制系统的小信号等效模型如图7所示。

图7 闭环控制系统的小信号等效模型

其中,指的是环增益,代表反馈增益,

代表与其比较的三角波的峰值,代表控制器增益,代表buck电路控制输入输出传递函数。

代入到T(s)的公式中可得:

(26)根据参数设定电压为5V,选出H(s)=1,令,,则未经过补偿的环增益为,对应bode图如图8所示,式26可改写为:

(27)其中,直流增益为:

(28)

图8 未补偿环增益的幅角特性

未补偿环增益的穿越频率大约在770Hz处,其相角裕度为。下面设

计一个补偿器,使得穿越频率为,相角裕度为。从图8中可以看出,未补偿环增益在5kH处的幅值为-30.93dB。为使5kHz处环增益等于1,补偿器在5kHz处的增益应该为30.93dB,除此之外,补偿器还应提高相角裕度。由于未补偿环增益在5kHz处的相角在附近,因此,需要一个PD超前补偿器来校正。将,代入下式(2-38)中,可计算出补偿器的零点频率和极点频率为:

(29)为了使补偿器在5kHz处的增益为,低频段补偿器的增益一定为:

(30)因此,PD补偿器的形式为式31,对应bode图为图9:

(31)

图9 PD补偿器传递函数幅角特性

此时,带PD补偿控制器的环增益变为:

(32)补偿后的环增益图如图10,可以看出穿越频率为5khz,其所对应的相角裕度为。因此,系统中的扰动变量在相角裕度的作用下,对系统没有影响或者说影响很小。还可以得出,环增益的直流幅值为。

图10 补偿后的环增益幅角特性将补偿前后的bode图对比如图11:

图11 补偿前后对比图

五、Matlab电路仿真

5.1 开环系统仿真

根据参数设定:L=300uH,C=300uF,D=0.2,R=2.5Ω,开关频率f=100kHz。

开环仿真电路图如图12:

图12 开环仿真电路图

仿真结果如图13所示,输出电压为5V,电压纹波为0.018。

图14 开环输出波形

对应的纹波如图15所示:

图15 开环纹波波形5.2 闭环系统仿真

闭环仿真电路图如图16:

图16 闭环仿真电路图

仿真结果如图17所示,输出电压为5V,纹波为0.016。

图17 闭环输出波形

对应的纹波如图18所示:

图18 闭环纹波波形

通过对比可知,闭环系统的调节时间得到明显的减小,纹波有一定的改善,超调量基本没有变化。

闭环的PWM波形如图19所示:

BUCK变换器设计

BUCK变换器设计报告 一、BUCK变换器原理 降压变换器(Buck Converter)就是将直流输入电压变换成相对低的平均直流输出电压。它的特点是输出电压比输入的电压低,但输出电流比输入电流高。它主要用于直流稳压电源。 二、BUCK主电路参数计算及器件选择 1、BUCK变换器的设计方法 利用MATLAB和PSPICE对设计电路进行设计,根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真,再选取合适的闭环控制器进行闭环控制系统的设计,比较开环闭环仿真模型的超调量、调节时间等,选取

性能优良的模型进行电路搭建。 2、主电路的设计指标 输入电压:标称直流48V,范围43~53V 输出电压:直流24V,5A 输出电压纹波:100mV 电流纹波:0.25A 开关频率:250kHz 相位裕量:60° 幅值裕量:10dB 3、BUCK主电路 主电路的相关参数: 1=4×10-6s 开关周期:T S= s f 占空比:当输入电压为43V时,D max=0.55814 当输入电压为53V时,D min=0.45283

输出电压:V O =24V 输出电流I O =5A 纹波电流:Δi L =0.25A 纹波电压:ΔV L =100mV 电感量计算:由Δi L = 2L v -V o max -in DT S 得: L=L o max -in i 2v -V ΔD min T S=25 .022453?-×0.4528×4×10-6=1.05×10-4H 电容量计算:由ΔV L =C i L 8ΔT S 得: C=L L V 8i ΔΔT S =1 .0825.0?×4×10-6=1.25×10-6F 而实际中,考虑到能量存储以及输入和负载变化的影响,C 的取值一般要大于该计算值,故取值为120μF 。 实际中,电解电容一般都具有等效串联电阻,因此在选择的过程中要注意此电阻的大小对系统性能的影响。通常钽电容的ESR 在100毫欧姆以下,而铝电解电容则高于这个数值,有些种类电容的ESR 甚至高达数欧。ESR 的高低与电容的容量、电压、频率和温度等多因素有关,一般对于等效串联电阻过大的电容,我们可以采用电容并联的方法减小此串联电阻。此处取R ESR =50m Ω。 4、主电路的开环传递函数 in ESR ESR V sC R R sL sC R R s d )1//() 1 //()(s V s G O vd +++==)()( ) (s )1(C 1)1(s G 2 vd C R R L R R L s V C sR ESR ESR in ESR +++++= )(

buck变换电路设计

南京工程学院 自动化学院 电力电子技术课程设计报告 题目: Buck变换电路的设计 专业:自动化 班级:自动化 124 学号: 8 姓名:陈猛 指导教师:赵涛 起迄日期:—— 设计地点:工程中心4-207

