当前位置:文档之家› 半导体中的电子状态(精)

半导体中的电子状态(精)

半导体中的电子状态(精)
半导体中的电子状态(精)

第一篇 习题 半导体中的电子状态

1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。

1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。

1-3、 试指出空穴的主要特征。

1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。

1-5、某一维晶体的电子能带为

[])sin(3.0)cos(1.01)(0ka ka E k E --=

其中E 0=3eV ,晶格常数a=5х10-11m 。求:

(1) 能带宽度;

(2) 能带底和能带顶的有效质量。

第一篇 题解 半导体中的电子状态

1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge 、Si 的禁带宽度具有负温度系数。

1-3、 解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下:

A 、荷正电:+q ;

B 、空穴浓度表示为p (电子浓度表示为n );

C 、E P =-E n

D 、m P *=-m n *。

1-4、 解:

(1) Ge 、Si:

a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;

b )间接能隙结构

c )禁带宽度E g 随温度增加而减小;

(2) GaAs :

a )E g (300K )= 1.428eV , Eg (0K) = 1.522eV ;

b )直接能隙结构;

c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;

1-5、 解:

(1) 由题意得:

[][])sin(3)cos(1.0)cos(3)sin(1.0022

2

0ka ka E a k d dE ka ka aE dk dE

+=-=

eV

E E E E a k

d dE a k E a k

d dE a k a k a k ka tg dk dE o

o

o o 1384.1min max ,

01028.2)4349.198sin 34349.198(cos 1.0,4349.198,

01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.183

1

,0400222

2400222

121=-=??=+====∴==--则能带宽度对应能带极大值。

当对应能带极小值;

当)(得令

(2)

()()

()()

()

()??????????-=??????????-=?????????? ??=?=??????????=?????????? ??=----------kg k d dE h m kg k d dE h m k n k n 27

1234

401

222*271234401

222*10925.110625.61028.2110925.110625.61028.2121带顶带底则

答:能带宽度约为1.1384Ev ,能带顶部电子的有效质量约为1.925x10-27

kg ,能带底部电子的有效质量约为-1.925x10-27kg 。

第二篇 习题-半导体中的杂质和缺陷能级

2-1、什么叫浅能级杂质?它们电离后有何特点?

2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n 型半导体。

2-3、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p 型半导体。

2-4、掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响。

2-5、两性杂质和其它杂质有何异同?

2-6、深能级杂质和浅能级杂质对半导体有何影响?

2-7、何谓杂质补偿?杂质补偿的意义何在?

第二篇题解半导体中的杂质与缺陷能级

2-1、解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。

它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,

并同时向导带提供电子或向价带提供空穴。

2-2、解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主。

施主电离成为带正电离子(中心)的过程就叫施主电离。

施主电离前不带电,电离后带正电。例如,在Si中掺P,P为Ⅴ族元素,本征半导体Si为Ⅳ族元素,P掺入Si中后,P的最外层电子有四个与Si 的最外层四个电子配对成为共价电子,而P的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子。这个过程就是施主电离。

n型半导体的能带图如图所示:其费米能级位于禁带上方

2-3、解:半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主。

受主电离成为带负电的离子(中心)的过程就叫受主电离。

受主电离前带不带电,电离后带负电。

例如,在Si中掺B,B为Ⅲ族元素,而本征半导体Si为Ⅳ族元素,P 掺入B中后,B的最外层三个电子与Si的最外层四个电子配对成为共价电子,而B倾向于接受一个由价带热激发的电子。这个过程就是受主电离。

p型半导体的能带图如图所示:其费米能级位于禁带下方

2-4、解:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。掺杂半导体又分为n型半导体和p型半导体。

例如,在常温情况下,本征Si中的电子浓度和空穴浓度均为1.5╳1010cm-3。当在Si中掺入1.0╳1016cm-3后,半导体中的电子浓度将变为1.0╳1016cm-3,而空穴浓度将近似为 2.25╳104cm-3。半导体中的多数载流子是电子,而少数载流子是空穴。

