当前位置:文档之家› 中值定理

中值定理

中值定理
中值定理

.中值定理

————————————————————————————————作者:————————————————————————————————日期:

第一节 中值定理

教学目的:理解并会用罗尔定理、拉格朗日定理,了解柯西中值定理。

教学重点:罗尔定理、拉格朗日定理的应用。

教学过程:

一、罗尔定理

定理1:若函数f(x) 满足:(i )f(x) 在 [a,b] 上连续;(ii )f(x) 在(a,b )可导,(iii )

f(a) =f(b), 则在(a,b )内至少存在一点,使得f '(ξ)=0.

证明:由(i )知f(x)在[a,b]上连续,故f(x)在上必能得最大值M 和最小值m ,此时,

又有二种情况:

(1) M=m ,即f(x)在[a,b]上得最大值和最小值相等,从而知,此时f(x)为常数:f(x)

=M=m ,∴)('x f =0,因此,可知ξ为(a,b )内任一点,都有f '(ξ)=0。

(2) M>m,此时M 和m 之中,必有一个不等于f(a)或f(b),不妨设M ≠f(a)(对m ≠f(a)

同理证明),这时必然在(a,b )内存在一点ξ,使得f(ξ)=M,即f(x)在ξ点

得最大值。下面来证明:f '(ξ)=0

首先由(ii )知f '(ξ)是存在的,由定义知:

f '(ξ)=ξ

ξξξξ--=--→→x M x f x f x f x x )(lim )()(lim …….(*) 因为M 为最大值,?对x ?有 f(x) ≤M ?f(x)-M ≤0,

当x>ξ时,有ξ

ξξ--=--x M x f x f x f )()()(≤0 当x<ξ时,有ξ

ξξ--=--x M x f x f x f )()()(≥0。 又因为(﹡)的极限存在,知(﹡)极限的左、右极限都存在,且都等于)(ξf ',即

)()()(_ξξξf f f '='='+,然而,又有 0)()(lim )()(≥--='='-→-ξ

ξξξξx f x f f f x 和 0)()(lim )()(≤--='='+→+ξ

ξξξξx f x f f f x 0)(='?ξf 。

注 1:定理中的三个条件缺一不可,否则定理不一定成立,即指定理中的条件是充分的,但非必要。

2:罗尔定理中的ξ点不一定唯一。事实上,从定理的证明过程中不难看出:若可导函数)(x f 在点ξ处取得最大值或最小值,则有0)(='ξf 。

3:定理的几何意义:设有一段弧的两端点的高度相等,且弧长除两端点外,处处都有不垂直于x 轴的一切线,到弧上至少有一点处的切线平行于x 轴。

【例1】 设多项式)(x p 的导函数)(x p '没有实根,证明)(x p 最多只有一个实根。

二、 拉格朗日中值定理

在罗尔定理中,第三个条件为(iii))()(b f a f =,然而对一般的函数,此条不满足,现将该条件去掉,但仍保留前两个条件,这样,结论相应地要改变,这就是拉格朗日中值定理:

定理2:若函数满足:(i))(x f 在],[b a 上连续;(ii))(x f 在),(b a 上可导;则在),(b a 内至少存在一点ξ,使得 a

b a f b f f --=')()()(ξ。 若此时,还有)()(b f a f =, 0)(='?ξf 。可见罗尔中值定理是拉格朗日中值定理的一个特殊情况,因而用罗尔中值定理来证明之。

证明:上式又可写为 0)()()(=---'a

b a f b f f ξ ……(1) 作一个辅助函数:)()()()()(a x a

b a f b f x f x F ----= ……(2) 显然,)(x F 在],[b a 上连续,在),(b a 上可导,且

)()()()()()(a f a a a

b a f b f a f a F =----

= )()()()()()(a f a b a b a f b f b f b F =----= )()(b F a F =?, 所以由罗尔中值定理,在),(b a 内至少存在一点ξ,使得

0)(='ξF 。 又a b a f b f x f x F ---'=')

()()()( ?