目录 1 引言 2 设计任务及要求 设计任务 设计内容 3 设计方案选择及论证 控制芯片的选择 驱动芯片的选择 4 总体电路设计 5 功能电路设计 主电路的设计 驱动电路的设计 控制电路的设计 辅助电源的设计 6 电路仿真与调试 7 设计总结 8 参考文献 BUCK变换电路设计 1 引言 本次电力电子装置设计与制作,利用Buck降压斩波电路,使用

TL494作为控制芯片输出脉冲信号从而控制MOS管的开通与关断。为了将MOS管G极和S极隔离,本设计采用了集成的驱动芯片。另外本设计还加入了反馈环节,利用芯片自身的基准电压与反馈信号进行比较来调节输出脉冲的占空比,进而调整主电路的输出电压维持在一个稳定的电压状态。根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路。 2 设计任务及要求 设计任务: 设计一降压斩波电路,采用BUCK电路。输入直流电源:DC18~30V,输出电压为输入电压50%~100%可调:输出额定电流2A,电流峰峰值不大于,输出电压纹波不大与5%。 设计内容: 1)主电路的设计,器件的选型,电感和输出电容的选择; 2)驱动电路、检测电路和保护电路设计; 3)辅助电源设计,要求提供 DC15V 驱动电源和 5V 控制电源; 4)控制电路的设计,不同频率、不同脉宽 PWM 波的实现。 5)制作驱动和主电路; 6)利用提供的控制信号,完成 BUCK 电路的驱动和主电路和调试。 3 设计方案选择及论证 控制芯片的选择 方案一:采用SG3525芯片。它是一款专用的PWM控制集成电路芯片,它采

BUCK变换器设计毕业设计

课程名称:电力电子技术 题目:BUCK变换器设计

9

目录 第一章概述 (5) 1.1 本课题在国内外的发展现状与趋势 (5) 第二章Buck变换器设计总思路 (6) 2.1 电路的总设计思路 (6) 2.2 电路设计总框图 (6) 2.3 总电路图 (7) 第三章BUCK主电路设计 (8) 3.1 Buck变换器主电路基本工作原理 (8) 3.2 主电路保护(过电压保护) (9) 3.3 Buck变换器工作模态分析 (10) 3.4 Buck变换器元件参数 (12) 3.4.1 占空比D (12) 3.4.2 滤波电容C f (13) 3.5 Buck变换器仿真电路及结果 (14) 第四章控制和驱动电路模块 (15) 4.1 SG3525A脉宽调制器控制电路 (15) 4.1.1.SG3525简介 (15) 4.1.2.SG3525内部结构和工作特性 (15) 4.2 SG3525构成的控制电路单元电路图 (18) 4.3 驱动电路设计 (18) 第五章课程设计总结 (19)

第六章附录 (20) 第七章参考文献 (21) 第一章概述 1.1 本课题在国内外的发展现状与趋势 从八十年代末起,工程师们为了缩小DC/DC变换器的体积,提高功率密度,首先从大幅度提高开关电源的工作频率做起,但这种努力结果是大幅度缩小了体积,却降低了效率。发热增多,体积缩小,难过高温关。因为当时MOSFET的开关速度还不够快,大幅提高频率使MOSFET的开关损耗驱动损耗大幅度增加。工程师们开始研究各种避开开关损耗的软开关技术。虽然技术模式百花齐放,然而从工程实用角度仅有两项是开发成功且一直延续到现在。一项是VICOR公司的有源箝位ZVS软开关技术;另一项就是九十年代初诞生的全桥移相ZVS软开关技术。 有源箝位技术历经三代,且都申报了专利。第一代系美国VICOR公司的有源箝位ZVS技术,其专利已经于2002年2月到期。VICOR公司利用该技术,配合磁元件,将DC/DC的工作频率提高到1MHZ,功率密度接近200W/in3,然而其转换效率却始终没有超过90%,主要原因在于MOSFET的损耗不仅有开关损耗,还有导通损耗和驱动损耗。特别是驱动损耗随工作频率的上升也大幅度增加,而且因1MHZ频率之下不易采用同步整流技术,其效率是无法再提高的。因此,其转换效率始终没有突破90%大关。 为了降低第一代有源箝位技术的成本,IPD公司申报了第二代有源箝位技术专利。它采用P沟MOSFET在变压器二次侧用于 forward电路拓朴的有源箝位。这使产品成本减低很多。但这种方法形成的MOSFET的零电压开关(ZVS)边界条件较窄,在全工作条件范围内