2-5、解:两性杂质是指在半导体中既可作施主又可作受主的杂质。如Ⅲ-Ⅴ族GaAs中掺Ⅳ族Si。如果Si替位Ⅲ族As,则Si为施主;如果Si替位Ⅴ族Ga,则Si为受主。所掺入的杂质具体是起施主还是受主与工艺有关。

2-6、解:深能级杂质在半导体中起复合中心或陷阱的作用。

浅能级杂质在半导体中起施主或受主的作用。

2-7、当半导体中既有施主又有受主时,施主和受主将先互相抵消,剩余的杂质最后电离,这就是杂质补偿。

利用杂质补偿效应,可以根据需要改变半导体中某个区域的导电类型,制造各种器件。

第三篇习题-半导体中载流子的统计分布

3-1、对于某n型半导体,试证明其费米能级在其本征半导体的费米能级之上。即E Fn>E Fi。

3-2、试分别定性定量说明:

(1)在一定的温度下,对本征材料而言,材料的禁带宽度越窄,载流子浓度越高;

(2)对一定的材料,当掺杂浓度一定时,温度越高,载流子浓度越高。

3-3、若两块Si样品中的电子浓度分别为2.25×1010cm-3和6.8×1016cm-3,试分别求出其中的空穴的浓度和费米能级的相对位置,并判断样品的导电类型。假如再在其中都掺入浓度为2.25×1016cm-3的受主杂质,这两块样品的导电类型又将怎样?

3-4、含受主浓度为8.0×106cm-3和施主浓度为7.25×1017cm-3的Si材料,试求温度分别为300K和400K时此材料的载流子浓度和费米能级的相对位置。

3-5、试分别计算本征Si 在77K 、300K 和500K 下的载流子浓度。 3-6、Si 样品中的施主浓度为4.5×1016cm -3,试计算300K 时的电子浓度和空穴浓度各为多少?

3-7、某掺施主杂质的非简并Si 样品,试求E F =(E C +E D )/2时施主的浓度。

第三篇 题解 半导体中载流子的统计分布

3-1、证明:设n n 为n 型半导体的电子浓度,n i 为本征半导体的电子浓度。显然

n n > n i

i

n i n F F F c c F c c E E T k E E N T k E E N >???

?

??--?>???? ??--?则即00exp exp

得证。

3-2、解:

(1) (1) 在一定的温度下,对本征材料而言,材料的禁带宽度越窄,则跃迁所需

的能量越小,所以受激发的载流子浓度随着禁带宽度的变窄而增加。 由公式

T

k E v c i g e

N N n 02-

=

也可知道,温度不变而减少本征材料的禁带宽度,上式中的指数项将因此而增加,从而使得载流子浓度因此而增加。

(2)对一定的材料,当掺杂浓度一定时,温度越高,受激发的载流子将因此而

增加。由公式

可知,这时两式中的指数项将因此而增加,从而导致载流子浓度增加。

3-3、解:由 2

00i n p n =

???

?

??--=???? ?

?--?=T

k E E N p T

k E E N n V F V F

c c 0000exp exp 和

()

()

()

()

????????≈??==?=??==

--3

316210022

023

101021001201103.3108.6105.1100.11025.2105.1cm n n p cm n n p i i

可见,

型半导体本征半导体n p n p n →>→≈02020101

又因为 T

k E E v v F e N p 00

--

=,则

??????

?+=???? ?????+=???? ???+=+≈????

?????+=???

? ???+=eV E E p N T k E E eV E E p N T k E E v v n v F v v v v F 331.0103.3101.1ln 026.0ln 234.0100.1101.1ln 026.0ln 3190202

10190101 假如再在其中都掺入浓度为2.25×1016cm -3

的受主杂质,那么将出现杂质补偿,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。

答:第一种半导体中的空穴的浓度为1.1x1010cm -3,费米能级在价带上方0.234eV 处;第一种半导体中的空穴的浓度为3.3x103cm -3,费米能级在价带上方0.331eV 处。掺入浓度为2.25×1016cm -3的受主杂质后,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。

3-4、解:由于杂质基本全电离,杂质补偿之后,有效施主浓度 317*

1025.7-?≈-=cm N N N A D D

则300K 时,

电子浓度 ()3

1701025.7300-?=≈cm N K n D

空穴浓度 ()()

()

3

217

2

10001011.31025.7105.1300-?≈??==cm n n K p i

费米能级

()

eV

E E p N T k E E v v v V

F 3896.01011.3100.1ln 026.0ln 21900+=??