0)()()(=---'a b a f b f f ξ 或 a

b a f b f f --=')()()(ξ。

注 1:拉格朗日中值定理是罗尔中值定理的推广;

2:定理中的结论,可以写成))(()()(a b f a f b f -'=-ξ)(b a <<ξ,此式也称为拉

格朗日公式,其中ξ可写成: ?<<-+=)10()(θθξa b a

)))((()()(a b a b a f a f b f --+'=-θ ……(3) 若令h h a f a f h a f h a b )()()(,θ+'=-+?+= ……(4) 3:若b a >,定理中的条件相应地改为:)(x f 在],[a b 上连续,在),(a b 内可导,则结论为: ))(()()(b a f b f a f -'=-ξ 也可写成 ))(()()(a b f a f b f -'=-ξ 可见,不论b a ,哪个大,其拉格朗日公式总是一样的。这时,ξ为介于b a ,之间的一个数,(4)中的h 不论正负,只要)(x f 满足条件,(4)就成立。 4:设在点x 处有一个增量x ?,得到点x x ?+,在以x 和x x ?+为端点的区间上应用拉格朗日中值定理,有 x x x f x f x x f ???+'=-?+)()()(θ )10(<<θ 即 x x x f y ???+'=?)(θ 这准确地表达了y ?和x ?这两个增量间的关系,故该定理又称为微分中值定理。

5:几何意义:如果曲线)(x f y =在除端点外的每一点都有不平行于y 轴的切线,则曲线上至少存在一点,该点的切线平行于两端点的联线。

由定理还可得到下列结论:

推论1:如果)(x f y =在区间I 上的导数恒为0,则)(x f 在I 上是一个常数。 证明:在I 中任取一点0x ,然后再取一个异于0x 的任一点x ,在以0x ,x 为端点的

区间J 上,)(x f 满足:(i)连续;(ii)可导;从而在J 内部存在一点ξ,使得 ))(()()(00x x f x f x f -'=-ξ 又在I 上,0)(≡'x f ,从而在J 上,

0)(≡'x f ,

0)(='?ξf , 所以0)()(0=-x f x f )()(0x f x f =? , 可见,)(x f 在I 上的每一点都有:)()(0x f x f = (常数)。

三、 柯西中值定理

定理3:若)(),(x F x f 满足:

(i) )(),(x F x f 在],[b a 上连续;

(ii) )(),(x F x f 在),(b a 内可导;

(iii))(x F '在),(b a 内恒不为0;

(iv))()(b F a F ≠;

则在),(b a 内至少存在一点ξ,使得 )

()()()()()(a F b F a f b f F f --=''ξξ。 证明:令)()()

()()()()(x f x F a F b F a f b f x ---=?,显然,)(x ?在],[b a 上连续,且)(x ?在),(b a 内可导,更进一步还有 )()(b a ??=,事实上,

)()()

()()()()()()()()()()()(a f a F a F b f a f b f b f b F a F b F a f b f a b +------=-?? 0))()(())()(()

()()()(=-----=a f b f a F b F a F b F a f b f 所以)(x ?满足罗尔定理的条件,故在),(b a 内至少存在一点ξ,使得0)(='ξ?,又)()()()()()()(x f x F a F b F a f b f x '-'--='? 0)()()

()()()(='-'--?ξξf F a F b F a f b f 因为0)(≠'ξF , )()()()()()(a F b F a f b f F f --=''?

ξξ

注 1:柯西中值定理是拉格朗日中值定理的推广,事实上,令x x F =)(,就得到拉格朗日中值定理;

2:几何意义:若用?

