当前位置:文档之家› 多光谱和全色图像研究背景及意义

多光谱和全色图像研究背景及意义

多光谱和全色图像研究背景及意义
多光谱和全色图像研究背景及意义

1、 研究背景及意义

遥感影像具有成像区域面积大(一幅图像可以包括的地表的面积可达几十*几十平方公里,甚至上百),在外太空可以不受天气影像,成像快速等特点,在工农业生产、军事侦察打击,地球资源普查等方面有着重要应用。一般遥感卫星上具有一个全色传感器,可以对大范围的光谱进行光谱响应,形成全色图像。全色图像是灰色图像,具有高的空间分辨率,但是因为只有一个光谱带,因此光谱分辨率较低,不能确定地物的类型,对地物类型识别极为不利。为了弥补全色图像的不足,卫星上一般同时搭载一个多光谱传感器(常见的有红、绿、蓝、近红外、远红外光谱带等)。由于物理器件的限制,多光谱传感器具有高的光谱分辨率,但是空间分辨率较低。多光谱和全色图像融合就是结合全色图像具有高的空间分辨率,多光谱图像具有高的光谱分辨率的优点,合成具有全色的空间分辨率和多光谱图像的光谱分辨率的融合图像。

2、 研究现状

早期多光谱和全色图像的融合方法有比率法(brovey 方法)和成分替换法(HIS 方法、PCA 方法等),后来随着多尺度分析工具的出现,出现了多尺度图像融合(高通滤波,小波变换,contourlet 变换,NSCT 等变换的多尺度图像融合方法),最近有基于变分方程能量函数最优解的图像融合和基于稀疏表示的图像融合以及两类方法的结合(如HIS 和多尺度分析的结合)的融合方法。

比率方法图像融合的一般化模型是:

i i P F MS S

↑= 其中Fi 融合图像的第i 带,P 是全色图像,S 是合成图像,MSi 是上采样后的第i 带多光谱图像。其中合成图像S 是关键,早期是通过多光谱带的平均得到合成图像S ,后来通过多光

谱图像的加权平均得到,现在是通过求最小化差异函数2min P S -P P 得到。该方法得到的

融合图像具有高的空间分辨率,但是光谱失真较严重。

成分替换图像融合的一般化模型是:

()i i i adj syn F MS g P P =+-

(Q )syn i i i P MS b =+∑

其中MS i 和F i 是第i 带多光谱图像和第i 带融合图像,g i 是第i 带的加权因子。并且为了减小P adj 和P syn 之间的光谱差异,多光谱和全色图像之间的多次回归被应用到计算加权因子(Q i ),该加权因子被应用到计算P syn 。其中b i 是第i 带的常量项。注意;仅仅多光谱图像的光谱范围属于全色图像时候下面的公式才合适。

多尺度分解图像融合是对源图像进行多尺度多方向分解,得到高频系数和低频系数,对高低频系数进行融合,得到融合图像的高低频系数,然后进行逆变换得到融合图像。包括金字塔图像融合、contourlet 变换图像融合、NSCT 图像融合、双边滤波和联合双边滤波图像融合等。

基于数字图像处理

基于数字图像处理 的目标识别 通过这半个学期对数字图像处理这门课程的学习,我了解了有关数字图像处理的知识,并且对数字图像处理的相关仿真软件——matlab有了更加深入的了解,可以更加熟练的使用matlab软件处理实际问题,从而促进我对数字图像处理这门课程产生更加浓烈的兴趣,也让我对这种仿真软件有了更加全面的认识,了解它更多的功能。在课程结束之际,我利用自己在课堂上学习的一些知识和在课下学习的东西写出以下总结。希望老师给予耐心指导。 一、数字图像处理技术 数字图像处理(Dital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。数字图像处理技术已经在各个领域上都有了比较广泛的应用。从接近人们日常生活的照相,电视图像显示,到工业上面对某些零件的处理等,再到军事类的人像识别,雷达目标识别等,这些都离不开数字图像处理的身影。 图像处理的信息量很大,对处理速度的要求也比较高。Matlab强大的运算和图形展示功能,使图像处理变得更加的简单和直观。本文基于

MATLAB的数字图像处理环境,设计并实现了一个图像处理系统,展示如何通过利用Matlab的工具函数和多种算法实现对图形图像的各种处理。论述了利用设计的系统实现图像文件(bmp、jpg、tiff、gif等)进行打开、保存、另存、打印、退出等功能操作,图像预处理功能(包括彩色图像的灰度化变换等、一般灰度图像的二值化处理、色彩增强等),图像分割,图像特征提取等图像处理。 图像的数学表达式可表示为:f(x,y)表示幅图像。x,y,f为有限、离散值。黑白图像可用二维函数f(x,y)表示,其中x,y是平面的二维坐标,f(x,y)表示点(x,y)的亮度值(灰度值)。对模拟图像来讲,f(x,y)显然是连续函数。为了适应数字计算机的处理,必须对连续图像函数进行空间和幅值数字化。空间坐标(x,y)的数字化称为图像采样,而幅值数字化被称为灰度级量化。经过数字化后的图像称为数字图像(或离散图像)。 F(x,y,z)表示三维的图像,f 为点的分布,有限,离散值,为彩色图像的表示方式。 (1)数字图像的灰度图像的阵列表示法。 设连续图像f(x,y)按等间隔采样,排成MxN阵列(一般取方阵列NxN) 图像阵列中每个元素都是离散值,称为像素(pix—el)。在数字图像处理中,一般取阵列N和灰度级C都是2的整数幂,即取N=及G=。对一般电视图像,N取256或512,灰度级C取64级(m=6bit)至256级m=8bit),即可满足图像处理的需要。对特殊要求的图像,如SAR图片取 10000×10000,灰度级m取8bit或者16bit。