(最新整理)BUCK电路方案设计

(完整)BUCK电路方案设计 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)BUCK电路方案设计)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)BUCK电路方案设计的全部内容。

项目2 项目名称基于PWM控制 Buck变换器设计 一、目的 1.熟悉Buck变换电路工作原理,探究PID闭环调压系统设计方法。 2.熟悉专用PWM控制芯片工作原理, 3.探究由运放构成的PID闭环控制电路调节规律,并分析系统稳定性。 二、内容 设计基于PWM控制的Buck变换器,指标参数如下: ?输入电压:9V~12V; ?输出电压:5V,纹波<1%; ?输出功率:10W ?开关频率:40kHz ?具有过流、短路保护和过压保护功能,并设计报警电路。 ?具有软启动功能。 ?进行Buck变换电路的设计、仿真(选择项)与电路调试。 三、实验仪器设备 1. 示波器 2。稳压电源 3。电烙铁 4. PC817隔离 5. 计算机 6。 PWM控制芯片SG3525 7。 IRF540_MOSFET 8。 MUR1560快恢复整流二极管 9。 74HC74N_D触发器 10。 LM358放大器 11。万用表 12. 电容、电感、电阻

四、研究内容 (一)方案设计 基于PWM控制的Buck变换器主要由五部分构成,功率主电路、PWM发生电路、MOSFET 驱动电路、隔离电路和保护电路组成。Buck变换器的基本控制思路框图如图1。1所示,总体电路图如图1.2所示。 图1.1 Buck变换器控制框图 图1.2 总体电路图 1、功率主电路

Buck变换器实现及调速系统设计与实践

《运动控制系统》 课程设计报告 设计题目:Buck变换器实现及调速系统设计与实践班级: 姓名: 学号: 指导教师: 设计时间:

目录 摘要 第一章...........................................................概述 . (2) 第二章设计任务及要求 (3) 2.1 实验目的 (3) 2.2 实验内容 (3) 2.3 设计要求 (4) 2.4实验(设计)仪器设备和材料清单 (4) 2.5 课程设计基本要求 (4) 第三章BUCK变换器的工作原理和各种模型 (4) 3.1 Buck变换器介绍 (4) 3.2 Buck变换器电路拓扑 (5) 3.3 PWM控制的基本原理 (6) 第四章MATLAB仿真模型的建立 (7) 4.1 MATLAB仿真软件介绍 (7) 4.2 BUCK电路模型的搭建 (7) 4.3 Buck变换器在电机拖动控制系统中的设计与仿真 (10) 4.3.1直流电机的数学模型 (10) 4.3.1系统在开环情况下的仿真 (12) 4.3.1系统在闭环情况下的仿真 (12) 第五章总结与体会 (15) 参考文献 (15)

摘要:变压调速是直流调速系统的主要方法,调节电枢供电电压从而改变电机的转速。即需要有一个可控直流源,常用的为直流斩波或者脉宽调制器,其通过电力电子开关控制及电容、电感的充放电及二极管的续流组成直流斩波电路(DC),实现输出电压可控,即升压(BOOST)、降压(BUCK)。本实验主要针对降压斩波电路(BUCK)进行实验分析。实验采用MATLAB作为仿真软件,利用PWM波驱动降压斩波电路为直流电动机提供驱动电压,并通过调节PWM波的占空比来调节电动机的启动电压使达到调节电动机转速的电路设计。 关键词:S-Function;PWM调制;Buck变换器;闭环控制;直流电动机 第一章概述 直流变换技术(亦称直流斩波技术,DC-DC),作为电力电子技术领域非常活跃的一个分支,在近几年里,得到了充分的发展。随着电动牵引技术的发展,特别是电子信息类产品的大量涌现,直流变换技术已经广泛应用于生产,生活的各个领域。由于其有良好的可操作性,被大量应用到电机的调速系统中,很好的解决了电动机调速的不可控性。 BUCK电路作为一种最基本的DC-DC变换电路,由于其简单、实用性在各种电源产品中均得到广泛的应用。其电路主要器件有电力电子开关(IGBT或MOSFET)、电感、电容、续流二极管。通过对开关的调节控制电压,其一般采用软开关控制方法,即采用脉宽调制技术(PWM),通过改变占空比来调节输出电压的大小。其与直流调速系统组成的脉宽调制变换器—直流电机调速系统,简称直流脉宽调速系统,即PWM直流调速系统。存在:1)主电路简单、功率器件少;2)开关频率高、电流容易连续、谐波小;3)低速性能好、稳态精度高;4)低速性能好,稳态精度高,动态抗干扰能力强等优点。 使用MATLAB等仿真分析,再做实物研究,已经逐渐成为电力电子技术研究的主要方法。 本次课程设计使用MATLAB友好的工作平台和编辑环境进行模型编辑工作,运用它的s函数编辑一个简单的脉冲发生器,要求它的占空可调;运用数学处理功能来处理仿真时的实时数据,利用传递函数构造直流电机转速的数学模型,运用它广泛的模块集合工具箱里的Simulink进行电路模型搭建和系统仿真,控制电路的占空比从而控制输出电压的大小,进而调节电机的转速,同时采用负反馈的控制方式,调节转速在一个恒定值。