??==)()(x F Y x f X (b x a ≤≤)表示曲线c ,则其几何意义同前一个。

【例1】 若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中b x x x a <<<<321,证明在),(21x x 内至少有一点ξ,使得0)(=''ξf 。

【例2】 若0>x ,证明x x x

x <+<+)1ln(1。 证明:对00>?x ,取]1,1[],[0x b a +=, x x f ln )(=, 不难验证:)(x f 满足拉格朗日中值定理的条件,故在)1,1(0x +内至少存在一点ξ,使ξξ1

)(='f 满足 )11(1

1ln )1ln(00-+=-+x x ξ,即ξ

+=+1)1ln(00x x )11(0x +<<ξ 11110<<+?ξ

x 00001x x x x <<+?ξ 000

0)1ln(1x x x x <+<+? 由0x 的任意性,知本题成立。

注:条件“0>x ”可改为“1->x ”,结论仍成立。

【例3】 证明:b a b a -≤-sin sin 。

【例4】 证明:若)(x f 在),(+∞a 上可导,且)(lim ,)(lim x f k x f x x '=∞→∞→存在,则 0)(lim ='∞

→x f x 。 【例5】 证明2arccos arcsin π

=+x x (11≤≤-x )。

证:令x x x f arccos arcsin )(+=,01111

)('22=---=x x x f ,

由推论知f(x)=常数!再由2)0(π=

f ,故2arccos arcsin π=+x x 。 【例6】 若方程01110=+?++--x a x a x a n n n 有一个正根0x x =,

证明方程0)1(12110=+?+-+---n n n a x n a nx a 必有一个小于0x 的正根。

证明:令x a x a x a x f n n n 1110)(--+?++=,在闭区间],0[0x 上满足罗尔定理的三个条件,

故0)('=ξf )0(0x <<ξ

12110)1()('---+?+-+=n n n a x n a nx a x f

? 0)1(12110=+?+-+---n n n a n a n a ξξ

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

勾股定理的证明及其应用2

2017年3月2 勾股定理的证明及其应用 2 P253P25P27?????木板能否过门问题学习内容:勾股定理的类应用梯子下移问题 特别推荐:“海螺图” (27页) 热身:观察以下几组勾股数,并寻找规律:① 3, 4, 5;② 5,12,13;③ 7,24,25; ④ 9,40,41;……请你写出有以上规律的第⑤组勾股数: . 问题1:木板能否过门问题 例1:一个门框的尺寸如图所示,一块长3m ,宽2.2m 的薄木板能否从门框内通过?为什么?(236.25≈) 模仿1:有一个边长为50dm 的正方形洞口,想用一个圆盖盖住这个洞口,圆的直径至少多长 (结果保留整数). 问题2:梯子下移问题 例2:如图,一个3m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时AO 的距离为2.5m ,如 果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 也外移0.5m 吗?(658.175.2≈) 解:可以看到,BD=OD —OB ,求BD ,可以先求OB ,OD 。 ∵ 在Rt AOB ?中,∠O =90° ∴ OB= . ∵在Rt COD ?中,∠O =90° ∴ OD= . ∴ BD= , ∴ 梯子的顶端沿墙下滑0.5m ,梯子底端外移 . 模仿2:宝典B 本,第10页,第2题 2m B 木板 C A O B D

问题3 : (1)我们知道,数轴上的点,有的表示有理数,有的表示无理数 (2)复习有理数的表示方法 在数轴上表示下列各数 2 — 2 1 9 4.5 0 画图: (3)思考:无理数如何表示? 例3:在数轴上画出表示2的点. (小组画一画,议一议) 在数轴上找到点A ,使OA= ,作直线l 垂直于OA ,在l 上取点B ,使AB= , 以原点O 为圆心,以OB 为半径作弧,弧与数轴的交点C 即为表示2的点. 画图: 模仿3:分组讨论,理解课本P27图17.1-10,利用勾股定理,在数轴上画出表示5,4,3,2,1的点。 五分钟测试 1、直角三角形中,有两边长分别是6和8,那么第三边长的平方为( ) A 、10 B 、28 C 、100 D 、28或者100 2、在一个直角三角形中,两直角边之比为3﹕4,且斜边长10cm ,则该直角三角形面积( ) A 、24cm 2 B 、36cm 2 C 、48cm 2 D 、60cm 2 3、如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理 数的边数是( ) A . 0 B . 1 C . 2 D . 3 4、 如图所示,在△ABC 中,三边a ,b ,c 的大小关系是( ) A. a <b <c B. c <a <b C. c <b <a D. b <a <c 5、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边 长为7cm ,则正方形A ,B ,C ,D 的面积之和为_______cm 2. A B C 第3题 第4题 第5题