多光谱图像

多光谱图像 图像理解是在数字图像处理、计算机技术和人工智能不断发展的基础上产生的一种模拟人的图像识别机理的理论,它与计算机视觉理论有许多共同的部分,或者说有许多交叉的部分,它与人工智能、专家系统也有着一些共同的地方。 图像理解主要包括三个层次,其低层为一般图像处理;中层为图像中特征的符号化组织过程;高层为抽象的符号推理。因此,计算机视觉主要与其低层,人工智能主要与其高层产生重叠。目前,就图像理解这一理论的研究探讨有了专门的期刊;有关大学设置了专门的课程;有关专家学者写了专著。比如国防科技大学的王润生教授就系统地介绍和总结了图像理解的基本理论、方法和国内外研究现状等〔1〕。这一方面的基础理论和方法引起了有关学者和科研人员的注意和浓厚兴趣,他们结合自己的工作领域,进行了更深入的研究。应当说,有关的理论和方法已经被极大地丰富了。比如,有关图像纹理分析这方面的论文、论著数不胜数,其中,有关新理论新方法(如分形分维方法)的应用,更为这一理论注入了新内容;再如,我国数字摄影测量界已经将“双目”图像的分析理论和方法推向了具有世界先进水平的境界。 尽管如此,图像理解的理论与方法仍有严重不足之处。这并不是指这一理论尚未成熟,而是指它的理论与方法还存在着片面性,还没有成为一个完整的体系。因为图像理解的对象是各类图像,并没有限定是某一类图像,那么,现在的问题就是遥感图像理解(主要是多光谱图像理解)的理论十分贫乏。以人类生存环境及地球资源为主要研究目标获取的各种遥感图像已经得到越来越广泛的应用,丰富的光谱信息及其在时间空间域的分辨率的提高,配合着地理信息系统技术,全球定位系统技术和因特网技术的发展和普及,为图像信息的广泛应用创造了空前繁荣的局面,成为信息时代的显著特征,在信息高速公路和数字地球战略中占据着极其重要的地位。然而,现有的图像理解理论和方法在如此丰富的信息面前却显得苍白无力。应当说,面对丰富的遥感信息,人们一直在研究如何处理和应用,有关这方面的理论和方法的研究成果也是不少的,但似乎并没有从图像理解的角度加以总结、提练,有的方面甚至缺乏系统的研究。如对于多光谱图像边缘提取、区域分割等应以什么理论为基础,应采取什么方法;在纹理分析方面,多光谱图像的纹理具有怎样的意义,或者多光谱图像的纹理概念是什么,需要采取什么方法进行分析;时序多光谱图像又应当采取什么分析方法;针对多光谱图像的符号化工作应当如何进行,在此基础上如何利用知识进行推断,如何在模拟人的思维模式方面更深入地开展研究,等等,这些都是应当考虑的问题。这些问题在图像理解的理论与方法之中尚没有或很少有现成的答案。应该承认,对上述一些问题已有一些研究,至少我们自己就已经在一些方面作了初步的研究,但这些研究还不够,研究的成果还未加以总结。 在现实工作中,多光谱图像的分析具有非常重要的意义。丰富的光谱信息为地物的边界和地物目标的识别创造了良好的条件,比起单色图像,多光谱图像具有极大的优越性。随着多光谱图像空间分辨率的提高和地理信息系统技术的发展,人们的信心更加增强,对多光谱图像处理的要求也越来越高。比如,在地形图更新生产中,如果以多光谱图像为背景,就可以半自动地确定地物分布的边缘或跟踪线状地物的“骨架线”,从而大大减轻人工劳动强度,提高效率;又如,利用多光谱图像和各种背景数据如地貌、土壤信息,即将遥感与地理信息系统结合,引入人工智能方法,就象已有的图像理解系统那样,更好、更准确地提取地物目标信息,为土地利用分析、资源环境调查,提供更高质量的成果,已经是许

东南大学数字图像处理实验报告

数字图像处理 实验报告 学号:04211734 姓名:付永钦 日期:2014/6/7 1.图像直方图统计 ①原理:灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。 通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 ②算法: clear all PS=imread('girl-grey1.jpg'); %读入JPG彩色图像文件figure(1);subplot(1,2,1);imshow(PS);title('原图像灰度图'); [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255 GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率end figure(1);subplot(1,2,2);bar(0:255,GP,'g') %绘制直方图 axis([0 255 min(GP) max(GP)]); title('原图像直方图') xlabel('灰度值') ylabel('出现概率') ③处理结果:

原图像灰度图 100 200 0.005 0.010.0150.020.025 0.030.035 0.04原图像直方图 灰度值 出现概率 ④结果分析:由图可以看出,原图像的灰度直方图比较集中。 2. 图像的线性变换 ①原理:直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主 要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 ②算法: clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('girl-grey1.jpg'); figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图'); %二,绘制直方图 [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255

基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统 言经官 电气学院电子112 摘要:车牌识别系统(License Plate Recognition 简称LPR)技术基于数字图像处理,是智能交通系统中的关键技术,同时他的发展也十分迅速,已经逐渐融入到我们的现实生活中。文章介绍了车牌识别系统的意义、图像去噪处理以及图像二值化方法,并通过仿真试验模拟了图像处理的过程。本文所做的工作在于前期的图像预处理工作。本次设计着重在于图像识别方面, 中心工作都为此而展开,文中没有进行车牌的定位处理,而是采用数码相机直接对牌照进行正面拍照,获取原始车牌图像。之后利用Matlab编程对图片进行了大小的调整、彩色图片转化成灰度图片、图片去噪、以及图片二值化等工作。其中,去噪与二值化是关系图像识别率的关键。 关键字:车牌识别系统;图像预处理;字符识别;Matlab;去噪;二值化 引言 智能交通系统(ITS)是当今世界交通管理体系发展的必然趋势,而作为智能交通系统中的重要组成部分之一的车牌自动识别技术,目前已被广泛应用于城市道路监控、高速公路收费与监控、小区与停车场出入口管理、公安治安卡口等场合,成为研究的热点。 伴随我国国民经济的高速发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制,安全管理的要求也日益提高。因此迫切需要采用高科技手段,对违法违章车辆牌照进行登记, 在这种情况下,作为信息来源的自动检索,图像识别技术越来越受到人们的重视。车牌识别系统的出现成为了交通管制必不可少的有力武器。 1 车牌识别系统的目标 利用计算机等辅助设备进行的自动汽车牌照自动识别就是在装备了数字摄像设备和计算机信息管理系统等软硬件平台的基础之上,通过对车辆图像的采集,采用先进的图像处理、模式识别和人工智能技术,在图像中找到车牌的位置,提取出组成车牌号码的全部字符图像,再识别出车牌中的文字、字母和数字,最后给出车牌的真实号码。国外的车牌识别研究始于80 年代,90 年代始已有不少成套的产品出现。由于我国车牌的组成及组合的方式与国外的车牌不一致,使得我们不能直接使用国外的车辆牌照识别系统,而必须针对我国车牌重新设计相应的车辆牌照识别系统。车牌识别的使用环境、背景各有差异,目前还没有一种算法能在不同环境、各种复杂背景条件下达到非常高的车牌识别率,因而车牌识别技术仍然是研究的重点。 2 MATLAB 及其图像处理工具概述 MATLAB 是MAT rix LABora tory( 矩阵实验室) 的缩写, 是Ma thWorks 公司开发的一种功能强、效率高、简单易学的数学软件。MATLAB 7. 1 是一套功能十分强大的工程计算及数据分析软件, 其应用范围涵盖了数学、工业技术、电子科学、医疗卫生、建筑、金融、数字图像处理等各个领域。MATLAB 的图像处理工具箱, 功能十分强大, 支持的图像文件格式丰富, 如* .BMP、* . JPG、* . JPEG、* . GIF、* . ti;f% 95% 94、* . ti;f%95%94F、* . PNG、* . PCX、* . XWD、* . HDF、* . ICO、* .CUR 等。本文将给出MATLAB的图像处理工具箱中的图像处理函数实现图像处理与分析的应用技术实例。

图像处理与分析实习内容

图像处理与分析 实习报告 学院:信息工程学院 专业:摄影测量与遥感 姓名:王新 学号: 120111267

第一部Matlab图像操作 (1)用Matlab的图像文件读取函数imread,熟练掌握对不同图像的格式进行读取。用Matlab的图像显示函数对不同的图像数据加以显示。掌握bmp/tiff/jpeg 三种常用图像文件格式,举例说明三种文件格式的适用场合。 步骤: 以tif格式图片的读取与显示为例: >>I1=imread(‘F:\MATLAB701\toolbox\images\imdemos\cameraman.tif’); %读取cameraman.tif >>imshow(I1); %显示cameraman.tif bmp和jpeg格式的图像的读取与显示类似。 三种文件格式的适用场合: 1)BMP:BMP文件格式是Windows环境中交换与图有关的数据的一种标准,因此在Windows环境中运行的图形图像软件都支持BMP图像格式,但是不受Web 浏览器支持。 2)TIFF:TIFF图像文件是由Aldus和Microsoft公司为桌上出版系统研制开发的一种较为通用的图像文件格式,适用于在应用程序之间和计算机平台之间的交换文件,是文档图像和文档管理系统中的标准格式。它的出现使得图像数据交换变得简单。TIFF 可以被认为是印刷行业中受到支持最广的图形文件格式。TIFF 支持可选压缩,不适用于在 Web 浏览器中查看。 3)JPEG:JPEG是一种支持8位和24位色彩的压缩位图格式,适合在网络上传输,是非常流行的图形文件格式,是可以把文件压缩到最小的格式。JPEG格式的应用非常广泛,特别是在网络和光盘读物上,都能找到它的身影。目前各类浏览器均支持JPEG这种图像格式。JPEG不适用于所含颜色很少、具有大块颜色相近的区域或亮度差异十分明显的较简单的图片。 (2)图像变换。完成输入图像的平移、缩放、旋转的编码实现。若调用他人库函数,要求掌握各几何变换的实现算法过程。 1)平移 F=imread('p2.bmp'); se = translate(strel(1), [10 20]); %参数[10 20]可以修改,修改后平移距离对应改变 J = imdilate(F,se); figure; imshow(J,[]);title('右移后图形'); 2)缩放 I=imread('D:\MATLABSETUP\toolbox\images\imdemos\cameraman.tif'); J1=imresize(I,0.2);%缩放为0.2倍