基于BUCK变换电路的恒流源设计

一.设计要求 1.输入电压直流200V。 2.阻性负载,负载电阻在5~20Ω范围内变化。 3.输出电流恒定于5A。 4.纹波电流(纹波电压)低于1%。 5.控制电路可用数字电路(单片机为核心),也可用模拟电路(PWM 发生芯片为核心,如SG3525) 二、基于buck变换电路的稳压电源: 1.关于buck变换器 目前高频高效的buck变换器的应用越来越广泛。通常系统在满输出负载时,系统工作于ccm即连续电流模式。但是,当系统的输出负载从满载到轻载然后到空载变化的过程中,系统的工作模式也会发生相应的变化。对buck电路拓扑解释如下: ?T是全控元件(GTR,GTO,MOSFET,IGBT),当时,T导通。 ?D:续流二极管。 ?L和C组成LPF。

(1) 其工作原理如下: 当 时,控制信号使得T 导通,D 截止,向L 充磁,向C 充电; 当 时,T 截止,D 续流,U0靠C 放电和L 中电流下降维持。 (2) 主要波形为: [0,]t DT ∈[,]t DT T ∈

(3) 假设及参数计算 T ,D 均为理想器件,L 较大,使得在一个周期内电流连续且无内阻,直流输出电压U0为恒定,整个电路无功耗,电路已达稳态。 当晶体管T 导通工作模式: (0≤t ≤t1=KT ) 二极管D 导通工作模式:(t1≤t ≤T ) 0L L d di u u u L dt =-=21011 d I I I U U L L t t -?-==01 ()d U U t I L -?=21 I I I ?=-021 I U L t t ?=-021() U t t I L -?=

BUCK变换器设计

B U C K变换器设计报告 一、BUCK变换器原理 降压变换器(Buck Converter)就是将直流输入电压变换成相对低的平均直流输出电压。它的特点是输出电压比输入的电压低,但输出电流比输入电流高。它主要用于直流稳压电源。 二、BUCK主电路参数计算及器件选择 1、BUCK变换器的设计方法 利用MATLAB和PSPICE对设计电路进行设计,根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真,再选取合适的闭环控制器进行闭环控制系统的设计,比较开环闭环仿真模型的超调量、调节时间等,选取性能优良的模型进行电路搭建。 2、主电路的设计指标 输入电压:标称直流48V,范围43~53V 输出电压:直流24V,5A 输出电压纹波:100mV 电流纹波: 开关频率:250kHz 相位裕量:60°

幅值裕量:10dB 3、BUCK主电路 主电路的相关参数: 开关周期:T S= s f 1=4×10-6s 占空比:当输入电压为43V时,D max= 当输入电压为53V时,D min=输出电压:V O=24V 输出电流I O=5A 纹波电流:Δi L= 纹波电压:ΔV L=100mV 电感量计算:由Δi L= 2L v- V o max - in DT S得: L= L o max - in i 2v- V ΔD min T S= 25 .0 2 24 53 ? -××4×10-6=×10-4H

电容量计算:由ΔV L =C i L 8ΔT S 得: C=L L V 8i ΔΔT S =1 .0825.0 ×4×10-6=×10-6F 而实际中,考虑到能量存储以及输入和负载变化的影响,C 的取值一般要大于该计算值,故取值为120μF 。 实际中,电解电容一般都具有等效串联电阻,因此在选择的过程中要注意此电阻的大小对系统性能的影响。通常钽电容的ESR 在100毫欧姆以下,而铝电解电容则高于这个数值,有些种类电容的ESR 甚至高达数欧。ESR 的高低与电容的容量、电压、频率和温度等多因素有关,一般对于等效串联电阻过大的电容,我们可以采用电容并联的方法减小此串联电阻。此处取R ESR =50m Ω。 4、主电路的开环传递函数 取R ESR =50m Ω,R=Ω,C=120μF ,L=105μH ,V in =48V , 可得传递函数为: 在MATLAB 中根据开环传递函数画出Bode 图: >> clear >> num0=[,48]; >> den1=[,,1]; >> bode(num0,den1) >> [kg,gm,wkg,wgm]=margin(num0,den1)

(完整word版)Buck变换器的设计与仿真.