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

拉格朗日中值定理证明中的辅助函数的构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

考研数学中值定理总结

中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、所证式仅与ξ相关 ①观察法与凑方法 ②原函数法 ③一阶线性齐次方程解法的变形法 2、所证式中出现两端点 ①凑拉格朗日 ②柯西定理 ③k值法 ④泰勒公式法 老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。 3、所证试同时出现ξ和η ①两次中值定理 ②柯西定理(与之前所举例类似) 有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。 一、高数解题的四种思维定势 1、在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 2、在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分

中值定理对该积分式处理一下再说。 3、在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 4、对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 二、线性代数解题的八种思维定势 1、题设条件与代数余子式A ij 或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E 。 2、若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 3、若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。 4、若要证明一组向量a 1,a 2 ,…,a s 线性无关,先考虑用定义再说。 5、若已知AB=0,则将B的每列作为Ax=0的解来处理再说。 6、若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 7、若已知A的特征向量ζ 0,则先用定义Aζ =λ ζ 处理一下再说。 8、若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

2016考研数学中值定理证明思路总结

2016考研数学中值定理证明思路总结中值定理这块一直都是很多考生的“灾难区”,一直没有弄清楚看到一个题目到底怎么思考处理,因此也是考研得分比较低的一块内容,如果考生能把中值定理的证明题拿下,那么我们就会比其他没做上的同学要高一个台阶,也可以说这是一套“拉仇恨”的题目。下面小编就和大家来一起分析一下这块内容。 1.具体考点分析 首先我们必须弄清楚这块证明需要的理论基础是什么,相当于我们的工具,那需要哪些工具呢? 第一:闭区间连续函数的性质。 最值定理:闭区间连续函数的必有最大值和最小值。 推论:有界性(闭区间连续函数必有界)。 介值定理:闭区间连续函数在最大值和最小值之间中任意一个数,都可以在区间上找到一点,使得这一点的函数值与之相对应。 零点定理:闭区间连续函数,区间端点函数值符号相异,则区间内必有一点函数值为零。 第二:微分中值定理(一个引理,三个定理)

费马引理:函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f'(ξ)=0。 罗尔定理:如果函数f(x)满足: (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 在区间端点处的函数值相等,即f(a)=f(b), 那么在(a,b)内至少有一点ξ(a<ξ 柯西中值定理:如果函数f(x)及F(x)满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)对任一x∈(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。 第三:积分中值定理: 如果函数f(x) 在积分区间[a, b]上连续,则在[a, b]上至少存在一个点ξ,使下式成立

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

勾股定理与几何证明答案(可编辑修改word版)

1、勾股定理与几何证明的综合问题练习一、利用勾股定理证明一些重要的几何定理 1、如图,在Rt△ABC 中,∠ACB=90°,CD 是AB 边上的高. 证明:(1)CD2=AD ?BD (这个结果表明,利用勾股定理可以导出三角形相似的一系列结果) 1 1 1 (2)AC 2+ BC 2 = CD2 练习二、将勾股定理应用于四边形 1、四边形ABCD 的对角线为AC 和BD. (1)证明:若AC ⊥BD ,则AB2+CD2=AD2+BC 2; 2、一个四边形的顶点分别在一个边长为1 的正方形各边上,其边长依次为a、b、c、d. 求证: 2 ≤a2+b2+c2+d 2≤ 4 . 假设MNPQ 分别将正方形ABCD 的四个边分成了线段:m1 m2 n1 n2 p1 p2 q1 q2 ∵MNPQ 都在正方形ABCD 的四个边上,所以有四个直角三角形 ∴a2+b2+c2+d2=m12+m22+n12+n22+p12+p22+q12+q22∵m1+m2=正方形边长即为“1”(其他同理)∴a2+b2+c2+d2=m12+(1-m1)2+n12+(1-n1)2+p12+(1-p1)2+q12+(1-q1)2整理之后得到: a2+b2+c2+d2=2*(m1-/2)2+1/2+2*(n1-/2)2+1/2+2*(p1-/2)2+1/2+2*(q1-/2)2+1/2=2*[(m1-1/2)2+(n1-1/2)2+(p1-1/2)2+(q1-1/2)2] + 2 m1、n1、p1、q1 的长都是最大为1 最小为0 它们都等于1/2 时值最小,都等于1 时值最大那么a2+b2+c2+d2的最小值就是2,最大值就是4