?

??????+=?

??

?

???+=

在400K 时,根据电中性条件 *

00D N p n += 和 2

0i p n p n = 得到

()

()

()

()

()

()

???

?????=??==?≈?+?+?-=++-=--3

1782132

03

82

13

2

1717

22*010249.7103795.1100.1103795.12

100.141025.71025.724*cm

p n n cm n N N p p i i D D

费米能级

()()

eV E E p K K K N T k E E v v p v v F 0819.01025.7300400101.1ln 026.0300400300ln 17

23

1923

0+=??????

???????????? ?????+=??

?

???

??????????? ????+=

答:300K 时此材料的电子浓度和空穴浓度分别为7.25 x1017cm -3和3.11x102cm -3,费米能级在价带上方0.3896eV 处;400 K 时此材料的电子浓度和空穴浓度分别近似为为7.248 x1017cm -3和1.3795x108cm -3,费米能级在价带上方0.08196eV 处。

3-5、解: 假设载流子的有效质量近似不变,则

()()()()()

()

()()()

()

3

192

3192

3

3

182

3192

3

2

3

10367.2300500101.1300500300500104304.130077101.13007730077300300--?=??? ????=??? ???=?=??

? ????=??? ???=?

?

?

???=cm

K K K K K N K N cm

K K K K K N K N K T K N T N v v v v v v 则由

()()()()()

()()()()

(

)

3

192

3192

3

3

182

3192

3

2

3

10025.6300500108.230050030050010758.330077108.23007730077300300--?=??

? ????=??? ???=?=??

? ????=??? ???=?

?

?

???=cm

K K K K K N K N cm

K K K K K N K N K T K N T N c c c c c c 则由

()()()()()()()()()()()()()()eV T T E K E eV T T E K E eV T T E K E T T E T E g g g g g g g g 1059

.16365005001073.47437.005001615

.16363003001073.421.103002061

.1636

77771073.421.1077636

1073.402

422

422

4242

=+??-=+-==+??-=+-==+??-=+-==?=+-=----βαβαβαβαβ

α所以,且而

所以,由 T

k E v c i

g e N N n 02-=,有

()()()()()

()()()()()

(

)()()()()

????????

????≈????==?≈????==?≈????==-?????---?????--

--?????--------3145001038.1210602.11059.119192393001038.1210602.11615.119192320771038.1210602.12061.11818210669.110367.210025.6)500(105.3101.1108.2)300(10159.1104304.110758.3)77(233902339023

19

0cm e e N N K n cm e e N N K n cm e e N N K n T k E v c i T k E v c i T k E v c i g g g

答:77K 下载流子浓度约为 1.159×10-80cm -3

,300 K 下载流子浓度约为 3.5×109cm -3,500K 下载流子浓度约为1.669×1014cm -3。

3-6、解:在300K 时,因为N D >10n i ,因此杂质全电离

n 0=N D ≈4.5×1016cm -3

()

()

3

3162

1002

0100.5105.4105.1-?=??==cm

n n p i

答: 300K 时样品中的的电子浓度和空穴浓度分别是4.5×1016cm -3和5.0×103cm -3。

3-7、解:由于半导体是非简并半导体,所以有电中性条件

n 0=N D +

()c

D D C F V

D D C F T

k E E D T k E E c T

k E E D

T

k E E c N N E E E N N T k E E E e N

e N e N e

N F

D F

c F

D F c 221

2ln 21

22

12100000=+=???

?

????++=∴=+=

------

而即”可以略去,右边分母中的“施主电离很弱时,等式

答:N D 为二倍N C 。

第四篇

习题-半导体的导电性

4-1、对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。

4-2、何谓迁移率?影响迁移率的主要因素有哪些?