S a b e r 仿真作业 Buck 变换器的设计与仿真 目录 1 Buck变换器技 术 .......................................................................................................................... - 2 - 1.1 Buck变换器基本工作原理 ................................................................................................. - 2 - 1.2 Buck变换器工作模态分 析 ................................................................................................. - 2 - 1.3 Buck变化器外特 性 ............................................................................................................ - 3 - 2 Buck变换器参数设 计 ................................................................................................................... - 5 - 2.1 Buck 变换器性能指标 . ........................................................................................................ - 5 - 2.2 Buck变换器主电路设 计 ..................................................................................................... - 5 - 2.2.1 占空比 D . ................................................................................................................. - 5 - 2.2.2 滤波电感 Lf.............................................................................................................. - 5 - 2.2.3 滤波电容 Cf ............................................................................................................. - 6 - 2.2.4 开关管 Q 的选取 ...................................................................................................... - 7 - 2.2.5 续流二极管 D 的选 取 .............................................................................................. - 7 - 3 Buck变换器开环仿 真 ................................................................................................................... - 7 - 3.1 Buck 变换器仿真参数及指标 . ............................................................................................. - 7 -

基于saber的buck降压电路的设计

前言 在实际电力电子装置中,工程人员往往凭经验通过不断更换元器件或改变结构使装置满足一定的动态和静态特性,而通过计算机仿真能方便地完成这种改变,从而缩短产品开发周期,减小研究开发成本。另外,在电力电子课程教学中,单纯地讲解开关元器件和各种变换电路理论,显得枯燥而缺乏生动,计算机辅助分析和设计在电力电子课程教学中显示出了它的强大的优势,通过电路仿真使得课堂教学概念讲解直观化,理论结果可视化。 Saber仿真软件是美国Analogy公司开发的功能强大的电力电子系统仿真软件之一,可用于电子、电力电子、机电一体化、机械、水力、控制等领域的系统设计和仿真。它具有很大的通用模型库和较为精确的具体型号的器件模型,其元件模型库中有4 700多种具体型号的器件模型,500多种通用模型。针对电力电子应用,Saber提供了电源设计的环境— PowerExpress,它支持行为级和元件级的设计。Saber的MAST语言是一种硬件描述语言,运用该语言可以方便地建立用户自身的元件或电路模型,其程序兼容Spice仿真程序。专门为Saber仿真器而设计的SaberSketch提供了友好的用户图形界面,使得仿真非常直观,让使用者易学易用。掌握Saber仿真软件对于研究开发电力电子装置及其控制系统,以及电力电子教学都具有重要的意义。

目录 前言 (1) 目录 (2) 1. 基本的Buck 型变换器(开环) (3) 1.1 Buck 变换器基本电路形式 (3) 1.2 各器件参数和指标之间关系的定性分析 (4) 1.3 实验仿真及分析 (4) 2 闭环控制的构成与性能分析 (6) 2.1 差分放大电路 (6) 2.2 功率放大器(PI)模块 (7) 2.3 PWM 块 (8) 3 主电路 (9) 3. 1 主电路参数讨论 (9) 3.1.1 电容对输出电压波形的响 (10) 3.1.2 电感对输出电压波形的影响 (11) 4 结语 (12) 参考文献 (13)

题目:Buck电路的设计与仿真

题目:Buck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 解:(1)工作频率为10kHz 时, A.主开关管可使用MOSFET ,开关频率为10kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.310000 1210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>c L 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4105.4-?; D.根据纹波的要求和如下公式计算电容值 =?-=2008)1(s c T U L D U C 2410000 15005.0105.48)25.01(5?????-?-=F 41017.4-? (2)工作频率为50kHz 时, A.主开关管可使用MOSFET ,开关频率为50kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.050000 1210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>Lc 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4109.0-?; D.根据纹波的要求和如下公式计算电容值 =?-=2008)1(s c T U L D U C 2450000 15005.0109.08)25.01(5?????-?-=F 410833.0-? 分析: 在其他条件不变的情况下,若开关频率提高n 倍,则电感值减小为1/n ,电容值也减小到1/n 。从上面推导中也得出这个结论。 2、Buck 电路仿真: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (一)开关频率为10Hz 时; (1)使用理论计算的占空比,记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 由第一步理论计算得占空比Dc=25%; 实验仿真模型如下所示(稳态直流电压值为4.299V ):

buck电路设计

Buck变换器设计——作业 一.Buck主电路设计 1.占空比D计算 2.电感L计算 3.电容C计算 4.开关元件Q的选取 二. Buck变换器开环分析 三. Buck闭环控制设计 1.闭环控制原理 2.补偿环节Gc(s)的设计——K因子法 3.PSIM仿真 4. 补偿环节Gc(s)的修正——应用sisotool 5.修正后的PSIM仿真 四.标称值电路PSIM仿真 五.设计体会 Buck变换器性能指标: 输入电压:标准直流电压48V,变化范围:43V~53V