(完整版)中值定理的应用方法与技巧

中值定理的应用方法与技巧 中值定理包括微分中值定理和积分中值定理两部分。微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。积分中值定理有积分第一中值定理和积分第二中值定理。积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f b a -=?ξ。积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得??=b a b a dx x g f dx x g x f )()()()(ξ。 一、 微分中值定理的应用方法与技巧 三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。 例一.设)(x ?在[0,1]上连续可导,且1)1(,0)0(==??。证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+') ()(η?ξ?成立。 证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ?==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(??ξ?。 任意给定正整数b ,再令)()(,)(21x x g bx x g ?==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=') 0()1(0)(??η?。 两式相加得:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得 b a b a +='+') ()(η?ξ? 成立。 证法2:任意给定正整数b a ,,令)()(,)(21x x f ax x f ?==,则在[0,1]上对

第五讲中值定理的证明分析

第四讲 中值定理的证明技巧 一、 考试要求 1、 理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定 理),并会应用这些性质。 2、 理解并会用罗尔定理、拉格朗日中值定理、泰勒定理,了解并会用柯西中值 定理。掌握这四个定理的简单应用(经济)。 3、 了解定积分中值定理。 二、 内容提要 1、 介值定理(根的存在性定理) (1)介值定理 在闭区间上连续的函数必取得介于最大值 M 与最小值m 之间的任何值. (2)零点定理 设f(x)在[a 、b]连续,且f(a)f(b)<0,则至少存在一点,c ∈(a 、b),使得f(c)=0 2、 罗尔定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 (3))()(b f a f = 则一定存在),(b a ∈ξ使得0)('=ξf 3、 拉格朗日中值定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 则一定存在),(b a ∈ξ,使得))((')()(a b f a f b f -=-ξ 4、 柯西中值定理 若函数)(),(x g x f 满足: (1)在[]b a ,上连续 (2)在),(b a 内可导 (3)0)('≠x g 则至少有一点),(b a ∈ξ使得)(')(') ()()()(ξξg f a g b g a f b f =--

5、 泰勒公式 如果函数)(x f 在含有0x 的某个开区间),(b a 内具有直到1+n 阶导数, 则当x 在 ),(b a 内时, )(x f 可以表示为0 x x -的一个n 次多项式与一个余项)(x R n 之和,即 )())((!1 ))((!21))(()()(00)(200000x R x x x f n x x x f x x x f x f x f n n n +-+???+-''+-'+= 其中10)1()()!1()()(++-+=n n n x x n f x R ξ (ξ介于0x 与x 之间). 在需要用到泰勒公式时,必须要搞清楚三点: 1.展开的基点; 2.展开的阶数; 3.余项的形式. 其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公 式,在证明不等式时用的是带拉格朗日余项的泰勒公式. 而基点和阶数,要根据具体的问题来确定. 6、 积分中值定理 若f(x)在[a 、b]上连续,则至少存在一点c ∈[a 、b],使得 b a ?f(x)dx=f(c)(b-a) 三、 典型题型与例题 题型一 、与连续函数相关的问题(证明存在ξ使0)(=ξf 或方程f(x)=0有根) 例1、设)(x f 在[a,b]上连续,),,2,1(0,21n i c b x x x a i n ΛΛ=><<<<<,证明存在],[b a ∈ξ ,使得 n n n c c c x f c x f c x f c f ++++++=ΛΛ212211)()()()(ξ 例2、设)(,0x f a b >>在[a,b]上连续、单调递增,且0)(>x f ,证明存在),(b a ∈ξ 使得 )(2)()(222ξξf a f b b f a =+ 例3、设)(x f 在[a,b]上连续且0)(>x f ,证明存在),(b a ∈ξ使得 ???==b b a a dx x f dx x f dx x f ξξ )(2 1)()(。 例4、设)(),(x g x f 在[a,b]上连续,证明存在),(b a ∈ξ使得