基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统 言经官 电气学院电子112 摘要:车牌识别系统(License Plate Recognition 简称LPR)技术基于数字图像处理,是智能交通系统中的关键技术,同时他的发展也十分迅速,已经逐渐融入到我们的现实生活中。文章介绍了车牌识别系统的意义、图像去噪处理以及图像二值化方法,并通过仿真试验模拟了图像处理的过程。本文所做的工作在于前期的图像预处理工作。本次设计着重在于图像识别方面, 中心工作都为此而展开,文中没有进行车牌的定位处理,而是采用数码相机直接对牌照进行正面拍照,获取原始车牌图像。之后利用Matlab编程对图片进行了大小的调整、彩色图片转化成灰度图片、图片去噪、以及图片二值化等工作。其中,去噪与二值化是关系图像识别率的关键。 关键字:车牌识别系统;图像预处理;字符识别;Matlab;去噪;二值化 引言 智能交通系统(ITS)是当今世界交通管理体系发展的必然趋势,而作为智能交通系统中的重要组成部分之一的车牌自动识别技术,目前已被广泛应用于城市道路监控、高速公路收费与监控、小区与停车场出入口管理、公安治安卡口等场合,成为研究的热点。 伴随我国国民经济的高速发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制,安全管理的要求也日益提高。因此迫切需要采用高科技手段,对违法违章车辆牌照进行登记, 在这种情况下,作为信息来源的自动检索,图像识别技术越来越受到人们的重视。车牌识别系统的出现成为了交通管制必不可少的有力武器。 1 车牌识别系统的目标 利用计算机等辅助设备进行的自动汽车牌照自动识别就是在装备了数字摄像设备和计算机信息管理系统等软硬件平台的基础之上,通过对车辆图像的采集,采用先进的图像处理、模式识别和人工智能技术,在图像中找到车牌的位置,提取出组成车牌号码的全部字符图像,再识别出车牌中的文字、字母和数字,最后给出车牌的真实号码。国外的车牌识别研究始于80 年代,90 年代始已有不少成套的产品出现。由于我国车牌的组成及组合的方式与国外的车牌不一致,使得我们不能直接使用国外的车辆牌照识别系统,而必须针对我国车牌重新设计相应的车辆牌照识别系统。车牌识别的使用环境、背景各有差异,目前还没有一种算法能在不同环境、各种复杂背景条件下达到非常高的车牌识别率,因而车牌识别技术仍然是研究的重点。 2 MATLAB 及其图像处理工具概述 MATLAB 是MAT rix LABora tory( 矩阵实验室) 的缩写, 是Ma thWorks 公司开发的一种功能强、效率高、简单易学的数学软件。MATLAB 7. 1 是一套功能十分强大的工程计算及数据分析软件, 其应用范围涵盖了数学、工业技术、电子科学、医疗卫生、建筑、金融、数字图像处理等各个领域。MATLAB 的图像处理工具箱, 功能十分强大, 支持的图像文件格式丰富, 如* .BMP、* . JPG、* . JPEG、* . GIF、* . ti;f% 95% 94、* . ti;f%95%94F、* . PNG、* . PCX、* . XWD、* . HDF、* . ICO、* .CUR 等。本文将给出MATLAB的图像处理工具箱中的图像处理函数实现图像处理与分析的应用技术实例。

数字图像处理报告

《数字图像处理》 实验报告 院系:XXXXX 学号:XXXXXXX 姓名:XXX 指导老师:XX XX 完成时间:2020.02.02

题目一: (1)将宽为2n的正方形图像,用FFT算法从空域变换到频域,并用频域图像的模来进行显示; (2)使图像能量中心,对应到几何中心,并用频域图像的模来进行显示; (3)将频域图象,通过FFT逆变换到空域,并显示。 该题实现环境为操作系统:Windows 10 操作系统;编程环境:VS2013;内部核心处理算法库:OpenCV。 此题目的具体实现过程及其展示如下所示:

} imshow("原始图像", srcImage); //将输入图像延扩到最佳的尺寸,边界用0补充 int m = getOptimalDFTSize(srcImage.rows); int n = getOptimalDFTSize(srcImage.cols); //将添加的像素初始化为0. Mat padded; copyMakeBorder(srcImage, padded,0, m - srcImage.rows,0, n -srcImage.cols, BORDER_CONSTANT, Scalar::all(0)); //为傅立叶变换的结果(实部和虚部)分配存储空间。 //将planes数组组合合并成一个多通道的数组complexI Mat planes[]={ Mat_(padded), Mat::zeros(padded.size(), CV_32F)}; Mat complexI; merge(planes,2, complexI); //进行就地离散傅里叶变换 dft(complexI, complexI); //将复数转换为幅值,即=> log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2)) split(complexI, planes); // 将多通道数组complexI分离成几个单通道数组,planes[0] = Re(DFT(I), //planes[1] = Im(DFT(I))

photoshop图像处理教程

图像处理实验一 请先在D盘新建“学号姓名”文件夹,将所有实验结果保存到里面。 Photoshop软件下载地址:https://www.doczj.com/doc/4912223861.html,/cecdown/ 一、“选择”工具和“渐变”工具制作“钮扣” 【操作步骤】 步骤1: 运行Photoshop,新建文档,在如图2-4-1所示的“新建”对话框中设置300像素×300像素的图像大小、分辨率为72像素/英寸、RGB模式的图片文件,单击“好”按钮后出现新文档窗口。 图2-4-1 步骤2: 用“油漆桶工具”把图片背景填充为黑色。 提示:如果工具箱中找不到油漆桶工具,可以在“渐变工具”上按下左键一会儿,在出现的菜单中选择。 步骤3: 选中椭圆选框工具,按着Shift键不放,同时按住鼠标左键在图片中央拖动,绘制一个圆形选区,如图2-4-2所示。 提示:如果工具箱中找不到“椭圆选框工具”,可以在其他选择工具上按下左键一会儿,在出现的菜单中选择。 图2-4-2 图2-4-3步骤4: 单击工具箱下面的“设置前景色”按扭,在随后弹出的“拾色器”对

话框中把R 、G 、B 值分别设为0、30、255,如图2-4-3所示;单击“好”按扭关闭对话框,即可把前景色设置为兰色。按住Alt 键,单击工具箱下面的背景色设置按扭,用同样的方法把背景色设为白色,R 、G 、B 值为255、255、255。 步骤5: 选择渐变工具,在如图2-4-4所示的选项栏单击“渐变类型选择”组中的第一个按钮“线性渐变”,单击“渐变色编辑与选择工具”,在打开的“渐变编辑器”对话框中,选择“前景色到背景色渐变”,即把渐变方式设置为从前景色到背景色。然后把鼠标从圆形选区的左上角拖动到圆形选区的右下角,松开左键,产生渐变效果。如图2-4-5所示。 图2-4-4 步骤6: 使用“选择/取消选择”菜单命令,取消原来的选区,再次用椭圆选择工具绘制一个小一点的圆形选区,调整位置使之与原来的圆形同心。如图2-4-6所示。 图2-4-5 图2-4-6 步骤7: 选择渐变工具,渐变方式保持不变。然后把鼠标指针从圆形选区的右下角拖曳到圆形选区的左上角。如图2-4-7所示。 图2-4-7 图2-4-8 步骤8: 使用“选择/取消选择”菜单命令取消选区。 步骤9: 把前景色设为黑色,用画笔工具 在钮扣的中心位置采用单击的办法绘制四

图像处理 实验报告

摘要: 图像处理,用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。基本内容图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。图像处理一般指数字图像处理。 数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。目前,图像处理演示系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。本图像处理演示系统以数字图像处理理论为基础,对某些常用功能进行界面化设计,便于初级用户的操作。 设计要求 可视化界面,采用多幅不同形式图像验证系统的正确性; 合理选择不同形式图像,反应各功能模块的效果及验证系统的正确性 对图像进行灰度级映射,对比分析变换前后的直方图变化; 1.课题目的与要求 目的: 基本功能:彩色图像转灰度图像 图像的几何空间变换:平移,旋转,剪切,缩放 图像的算术处理:加、减、乘 图像的灰度拉伸方法(包含参数设置); 直方图的统计和绘制;直方图均衡化和规定化; 要求: 1、熟悉图像点运算、代数运算、几何运算的基本定

义和常见方法; 2、掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法 3、掌握在MATLAB中进行插值的方法 4、运用MATLAB语言进行图像的插值缩放和插值旋转等 5、学会运用图像的灰度拉伸方法 6、学会运用图像的直方图设计和绘制;以及均衡化和规定化 7、进一步熟悉了解MATLAB语言的应用,将数字图像处理更好的应用于实际2.课题设计内容描述 1>彩色图像转化灰度图像: 大部分图像都是RGB格式。RGB是指红,绿,蓝三色。通常是每一色都是256个级。相当于过去摄影里提到了8级灰阶。 真彩色图像通常是就是指RGB。通常是三个8位,合起来是24位。不过每一个颜色并不一定是8位。比如有些显卡可以显示16位,或者是32位。所以就有16位真彩和32位真彩。 在一些特殊环境下需要将真彩色转换成灰度图像。 1单独处理每一个颜色分量。 2.处理图像的“灰度“,有时候又称为“高度”。边缘加强,平滑,去噪,加 锐度等。 3.当用黑白打印机打印照片时,通常也需要将彩色转成灰白,处理后再打印 4.摄影里,通过黑白照片体现“型体”与“线条”,“光线”。 2>图像的几何空间变化: 图像平移是将图像进行上下左右的等比例变化,不改变图像的特征,只改变位置。 图像比例缩放是指将给定的图像在x轴方向按比例缩放fx倍,在y轴按比例缩放fy倍,从而获得一幅新的图像。如果fx=fy,即在x轴方向和y轴方向缩放的比率相同,称这样的比例缩放为图像的全比例缩放。如果fx≠fy,图像的比例缩放会改变原始图象的像素间的相对位置,产生几何畸变。 旋转。一般图像的旋转是以图像的中心为原点,旋转一定的角度,也就是将图像上的所有像素都旋转一个相同的角度。旋转后图像的的大小一般会改变,即可以把转出显示区域的图像截去,或者扩大图像范围来显示所有的图像。图像的旋转变换也可以用矩阵变换来表示。