输出电压:直流电压24V ,5A 输出电压纹波:100mv 电流纹波:0.25A 开关频率:fs=250kHz 相位裕度:60 幅值裕度:10dB 一. Buck 主电路设计: 1.占空比D 计算 根据Buck 变换器输入输出电压之间的关系求出占空比D 的变化范围。 .50V 48V 24U U D .4530V 53V 24U U D 0.558 V 43V 24U U D innom o nom max in o min min in o max ========= 2.电感L 计算 uH 105f i 2)D U -(U i 2)T U -(U L s L min o inmax L on(min) o inmax =?=?= 3.电容C 计算 uF 25.1250000 *1.0*825 .0vf 8i C s L ==??= 电容耐压值:由于最大输出电压为24.1V ,则电容耐压值应大于24.1V 。 考虑到能量储存以及伏在变化的影响,要留有一定的裕度,故电容选取120uf/50V 电容。 4.开关元件Q 的选取

BUCK变换器设计

B U C K变换器设计 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

BUCK变换器设计报告 一、BUCK变换器原理 降压变换器(Buck Converter)就是将直流输入电压变换成相对低的平均直流输出电压。它的特点是输出电压比输入的电压低,但输出电流比输入电流高。它主要用于直流稳压电源。 二、BUCK主电路参数计算及器件选择 1、BUCK变换器的设计方法 利用MATLAB和PSPICE对设计电路进行设计,根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真,再选取合适的闭环控制器进行闭环控制系统的设计,比较开环闭环仿真模型的超调量、调节时间等,选取性能优良的模型进行电路搭建。 2、主电路的设计指标 输入电压:标称直流48V,范围43~53V 输出电压:直流24V,5A 输出电压纹波:100mV 电流纹波: 开关频率:250kHz 相位裕量:60° 幅值裕量:10dB

3、BUCK 主电路 主电路的相关参数: 开关周期:T S =s f 1 =4×10-6s 占空比:当输入电压为43V 时,D max = 当输入电压为53V 时,D min = 输出电压:V O =24V 输出电流I O =5A 纹波电流:Δi L = 纹波电压:ΔV L =100mV 电感量计算:由Δi L =2L v -V o max -in DT S 得: L=L o max -in i 2v -V ΔD min T S=25 .022453?-××4×10-6=×10-4H 电容量计算:由ΔV L =C i L 8ΔT S 得: C=L L V 8i ΔΔT S =1.0825 .0? ×4×10-6=×10-6 F 而实际中,考虑到能量存储以及输入和负载变化的影响, C 的取值一般要大于该计算值,故取值为120μF 。

BUCK型DC-DC变换器电路设计.

辽宁工业大学 电力电子技术课程设计(论文)题目: BUCK型DC-DC变换器电路设计 院(系):电气工程学院 专业班级:自131班 学号: 130302011 学生姓名:李君奥 指导教师:(签字) 起止时间:2016..1.04-2016.01.15

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化Array 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。BUCK降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。 直流斩波电路由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。在Matlab仿真实验中,当输入电压为600VDC时,输出电压为220VDC,输出额定电流为2.5A,当输入电压在小范围变化时,电压调整率≤5%,变换器在满载时效率≥90%。 关键词:直流;降压斩波;电力电子;变换电路;

Buck-Boost变换器的设计与仿真设计

1 概述 直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。本文将对Buck/Boost升降压斩波电路进行详细的分析。

R VD R VD R VD 2 主电路拓扑和控制方式 2.1 Buck/Boost 主电路的构成 Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。开关管也采用PWM 控制方式。Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。因此为了分析方便,现假设电感足够大,则在一个周期电流连续。 图2-1 Buck/Boost 主电路结构图 电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。 (a )V 导通 (b )V 关断,VD 续流 图2-2 Buck/Boost 不同模态等效电路

buck变换器设计报告

BUCK变换器设计报告 ——电力电子装置及应用课程设计1 设计指标及要求 1.1设计指标 ?输入电压标称直流48V 范围:43V~53V ?输出电压:直流24V ?输出电流:直流5A ?输出电压纹波:100mV ?电流纹波:0.25A ?开关频率:250kHz