勾股定理的证明和应用

第3章勾股定理知识结构: 勾股定理1.勾股定理 (1)直角三角形中两直角边的平方和等于斜边的平方 (2)勾股定理的验证-------用拼图法,借助面积不变的关系来证明 (3)应用 1.在直角三角形中已知两边求第三边 2.在直角三角形中已知两边求第三边上的高 2.勾股定理 的逆定理 (1)如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角 三角形 (2)勾股数 1.满足a2+b2=c2的三个正整数a,b,c称为 勾股数 2.常见的勾股数 (1)3,4,5 (2)5,12,13 (3)8,15,17 3.应用 (1)勾股定理的简单应用 求几何体表面上两点间的最短距离 解决实际应用问题 (2)勾股定理逆定理的应用---------判定某个三角形是否为直角三角

形 勾股定理 一、求网格中图形的面积 求网格中图形的面积,通常用两种方法:“割”或“补”。 二、勾股定理 直角三角形两条直角边的平方和等于斜边的平方。 拓展延伸:(1)勾股定理揭示的是直角三角形的三边关系,所以必须注意“在直角三角形中”这一前提。 (2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把所求线段转化为某一直角三角形的边,然后利用勾股定理求解。 三、勾股定理的验证 运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。 勾股定理的逆定理 一、勾股定理的逆定理 如果三角形的三边长分别为a,b,c且a2+b2=c2,那么这个三角形是直角三角形。 注意:(1)还没确定一个三角形是否为直角三角形时,不能说“斜边”“直角边”。 (2)不是所有的c都是斜边,要根据题意具体分析。当满足a2+b2=c2时,c是斜边,它所对的角是直角。 勾股定理与勾股定理的逆定理之间既有区别,又有联系,如下表所示:

罗尔中值定理的内容及证明方法

罗尔中值定理的内容及证明方法 (一)定理的证明 证明:因为函数)(x f 在闭区间[]b a ,上连续,所以存在最大值与最小值,分别用M 和m 表示,现在分两种情况讨论: 1.若m M =,则函数)(x f 在闭区间[]b a ,上必为常数,结论显然成立。 2.若m M >,则因为)()(b f a f =使得最大值M 与最小值m 至少有一个在()b a ,内某点ξ处取得,从而ξ是)(x f 的极值点,由条件)(x f 在开区间()b a ,内可导得,)(x f 在ξ处可导,故由费马定理推知:0)('=ξf 。 (二)罗尔中值定理类问题的证明 罗尔中值定理在微分学解题中有着广泛的应用,下面我们就对罗尔中值定理的应用作深入的研究,归纳出证题技巧。 1.形如“在()b a ,内至少存在一点ξ,使k f =)('ξ”的命题的证法。 (1)当0=k 时,一般这种情况下,我们只需验证)(x f 满足罗尔定理的条件,根据罗尔定理来证明命题。在证明过程中,我们要注意区间的选取,有时候所需验证的条件并不是显而易见的。 例1 设)(x f 在闭区间[]1,0上连续,开区间()1,0内可导,?=1 32 )(3)0(dx x f f 。 证明:()1,0∈?ξ,使0)('=ξf 分析:由于所需验证的罗尔中值定理的条件并不是显而易见的,而且这个问题涉及到定积分,所以我们考虑运用积分中值定理的知识,尝试在()1,0中找到一个区间()η,0,在()η,0中运用罗尔中值定理去证明。 证:因为??????∈=-==?1,32,)()()321(3)(3)0(1 3 2ηηηf f dx x f f 显然)(x f 在闭区间[]η,0上连续,在开区间()η,0内可导 根据罗尔定理,()1,0∈?ξ,使0)('=ξf (2)当0≠k 时,若所证明的等式中不出现端点值,则将结论化为:0)('=-k f ξ的形式,构造辅助函数)(x F ,我们就可以运用(1)中的方法证明命题。我们在构造辅助函数时,可用观察法、积分法、递推法,常数k 法等等。