基于Matlab的数字图像处理系统毕业设计论文

论文(设计)题目: 基于MATLAB的数字图像处理系统设计 姓名宋立涛 学号201211867 学院信息学院 专业电子与通信工程 年级2012级 2013年6月16日

基于MATLAB的数字图像处理系统设计 摘要 MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。 笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。 上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。 关键词:MATLAB 数字图像处理图像处理工具箱图像变换

第一章绪论 1.1 研究目的及意义 图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。 MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。 1.2 国内外研究现状 1.2.1 国内研究现状 国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。 TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGACPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。 南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,

基于多光谱和3D模型重建的人脸图像分析系统及其方法与相关技术

图片简介: 本技术介绍了一种基于多光谱和3D模型重建的人脸图像分析系统及其方法,该系统包括五光谱皮肤检测仪、云端服务器和显示控制模块,通过所述五光谱皮肤检测仪获取五种光谱下的图像信息,并将所述图像信息发送给云端服务器,云端服务器对其进行三维图像重建、肤质检测以及评估分析,得到分析报告和三维图像信息;最后通过显示控制模块进行显示。本技术不仅能满足日常客户需求,还能为人脸面部皮肤的美容或者治疗提供可靠的数据支撑。 技术要求 1.一种具有3D模型重建功能的五光谱皮肤检测仪,其特征在于:包括支架,所述支架上安装有C形架,C形架的中部安装有高清摄像头,以及以高清摄像头为中线左右对称安装有五光谱光源和深度摄像头,五光谱光源位于高清摄像头和深度摄像头中间; 所述支架上还安装有与高清摄像头、五光谱光源和深度摄像头连接的处理模块,用于控制五光谱光源发出不同的光、控制高清摄像头和深度摄像头获取的图像信息并将图像信息上传;它包括处理器、以及与处理器连接的存储模块和数据传输模块; 所述支架上还安装为高清摄像头、五光谱光源、深度摄像头和处理模块提供电源的电源模块。 2.根据权利要求1所述的具有3D模型重建功能的五光谱皮肤检测仪,其特征在于:所述五光谱光源发出的光包括白光、正偏振光、负偏振光、伍氏光和UV光。 3.根据权利要求1所述的具有3D模型重建功能的五光谱皮肤检测仪,其特征在于:所述支架上位于五光谱光源背光面设有挡光板。 4.基于多光谱和3D模型重建的人脸图像分析系统,其特征在于包括: 权利要求2所述的五光谱皮肤检测仪,用于采集人脸皮肤图像信息,所述图像信息包括高清摄像头采集的图像信息以及深度摄像头采集的图像信息; 云端服务器,用于接收所述五光谱皮肤检测仪采集的人脸皮肤图像信息,并对其进行三维图像重建、肤质检测以及评估分析,得到分析报告和三维图像信息;所述云端服务器内包含用于对肤质进行检测的肤质检测模块、用于对肤质进行分析并能生成分析报告的分析报告生成模块和用于对采集的图像信息进行三维图像重建的3D图像重建模块; 控制显示模块,用于控制所述五光谱皮肤检测仪、以及用于显示所述五光谱皮肤检测采集的人脸皮肤图像信息和所述云端服务器得到的分析报告和三维图像信息。 5.根据权利要求4所述的基于多光谱和3D模型重建的人脸图像分析系统,其特征在于:所述肤质检测模块主要用于检测肤质的毛孔、肤质、肤 色、含水量、黑眼圈、皱纹、表皮斑痣、紧致度、敏感度、痘痘、痘印、黑头、红血丝、纹理、皱纹和棕色斑等皮肤项目,以及面部比例数据,例如五官大小、比例、角度、类型,眉毛、嘴唇、面部轮廓、侧面部的比例、角度、类型等数据,三庭五眼、四高三低等面部美学数据等项目。

图像处理读书报告

傅里叶变换在图像处理中的应用 摘 要 为了有效的和快速的对图像进行处理和分析,常需要将原定义在图像空间的图像以某种形式转换(正变换)到另外一些空间,并利用在这些空间的特有性质方便进行一定的加工,最后再转换(反变换或逆变换)回图像空间以得到所需的效果。这些在不同空间转换的技术就是图像变换技术。傅里叶叶变换是一种基本和常用的变换,它把图像从图像空间(空域)转换到频率空间(频域)。 傅立叶变换研究是应用数学的一个重要方向,一个多世纪以来,傅立叶变换作为数学工具被迅速的应用到图像和语音分析等众多领域。通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化计算工作量,被誉为描述图像信息的第二种语言。 理论 正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆 傅里叶变换 傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。 定义:单变量连续函数)(x f 的傅里叶变换)(u F 定义为等式 ?+∞ ∞-= dx e x f u F ux)xp(-j2)()(π 逆变换为: 1 ,...,2,1,02ex p )()(10-==∑-=M x M ux j u F x f M u π 二维离散傅里叶逆变换如下:

∑∑-=-=+=1010))//(2exp(),(),(M u N v N vy M ux j v u F y x f π 其中1,...,2,1,01,...,2,1,0u -=-=N v M 。 如果),(y x f 是实函数,则它的傅里叶变换必然为对称的,即 ),(),(v u F v u F --=* 其中“*”表示对复数的标准共轭操作。它遵循 ) ,(),(v u F v u F --= 其中,傅里叶变换的频率谱是对称的。 傅立叶变换在图像处理中的作用 1. 图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声;边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘。 图像增强的原理: 图像增强从处理的作用域出发可分为空间域和频域两大类。其中,频域增强是将原空间的图像以某种形式转换到其他空间,然后利用该转换空间的特有性质进行图像处理,最后在转换回到原空间,得到处理后的图像,是一种间接增强的算法。 图像增强作为图像处理的重要组成部分,促进了图像增强方法研究的不断深入。目前主要有以下处理方法: 传统的图像增强的处理方法可以分为空域和频域图像增强两大类,其中频域图像增强的方法是对图像经傅里叶变换后的频谱成分进行操作,然后进行傅里叶逆变换得到所需结果,如低通滤波器、高通滤波器、带通和带阻滤波,同态滤波等。 有时候只采用一种方法往往得不到想要的结果,并且还没有出现一种方法能满足人们的任意需要,比如理想低通和高通滤波器并不是很实用,但是作为滤波概念发展的一部分,用来研究滤波器的特性非常有意义,一阶的巴特沃斯低通滤波器没有振铃现象,二阶的振铃通常微小,但是随着阶数的增高振铃便成为一个主要因素,高斯低通滤波器不会产生振铃现象,但是,在需要严格控制低频和高频之间截止频率的过渡的情况下,巴特沃斯滤波器更为合适,所以有时候就需要使用几种增强技术的组合方法。 图像增强示例

基于VC++的数字图像处理课程设计

基于VC++的数字图像处理课程设计 一、概述 本次电子课程设计是基于VC++ 6.0 MFC多文档编程编写一个图像处理软件,这个软件能够实现BMP格式图像的浏览与编辑,打开和保存。实现对图像的平滑处理,包括邻域平均法和中值滤波法。还有对图像的锐化处理,包括梯度法和拉普拉斯算子法。 BMP文件是Windows操作系统中的标准图像文件格式,可以分成两类:设备相关位图和设备无关位图,使用非常广。它采用位映射存储格式,除了图像深度可选外,不采用其他任何压缩,因此BMP文件所占用的空间很大。由于BMP文件格式是Windows环境交换与图有关的数据的一种标准,因此在Windows环境中运行的图形图像软件都支持BMP图像格式。 图像平滑的目的是为了消除噪声,主要处理的方式有邻域平均法即通过提高信噪比,取得较好的平滑效果;空间域低通滤波采用低通滤波的方法去除噪声;以及频率低通滤波法通过除去其高频分量就能去掉噪声,从而使图像的到平滑。 图像锐化的主要目的是为了增强图像边缘、轮廓和细节,使模糊的图像变得更加清晰,颜色、细节变得鲜明突出,图像的质量有所改善,产生更适合人眼观察和识别的图像。 经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可对其进行逆运算(如微分运算)就可以使图像变得清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。 主要功能概述: 1、打开和保存8位bmp图像 2、图像平滑处理:分为邻域平均法和中值滤波法。邻域平均法中又有3*3均值滤波器 法、超限邻域平均法、n*n均值滤波器法、有选择的局部平均化。中值滤波法中有n*n中值滤波器法、十字形中值滤波法、n*n最大值滤波器法。 3、图像锐化处理:分为梯度法和拉普拉斯算子法。 二、程序流程图

全色卫星影像 多光谱卫星影像 高光谱卫星影像

北京揽宇方圆信息技术有限公司 全色卫星影像多光谱卫星影像高光谱卫星影像 随着光谱分辨率的不断提高,光学遥感的发展过程可分为:全色(Panchromatic)→彩色(Color Photography)→多光谱(Multispectral)→高光谱(hyspectral)。 注: 全色波段(Panchromatic band),因为是单波段,在图上显示是灰度图片。全色遥感影像一般空间分辨率高,但无法显示地物色彩。实际操作中,我们经常将之与波段影象融合处理,得到既有全色影象的高分辨率,又有多波段影象的彩色信息的影象。 全色波段,一般指使用0.5微米到0.75微米左右的单波段,即从绿色往后的可见光波段。全色遥感影象也就是对地物辐射中全色波段的影象摄取,因为是单波段,在图上显示是灰度图片。全色遥感影象一般空间分辨率高,但无法显示地物色彩。 多光谱遥感 多光谱遥感:将地物辐射电磁破分割成若干个较窄的光谱段,以摄影或扫描的方式,在同一时间获得同一目标不同波段信息的遥感技术。 原理:不同地物有不同的光谱特性,同一地物则具有相同的光谱特性。不同地物在不同波段的辐射能量有差别,取得的不同波段图像上有差别。 优点:多光谱遥感不仅可以根据影像的形态和结构的差异判别地物,还可以根据光谱特性的差异判别地物,扩大了遥感的信息量。 航空摄影用的多光谱摄影与陆地卫星所用的多光谱扫描均能得到不同普段的遥感资料,分普段的图像或数据可以通过摄影彩色合成或计算机图像处理,获得比常规方法更为丰富的图像,也为地物影像计算机识别与分类提供了可能。