?相位裕量:60° ?幅值裕量:10dB 1.2 设计要求 ?计算主回路的电感和电容值 ?开关器件选用MOSFET, 计算其电压和电流定额 ?设计控制器结构和参数 ?画出整个电路, 给出仿真结果 2 BUCK主电路各参数计算 图1 利用matlab搭建的BUCK主电路 Mosfet2在0.01s时导通,使得负载电阻由9.6Ω变为4.8Ω,也就是说负载由半载到满载,稳态时负载电流上升一倍,负载电压不变,这两种状态的转换的过程的表征系统的性能指标。 2.1 电感值计算 当V in=43V时,V o=24V,D=0.558 , 求得L=85μH 当V in=48V时,V o=24V,D=0.5 , 求得L=96μH 当V in=53V时,V o=24V,D=0.453,求得L=105μH 所以,取L=105μH 2.2 电容值的计算 代入,得C=1.25μF,由于考虑实际中能量存储以及输入和负载变化,一般取C大于该值,取C=120μF

2.3 开关器件电压电流计算 V sw=V in?max=53V 2.4 开传递函数的确定 G vd(s)= 1+sR esr C 1+s2L(1+ R esr R)C+s( L R+R esr C) V in G vd(s)=V in(s) d(s) = V in(1+ s ωZ) 1+ s2 ω02 +s/(Qω0) 其中 R esr=50mΩ ωz= 1 R esr C = 1 0.05×120/106 rad/s=166667 rad/s ω0= 1 √LC(1+R esr R)= 1 √ 105 106× 120 106(1+ 0.05 4.8) =8863 rad/s Q= √LC L R+R esr C = √120×105×10?6 105×10?6/4.8+0.05×120×10?6 =4.018 故开环传递函数为 G vd(s)= 48(1+ s 166667) s2 88632+ s 35612+1 3 系统开环性能 3.1 开环传递函数的阶跃响应 由MATLAB可以作出系统的开环函数的单位阶跃响应,如下图所示 由图可知,系统振荡时间较长,在5ms之后才可以达到稳定值,超调量为66.6 7%,需要增加校正装置进行校正。

基于BUCK电路的电源设计

现代电源技术 基于BUCK电路的电源设计

学院:专业:姓名:班级:学号:指导教师:日期:

目录 摘要 (4) 一、设计意义及目的 (5) 二、Buck电路基本原理和设计指标 (5) 2.1 Buck电路基本原理 (5) 2.2 Buck电路设计指标 (7) 三、参数计算及交流小信号等效模型建立 (7) 3.1 电路参数计算 (7) 3.2 交流小信号等效模型建立 (11) 四、控制器设计 (12) 五、Matlab电路仿真 (18) 5.1 开环系统仿真 (18) 5.2 闭环系统仿真 (19) 六、设计总结 (22)

摘要 Buck电路是DC-DC电路中一种重要的基本电路,具有体积小、效率高的优点。本次设计采用Buck电路作为主电路进行开关电源设计,根据伏秒平衡、安秒平衡、小扰动近似等原理,通过交流小信号模型的建立和控制器的设计,成功地设计了Buck电路开关电源,通过MATLAB/Simulink进行仿真达到了预设的参数要求,并有效地缩短了调节时间和纹波。通过此次设计,对所学课程的有效复习与巩固,并初步掌握了开关电源的设计方法,为以后的学习奠定基础。 关键词:开关电源设计 Buck电路

一、设计意义及目的 通常所用电力分为直流和交流两种,从这些电源得到的电力往往不能直接满足要求,因此需要进行电力变换。常用的电力变换分为四大类,即:交流变直流(AC-DC),直流变交流(DC-AC),直流变直流(DC-DC),交流变交流(AC-AC)。其中DC-DC电路的功能是将直流电变为另一固定电压或可调电压的直流电,包过直接直流变流电路和间接直流变流电路。直接直流变流电路又称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,主要包括六种基本斩波电路:Buck电路,Boost电路,Buck-Boost电路,Cuk电路,Sepic电路,Zeta 电路。其中最基本的一种电路就是Buck电路。 因此,本文选用Buck电路作为主电路进行电源设计,以达到熟悉开关电源基本原理,熟悉伏秒平衡、安秒平衡、小扰动近似等原理,熟练的运用开关电源直流变压器等效模型,熟悉开关电源的交流小信号模型及控制器设计原理的目的。这些知识均是《线代电源设计》课程中所学核心知识点,通过本次设计,将有效巩固课堂所学知识,并加深理解。 二、Buck电路基本原理和设计指标 2.1 Buck电路基本原理 Buck变换器也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器,主要用于电力电路的供电电源,也可拖动直流电动机或带蓄电池负载等。其基本结构如图1所示:

30W buck电路的设计

电力电子应用课程设计课题:30W buck电路的设计 班级学号 姓名 专业电气工程及其自动化 系别电子与电气工程学院 指导教师陈万 淮阴工学院电气工程系 2015年5月