4-3、试定性分析Si 的电阻率与温度的变化关系。

4-4、证明当μn ≠μp ,且电子浓度p

n i n n μμ/0=,空穴浓度n p i n p μμ/0=时半导体的电导率有最小值,并推导min σ的表达式。

4-5、0.12kg 的Si 单晶掺有3.0×10-9kg 的Sb ,设杂质全部电离,试求出此材料的电导率。(Si 单晶的密度为2.33g/cm 3,Sb 的原子量为121.8)

第四篇 题解-半导体的导电性

4-1、解:对于重掺杂半导体,在低温时,杂质散射起主体作用,而晶格振动散射与一般掺杂半导体的相比较,影响并不大,所以这时侯随着温度的升高,重掺杂半导体的迁移率反而增加;温度继续增加后,晶格振动散射起主导作用,导致迁移率下降。对一般掺杂半导体,由于杂质浓度较低,电离杂质散射基本可以忽略,起主要作用的是晶格振动散射,所以温度越高,迁移率越低。

4-2、解:迁移率是单位电场强度下载流子所获得的漂移速率。影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。

4-3、解:Si 的电阻率与温度的变化关系可以分为三个阶段:

(1) 温度很低时,电阻率随温度升高而降低。因为这时本征激发极弱,可以

忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。 (2) 温度进一步增加(含室温),电阻率随温度升高而升高。在这一温度范围

内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。

(3) 温度再进一步增加,电阻率随温度升高而降低。这时本征激发越来越多,

虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。

4-4、证明:

n

p i p

n i n

n n

p i p n n n dn

d p n n n d d dn

d n n p n n q q q i i i μμσσμμμμμμσμσσσσq 2//0

,00min 222

23

222====

==-

=>=

=有所以即

有极小值

故而有极值

得证。

4-5、解:

()

()()

()

31723

93

10881.2556.228.12110025.61000100.3502.5133

.21000

12.0--?≈????=∴=?=

cm N cm V Si D 的体积

故材料的电导率为

()()()11191704.2452010602.110579.6---Ω=????==cm nq n μσ

答:此材料的电导率约为24.04Ω-1cm -1。

第五篇 习题 非平衡载流子

5-1、何谓非平衡载流子?非平衡状态与平衡状态的差异何在?

5-2、漂移运动和扩散运动有什么不同?

5-3、漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系?

5-4、平均自由程与扩散长度有何不同?平均自由时间与非平衡载流子的寿命又有何不同?

5-5、证明非平衡载流子的寿命满足()τ

t

e p t p -?=?0,并说明式中各项的物理意义。

5-6、导出非简并载流子满足的爱因斯坦关系。

5-7、间接复合效应与陷阱效应有何异同?

5-8、光均匀照射在6cm ?Ω的n 型Si 样品上,电子-空穴对的产生率为4×

1021cm -3s -1,样品寿命为8μs。试计算光照前后样品的电导率。

5-9、证明非简并的非均匀半导体中的电子电流形式为

dx dE n j n F

n

μ=。

5-10、假设Si 中空穴浓度是线性分布,在4μm 内的浓度差为2×1016cm -3,试计算空穴的扩散电流密度。

5-11、试证明在小信号条件下,本征半导体的非平衡载流子的寿命最长。

第五篇 题解-非平衡载流子

5-1、解:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。通常所指的非平衡载流子是指非平衡少子。

热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态 ,跃迁引起的产生、复合不会产生宏观效应。在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来。

5-2、解:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。前者的推动力是外电场,后者的推动力则是载流子的分布引起的。

5-3、解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系。而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。即

T k q D 0=

μ

5-4、答:平均自由程是在连续两次散射之间载流子自由运动的平均路程。而扩散长度则是非平衡载流子深入样品的平均距离。它们的不同之处在于平均自由程由散射决定,而扩散长度由扩散系数和材料的寿命来决定。 平均自由时间是载流子连续两次散射平均所需的自由时间,非平衡载流子的寿命是指非平衡载流子的平均生存时间。前者与散射有关,散射越弱,平均自由时间越长;后者由复合几率决定,它与复合几率成反比关系。

5-5、证明:

()[]p p

dt t p d τ?=

?-

=非平衡载流子数而在单位时间内复合的子的减少数单位时间内非平衡载流

时刻撤除光照如果在0=t

则在单位时间内减少的非平衡载流子数=在单位时间内复合的非平衡载流子数,即

()[]()1?→??=?-p

p dt t p d τ

在小注入条件下,τ为常数,解方程(1),得到

()()()20?→??=?-p t

e p t p τ

式中,Δp (0)为t=0时刻的非平衡载流子浓度。此式表达了非平衡载流子随时间呈指数衰减的规律。

得证。

5-6、证明:假设这是n 型半导体,杂质浓度和内建电场分布入图所示

E 内

稳态时,半导体内部是电中性的,

Jn=0

()

10→=--x n n E nq dx dn q D μ

对于非简并半导体

()()()()()

()()()()

()

()()()()()()()()()()()()()()()T k q

D x n dx x dV D x n dx x dV D x n

E D dx x dn x n dx

x dV T k q dx x dn e

n e N x n x V q E x E n n n n n n x n n T

k x qV T

k E x E c c c F

c 00545143302000=?=→??=???? ??-????? ?

?-=??-=?→??=?

→?=?=→-+=--

μμμμ式式由由所以

这就是非简并半导体满足的爱因斯坦关系。

得证。

5-7、答:间接复合效应是指非平衡载流子通过位于禁带中特别是位于禁带中央的杂质或缺陷能级E t 而逐渐消失的效应,E t 的存在可能大大促进载流子的复合;陷阱效应是指非平衡载流子落入位于禁带中的杂质或缺陷能级E t 中,使在E t 上的电子或空穴的填充情况比热平衡时有较大的变化,从引起Δn≠Δp ,这种效应对瞬态过程的影响很重要。此外,最有效的复合中心在禁带中央,而最有效的陷阱能级在费米能级附近。一般来说,所有的杂质或缺陷能级都有某种程度的陷阱效应,而且陷阱效应是否成立还与一定的外界条件有关。

5-8、解:光照前

()1100167.1611--?Ω≈==cm ρσ

光照后 Δp=G τ=(4×1021)(8×10-6

)=3.2×1017 cm -3 则()()()1119160051.3490106.1102.3167.1---?Ω=??+=???+=?+=cm q p p μσσσσ

答:光照前后样品的电导率分别为1.167Ω-1cm -1和3.51Ω-1cm -1。

5-9、证明:对于非简并的非均匀半导体

()()dx dn qD E nq j j j n

n n n +=+=μ漂扩

由于

()[]T

k E x qV E c n F c e

N n 00---

?=)

T k dx dE dx dV q n dx dn n

F 0+

?=

同时利用非简并半导体的爱因斯坦关系,所以

dx

dE

n T

k dx dE dx dV q n q T k q dx dV nq dx

dn

qD E nq j n

F

n n

F n n n

n ?=?????

? ?

?+

??+-=+=μμμμ00)()(

得证。

5-10、解:

()

()

(

)()

2

56

8

16

1919

190/1015.71041010

2106.110

602.1026.0055.0106.1m A dx

dp

q T k q dx

dp

qD j n p

p -----?-=?????

?

? ???????-=???

? ??-=-=μ扩

答:空穴的扩散电流密度为7.15╳10-5A/m 2

5-11、证明:在小信号条件下,本征半导体的非平衡载流子的寿命

()i rn p n r 21

100=

+≈τ 而 i n p n 2p n 20000=≥+

所以

i rn 21≤

τ

本征半导体的非平衡载流子的寿命最长。

得证。

半导体中的电子状态(精)

第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小;

半导体中的电子状态习题

第一篇 半导体中的电子状态习题 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性 说明之。 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 试指出空穴的主要特征。 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 简述Ge 、Si 和GaAS 的能带结构的主要特征。 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小; (2) GaAs : a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ; b )直接能隙结构; c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ; 1-5某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1)能带宽度; (2)能带底和能带顶的有效质量。 解:

半导体中的电子状态(精)

半导体中的电子状态(精)

第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的 电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小;