微分中值定理的证明题[1](1)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 证:构造函数()()x F x f x e λ=,则()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()0F a F b ==,由罗尔中值定理知:,)a b ξ?∈ (,使()0F ξ'= 即:[()()]0f f e λξξλξ'+=,而0e λξ≠,故()()0f f ξλξ'+=。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 证:将上等式变形得:1111 111111 (1)()b a e e e b a b a ξξ-=-- 作辅助函数1 ()x f x xe =,则()f x 在11[,]b a 上连续,在11 (,)b a 内可导, 由拉格朗日定理得: 11()()1()11f f b a f b a ξ-'=- 1ξ11(,)b a ∈ , 即 1111(1)11b a e e b a e b a ξξ-=-- 1ξ11(,)b a ∈ , 即: )()1(b a e be ae a b --=-ξξ (,)a b ξ∈。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证:显然()F x 在[0,1]上连续,在(0,1)内可导,又(0)(1)0F F ==,故由罗尔定理知:0(0,1)x ?∈,使得0()0F x '= 又2()2()()F x xf x x f x ''=+,故(0)0F '=, 于是()F x '在0[0]x ,上满足罗尔定理条件,故存在0(0,)x ξ∈, 使得:()0F ξ''=,而0(0,)x ξ∈?(0,1),即证

中值定理总结

1、 所证式仅与ξ相关 ①观察法与凑方法 1 ()[0,1](0)(1)(0)0 2() (,)()1 ()()2()0 (1) ()() [()]()f x f f f f a b f x f x xf x f x f x xf x xf x xf x '==='ζ''ζ∈ζ=-ζ '''''ζ--='''''''=例设在上二阶可导,试证至少存在一点使得分析:把要证的式子中的换成,整理得由这个式可知要构造的函数中必含有,从找突破口 因为()(1) ()()[()()]0()()[()]0 ()(1)()() f x f x f x xf x f x f x f x xf x F x x f x f x '+'''''''''''--+=?--='=--,那么把式变一下: 这时要构造的函数就看出来了 ②原函数法 ?-?-? ===?=?+=?='ζζζ=ζ'∈ζ?==?dx x g dx x g dx x g e x f x F C C e x f Ce x f C dx x g x f x g x f x f x g f f g f b a b a x g b f a f b a b a x f )()()()()( )( )(ln )()(ln )()()( ) ()()(),( ],[)()()( ),(],[)( 2 很明显了 ,于是要构造的函数就现在设换成把有关的放另一边,同样有关的放一边,与现在把与方法 造的函数,于是换一种是凑都不容易找出要构分析:这时不论观察还使得求证:上连续 在,又内可导,上连续,在在设例两边积分00 ③一阶线性齐次方程解法的变形法 0 ()()()[,](,)()0 ()() (,)()()()()0 [()()]pdx pdx f pf p x u x e F x f e f x a b c a b f c f f a a b f b a f f a f b a f f a '+=??==?'∈=ξ-'ξ∈ξ= -ξ-'ξ-=-'?ξ-对于所证式为型,(其中为常数或的函数) 可引进函数,则可构造新函数例:设在有连续的导数,又存在,使得求证:存在,使得分析:把所证式整理一下可得:11[()()]00 () C=0()[()()] ()() ()0()() x x dx b a b a b a f f a f pf b a u x e e F x e f x f a f b f a f c f b f a b a ---'-ξ-=+=-?==--'==?=---,这样就变成了型引进函数=(令),于是就可以设注:此题在证明时会用到这个结论 2、所证式中出现两端点 ①凑拉格朗日