30W buck 电路的设计 L D C R V L i i u o u + - +- O t g u O t L i max L i min L i T on t 图1 buck 主电路及电感电流波形 一、设计目的: 图1示出了buck 主电路和电路中关键波形,通过本课题的分析设计,可以加深学生对buck 变换电路的理解,让学生学会分析buck 电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试;能够加强学生对脉宽调制(PWM )非隔离电力电子变流电路的理解以及该电路中MOSFET 的驱动电路的设计和调试。 输入:36~75Vdc ,输出:15Vdc/2A

二、设计任务: 1、分析buck电路工作原理,深入分析功率电路中各点的电压波形和各支路的电流波形; 2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级,并给出所选器件的型号,设计变换器输出滤波电感及滤波电容。 3、给出控制电路的设计方案,能够输出一频率和占空比可调的源。 4、应用protel软件作出线路图,建立硬件电路并调试。 三、研究和设计buck电路的意义 通过本课题的分析设计,可以加深学生对buck变换电路的理解,让学生学会分析buck电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试;能够加强学生对脉宽调制(PWM)非隔离电力电子变流电路的理解以及该电路中MOSFET的驱动电路的设计和调试。 四、工作原理 Buck变换器是一种输出电压等于或小于输入电压的单管非隔离直流变换器。开关管、二极管、输出滤波电容和输出滤波电感构

BUCK变换器的研究与设计

摘要 当今消费市场中,便携式电子产品所占比重较大,这种产品要求电池体积小、重量轻、使用时间长。高效、低压开关DC-DC转换器,通过提高电源转换效率及改进控制技术,达到了所需要求,因此被广泛应用于电子产品中。 直流—直流交变器(DC-DC Converter)的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。直接直流变流电路为称斩波电路,他的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接电变为另一直流电。这种情况下输入与输出之间不隔离。间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称直-交-直电路。 本次课程设计主要采用直接直流变流电路,由直流稳压电路、BUCK斩波电路以及控制电路三个部分完成BUCK变换器的研究与设计。

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:BUCK变换器的研究与设计 初始条件: 输入电压:20~30V,输出电压:0-15V,输出负载电流:0.1~1A,工作频率:30KHz,采用降压斩波主电路。 要求完成的主要任务: 1. 直流供电电源设计。 2. 降压斩波主电路设计(包括电路结构形式,全控型器件的选择)并讨论主电 路的工作原理。 3.脉宽调制电路(如SG3525集成PWM控制器)及驱动电路设计。 4. 分析PWM控制原理及波形。 5.提供电路图纸至少一张。 课程设计说明书应严格按统一格式打印,资料齐全,坚决杜绝抄袭,雷同现象。 应画出单元电路图和整体电路原理图,给出系统参数计算过程,图纸、元器件符号及文字符号符合国家标准。 时间安排: 2011.1.14~2011.1.15 收集资料,确定设计方案 2011.1.16~2011.1.17 系统设计 2011.1.18~2011.1.19 撰写课程设计论文及答辩 指导教师签名: 年月日

BUCK变换器设计

BUCK变换器设计 1设计目的及解决方案 1.1问题的提出 此次设计的目的是针对给定的特定题目要求,设计一个BUCK 变换器DC/DC变换器,使其实现输入电压为DC 28V±10%时,输出电压为DC 12V,输出电流为2A,电压纹波为1%。 1.2设计方案 此次设计主要是针对BUCK变换器的主电路进行设计,所选择的全控型器件为P-MOSFET。查阅相关资料,可以使用以脉宽调制器SG3525芯片为主的控制电路来产生PWM控制信号,从而来控制P-MOSFET的通断。然后通过设计以IR2110为主芯片的驱动电路对P-MOSFET进行驱动,电路需要使用两个输出电压恒定为15V的电源来驱动两个芯片工作。 图1.1 总电路原理框图

同时采用电压闭环,将输出电压进行分压处理后将其反馈给控制端,由输出电压与载波信号比较产生PWM信号,达到负反馈稳定控制的目的,得到电路的原理框图1.1所示。 2.电路基本结构及降压原理 2.1电路基本结构 下图1.2所示为BUCK型DC/DC变换器的基本结构,此电路主要由虚线框内的全控性开关管T和续流二极管D以及输出滤波电路LC构成。对开关管T进行周期性的通、断控制,便能将直流电源的输入电压Vs变换成为电压V o输出给负载。 图2.1 Buck变换器的电路结构 2.2电路降压原理 在一个开关周期T s期间对开关管T施加如图1.1(b)所示的驱动信号V G,在T on期间,V G>0,开关管T处于通态,若忽略其饱和压降,输出电压Uo等于输入电压;在Toff期间,V G=0,开关管T 处于断态,若忽略开关管的漏电流,输出电压为0。开关管T导通时

相关主题
文本预览
相关文档 最新文档