半导体中的电子状态

第一章半导体中的电子状态 半导体的独特物理性质,决定于其中的电子,而电子的状态与运动则与原子的结合方式和排列规则有关。为了研究和利用半导体的这些物理性质,本章将简要介绍半导体单晶材料的电子状态及其运动规律。 研究固态晶体中电子状态的能带理论,已在固体物理学中比较完整地介绍过,本章仅作简要回顾,着重介绍几种重要半导体材料的能带结构。 §1.1半导体的晶格结构和结合性质 从固体物理学中已经知道,固态晶体具有多种结晶形态,分属7大晶系14种类型。结晶半导体大多数属于立方(cubic)晶系和六方(Hexagon)晶系,且都是四面体(tetradron)结构,只有少数半导体具有其他结构。固体中原子的结合,归结为5种方式。半导体中原子的结合以共价键为基础,化合物半导体包含有程度不等的离子键成分。 一、元素的电负性与原子的结合性质 从固体物理学中已经了解到:由于金属元素的原子对其价电子的束缚能力很弱,当金属原子与金属原子凝聚在一起时,所有原子全部电离而公有全部自由了的价电子,靠这些公有电子形成的电子云的束缚而结合在一起;而当金属原子与很容易接受一个外来电子的卤族元素原子凝聚在一起时,金属原子电离出来的电子则一对一地被卤族原子所接收,从而分别成为正负离子,靠离子键结合在一起。IV族元素的原子既不易失去其价电子也不易接受外来电子,当同种IV族元素的原子凝聚在一起时,相邻原子靠其公有价电子而结合在一起。分子晶体的组成原子因其外层电子数为8,是一种具有球对称性的稳定封闭壳层结构,当这些原子凝聚在一起时,其价电子的分布不会有什么变化。由此可见,原子以何种方式结合成固体,完全决定于其得到或失去电子的能力。 用电负性(electronegativity)来描述原子的这一能力。 1.电负性的定义 原子吸引其在化学键中与另一原子之公有电子偶的能力,其值为原子的电离能与电子亲和能之和。电离能指原子初次电离所需要的能量,亲和能则指中性原子获得一个电子所释放的能量。 2.一些元素的电负性及其变化规律 一些元素的电负性(Pauling尺度) Li 1.00 Be 1.50 B 2.00 C 2.50 N 3.00 O 3.50 F 4.00 Na 0.9 Mg 1.2 Al 1.5 Si 1.8 P 2.1 S 2.5 Cl 3.0 Cu 1.9 Zn 1.6 Ga 1.6 Ge 1.8 As 2.0 Se 2.4 Br 2.8 Ag 1.9 Cd 1.7 In 1.7 Sn 1.8 Sb 1.9 Te 2.1 I 2.5 Au 2.4 Hg 1.9 Tl 1.8 Pb 1.8 Bi 1.9 Phillips尺度(考虑了价电子屏蔽) Li 1.00 Be 1.50 B 2.00 C 2.50 N 3.00 O 3.50 F 4.00 Na 0.72 Mg 0.95 Al 1.18 Si 1.41 P 1.64 S 1.87 Cl 2.1 Cu 0.79 Zn 0.91 Ga 1.13 Ge 1.35 As 1.57 Se 1.79 Br 2.01 Ag 0.57 Cd 0.83 In 0.99 Sn 1.15 Sb 1.31 Te 1.47 I 1.63