高光谱 高光谱遥感起源于20世纪70年代初的多光谱遥感,它将成像技术与光谱技术结合在一起,在对目标的空间特征成像的同时,对每个空间像元经过色散形成几十乃至几百个窄波段以进行连续的光谱覆盖,这样形成的遥感数据可以用“图像立方体”来形象的描述。同传统遥感技术相比,其所获取的图像包含丰富的空间、辐射和光谱三重信息。 高光谱遥感技术已经成为当前遥感领域的前沿技术。 高光谱遥感具有不同于传统遥感的新特点: 1)波段多:可以为每个像元提供十几、数百甚至上千个波段; 2)光谱范围窄:波段范围一般小于10nm; 3)波段连续:有些传感器可以在350~2500nm的太阳光谱范围内提供几乎连续的地物光谱; 4)数据量大:随着波段数的增加,数据量成指数增加; 5)信息冗余增加:由于相邻波段高度相关,冗余信息也相对增加。 优点: 1)有利于利用光谱特征分析来研究地物; 2)有利于采用各种光谱匹配模型; 3)有利于地物的精细分类与识别; 异同点 国际遥感界的共识是光谱分辨率在λ/10数量级范围的称为多光谱(Multispectral),这样的遥感器在可见光和近红外光谱区只有几个波段,如美国LandsatMSS,TM,法国的SPOT等;而光谱分辨率在λ/100的遥感信息称之为高光谱遥感(HyPerspectral);随着遥感光谱分辨率的进一步提高,在达到λ/1000时,遥感即进入超高光谱(ultraspectral)阶段(陈述彭等,1998)。 高光谱和多光谱实质上的差别就是:高光谱的波段较多,普带较窄。(Hyperion有233~309个波段,MODIS有36个波段) 多光谱相对波段较少。(如ETM+,8个波段,分为红波段,绿波段,蓝波段,可见光,热红外(2个),近红外和全色波段) 高光谱遥感就是多比多光谱遥感的光谱分辨率更高,但光谱分辨率高的同时空间分辨率会降低。

天津大学图像处理实验报告

光电图像处理实验报告 精仪学院测控四班王经纬 3010202114 实验1 离散图像的傅立叶变换 。 1. 实验内容及步骤: (1)利用Matlab图像处理软件进行离散图像傅立叶变换, 如给出一幅图像(w01.tif),其傅立叶变换程序如下: >>i=imread('D:\w01.tif'); >>figure(1); >>imshow(i); >>colorbar; >>j=fft2(i); >>k=fftshift(j); >>figure(2); >>l=log(abs(k)); >>imshow( l , [ ] ); >>colorbar 结果显示如下图所示: (2)分析图像的傅立叶频谱图; 由上图可以看出,频谱图低频部分较多,高频也有能量,说明图像中存在明显的明亮变化。 (3)自行设计一幅图像,验证离散傅立叶变换的性质,如:频谱图中高频分量迅速衰减,可分离性,平移,周期性与共轭对称性,旋转、线性和比例性,平均值。

1)傅里叶变换: 2)平移: X轴平移图像 X轴平移图像的傅立叶谱 Y轴平移图像 Y轴平移图像的傅立叶谱3)旋转特性: 4)尺度变换:

2. 思考题: 描述空间频率的概念。 空间频率是单位长度内亮度作周期性变化的次数,即现对/mm 。对于FT 基函数)(2sin )(2cos 2ux j ux e ux j πππ-=-。)(2cos ux π的最大值直线在坐标轴上的截距是u /1,则u /1表示空间周期。 实验2 修改直方图图像增强 1. 实验内容及步骤: (1) 读入一幅图像, 使用imhist( )函数产生图像的直方图,分析它的直方图分布及反映图像的特点; i=imread('D:\w01.tif'); imshow(i); imhist(i);

(完整版)基于数字图像处理的车牌识别本科毕业论文

本科生毕业论文(设计) 题目: 基于数字图像处理的车牌识别设 计 姓 名: 周金鑫 学 院: 数理与信息工程学院 专 业: 电子信息工程 班 级: 111 学

号: 指导教师: 刘纯利职称: 教授 2014 年 12 月 24 日 安徽科技学院教务处制 目录 摘要 ....................................................................关键词 .................................................................. 1、设计目的 ............................................................. 2、设计原理: ............................................................ 3、设计步骤: ............................................................ 4、实行方案 ............................................................. 4.1. 总体实行方案:................................................... 4.2. 各模块的实现:................................................... 4.2.1输入待处理的原始图像: ....................................... 4.2.2图像的灰度化并绘制直方图: ...................................

相关主题
文本预览
相关文档 最新文档