积分中值定理的证明与应用

积分中值定理的证明与应用 作者:王晶岩 作者单位:黑龙江工商职业技术学院,黑龙江,哈尔滨,150000 刊名: 中国新技术新产品 英文刊名:CHINA NEW TECHNOLOGIES AND PRODUCTS 年,卷(期):2009,""(5) 被引用次数:0次 参考文献(4条) 1.刘玉琏.傅沛仁教学分析 1988 2.马玲高等数学解题方法指导 1996 3.阎政平积分中值定理证明的一点注记 1996(04) 4.薛嘉庆高等数学题库精编 2000 相似文献(10条) 1.期刊论文余桂东.YU Gui-dong积分中值定理的逆-安庆师范学院学报(自然科学版)2001,7(1) 从积分中值定理的几何意义出发,探讨出有关积分中值定理的逆,并进一步推出微分中值定理的逆. 2.期刊论文郝玉芹.时立文.欧阳占瑞.HAO Yu-qin.SHI Li-wen.OUYANG Zhan-rui对积分中值定理结论的一点改动-河北能源职业技术学院学报2007,7(3) 本文对积分中值定理中取值区间进行讨论,证明在开区间上该定理仍然成立.这样可使积分中值定理与微分中值定理中的取值区间得以统一,从而更能体现积分中值定理的中值性以及两个中值定理之间的联系. 3.期刊论文张武关于积分中值定理的正确应用与理解-太原教育学院学报2002,20(4) 积分中值定理是微积分学中最基本的定理之一,但是在实际教学与应用中常常会有误解,对它的理解也不够全面和深刻.因此,有必要对一般情况下积分中值定理进行推广和证明,并阐述它与微分中值定理的关系. 4.期刊论文唐伟国.唐仁献微分中值定理的级数表达式-湖南科技学院学报2008,29(8) 本文探寻得到了罗尔中值定理、拉格朗日中值定理与柯西中值定理的级数表达式,并作为其应用,方便地得到了第一积分中值定理的两种新的形式. 5.期刊论文唐仁献微分中值定理的级数表达式-零陵学院学报2004,25(6) 探寻得到了罗尔中值定理、拉格朗日中值定理与柯西中值定理的级数表达式,并作为其应用,方便地得到了第一积分中值定理的两种新的形式. 6.期刊论文潘新对积分中值定理的推广与应用-考试周刊2008,""(26) 文章对积分中值定理进行了讨论与推广.得到了四个推论,并且对给出的积分中值定理进行了一些应用. 7.期刊论文孙翠芳.程智微积分中值定理间点的关系-高等数学研究2009,12(6) 根据微分中值定理和积分中值定理定义微分点与积分点.证明严格单调函数与凸(凹)函数中微分点与积分点间的一些关系式,指出在函数对称的情况下微分点与积分点之间也存在着对称关系,并给出一类向量函数以及多项式函数中微分点与积分点间的关系式. 8.期刊论文宁存法.陈丫丫关于积分中值定理的注记-太原大学教育学院学报2007,25(z1) 在分析教材中第一积分中值定理的条件下,证明了介值点ξ必可在开区间(a,b)内取得,进一步将这个结论推广到被积函数f以区间端点a和b为第一类间断点或瑕点以及在(a,b)内有间断点的情形,并且给出以上结果的一些应用. 9.期刊论文哈申浅谈微分中值定理与牛顿-莱布尼兹公式-内蒙古科技与经济2007,""(21) 本文介绍微分中值定理与牛顿-莱布尼兹公式的简单应用,找出微分中值定理与牛顿-莱布尼兹公式的辩证关系,从而使我们深入理解和运用微积分学的基本定理. 10.期刊论文薛国民关于一道数学竞赛题的解法探讨-考试周刊2008,""(26) 本文对江苏省普通高等学校第六届高等数学竞赛中一道试题的解法进行了探讨,分析了原有解法的不足,并且给出了另一种解法. 本文链接:https://www.doczj.com/doc/494305512.html,/Periodical_zgxjsxcpjx200905194.aspx 授权使用:台州科技职业学院(tzkjzy),授权号:1d0d7b6a-acd1-4f5e-850e-9e170098c7d5 下载时间:2010年10月22日

相关主题
文本预览
相关文档 最新文档