半导体中的电子状态

晶体结构晶格 §1晶格相关的基本概念 1.晶体:原子周期排列,有周期性的物质。 2.晶体结构:原子排列的具体形式。 3.晶格:典型单元重复排列构成晶格。 4.晶胞:重复性的周期单元。 5.晶体学晶胞:反映晶格对称性质的最小单元。 6.晶格常数:晶体学晶胞各个边的实际长度。 7.简单晶格&复式晶格:原胞中包含一个原子的为简单晶格,两个或者两个以上的称为复 式晶格。 8.布拉伐格子:体现晶体周期性的格子称为布拉伐格子。(布拉伐格子的每个格点对应一 个原胞,简单晶格的晶格本身和布拉伐格子完全相同;复式晶格每种等价原子都构成和布拉伐格子相同的格子。) 9.基失:以原胞共顶点三个边做成三个矢量,α1,α2,α3,并以其中一个格点为原点, 则布拉伐格子的格点可以表示为αL=L1α1 +L2α2 +L3α3 。把α1,α2,α3 称为基矢。 10.平移对称性:整个晶体按9中定义的矢量αL 平移,晶格与自身重合,这种特性称为平 移对称性。(在晶体中,一般的物理量都具有平移对称性) 11.晶向&晶向指数:参考教材。(要理解) 12.晶面&晶面指数:参考教材。(要理解) 立方晶系中,若晶向指数和晶面指数相同则互相垂直。 §2金刚石结构,类金刚石结构(闪锌矿结构) 金刚石结构:金刚石结构是一种由相同原子构成的复式晶格,它是由两个面心立方晶格沿立方对称晶胞的体对角线错开1/4长度套构而成。常见的半导体中Ge,Si,α-Sn(灰锡)都属于这种晶格。 金刚石结构的特点:每个原子都有四个最邻近原子,它们总是处在一个正四面体的顶点上。(每个原子所具有的最邻近原子的数目称为配位数) 每两个邻近原子都沿一个<1,1,1,>方向, 处于四面体顶点的两个原子连线沿一个<1,1,0>方向, 四面体不共顶点两个棱中点连线沿一个<1,0,0,>方向。

半导体中的电子状态精

半导体中的电子状态(精)

作者:日期:

第一篇习题半导体中的电子状态 1- 1、什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性 说明之。 1- 2、试定性说明Ge、Si的禁带宽度具有负温度系数的原因 1- 3、试指出空穴的主要特征。 1- 4、简述Ge、Si和GaAS的能带结构的主要特征。 1- 5、某一维晶体的电子能带为 E(k)二E。1—0.1cos(ka)—0.3sin(ka) 1 其中E0=3eV,晶格常数a=5X0-11m。求: (1)能带宽度; (2)能带底和能带顶的有效质量。 第一篇题解半导体中的电子状态 1- 1、解:在一定温度下,价带电子获得足够的能量(》E g)被激发到导带成为 导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1- 2、解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge、Si的禁带宽度具有负温度系数。 1- 3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电 子的集体运动状态,是准粒子。主要特征如下: A、荷正电:+q ; B、空穴浓度表示为p (电子浓度表示为n); C、E P=-E n D、m p*=-m n*。 1- 4、解: (1) Ge、Si: a) Eg (Si : 0K) = 1.21eV ; Eg (Ge : 0K) = 1.170eV ; b) 间接能隙结构 C)禁带宽度E g随温度增加而减小;

习题 半导体中的电子状态

习题与解答:是针对相应学习内容而编写的,内容分为七篇。分为简答、分析、论述、求解等类型。建议学习者首先自行解答,再阅读解答以行印证。 第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 刘诺 编 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为 导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温 度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子 的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ;

B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小; (2) GaAs : a )E g (300K )= 1.428eV , Eg (0K) = 1.522eV ; b )直接能隙结构; c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ; 1-5、 解: (1) 由题意得: [][])sin(3)cos(1.0)cos(3)sin(1.0022 2 0ka ka E a k d dE ka ka aE dk dE +=-= eV E E E E a k d dE a k E a k d dE a k a k a k ka tg dk dE o o o o 1384.1min max , 01028.2)4349.198sin 34349.198(cos 1.0,4349.198, 01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.183 1,0400222 2400222 121=-=??=+====∴==--则能带宽度对应能带极大值。 当对应能带极小值; 当)(得令 (2) ()() ()() () ()??????????-=??????????-=?????????? ??=?=??????????=?????????? ??=----------kg k d dE h m kg k d dE h m k n k n 27 1234 401 222*271234401 222*10925.110625.61028.2110925.110625.61028.2121带顶带底则 答:能带宽度约为1.1384Ev ,能带顶部电子的有效质量约为1.925x10-27 kg ,能带底部电子的有效质量约为-1.925x10-27kg 。

相关主题
文本预览
相关文档 最新文档