当前位置:文档之家› 西农材料力学三套考试试题及答案并附公式

西农材料力学三套考试试题及答案并附公式

西农材料力学三套考试试题及答案并附公式
西农材料力学三套考试试题及答案并附公式

西农考试试题(推荐)

2010—2011学年第2学期《材料力学》课程A卷专业班级:命题教师:审题教师:

学生姓名:学号:考试成绩:

一、填空题(每空1分,共10分)得分:分

1.在材料力学中,杆件变形的四种基本形式有:、、

、。

2. 标距为100mm的标准试样,直径为10mm,拉断后测得伸长后的标距为

123mm,缩颈处的最小直径为7mm,则该材料的伸长率δ=,断面收缩率ψ=。

3. 从强度角度出发,截面积相同的矩形杆件和圆形杆件,更适合做承受弯曲变形为主的梁。

4.某点的应力状态如图示,则主应力为:σ1=;σ2=。

5.平面图形对过其形心轴的静矩0(请填入=,>, <)

二.单项选择题(每小题2分,共20分)得分:分

1. 图示为一端固定的橡胶板条,若在加力前在板表面划条斜直线AB,那么加轴向拉力后AB线所在位置是( ) ?(其中ab∥AB∥ce)

(A) ab (B) ae (C) ce (D) ed

2. 受扭圆轴,上面作用的扭矩T 不变,当直径减小一半时,该截面上的最大切应力与原来的最大切应力之比为( ):

(A) 2 (B) 4 (C) 6 (D) 8

3.根据切应力互等定理,图示的各单元体上的切应力正确的是( )。

4. 在平面图形的几何性质中,( )的值可正、可负、也可为零。 A.静矩和惯性矩; B.极惯性矩和惯性矩; C.惯性矩和惯性积; D.静矩和惯性积。

5.受力情况相同的三种等截面梁,用(σmax )1、(σmax )2、(σmax )3分别表示三根梁内横截面上的最大正应力,则下列说法正确的是 ( )。

(A) (σmax )1 = (σmax )2 = (σmax )3 (B) (σmax )1

< (σmax )2 = (σmax )3 (C) (σmax )1 = (σmax )2 < (σmax )3 (D) (σmax )1 < (σmax )2 < (σmax )3

6. 在图示矩形截面上,剪力为Fs,欲求m-m 线上的切应力,则公式*

s z

z

F S BI τ?=中, 下列说法

正确的是( )

(A)*z S 为截面的阴影部分对Z′轴的静矩, B=δ

(B)*

Z S 为截面的整个部分对Z′轴的静矩, B =δ (C)*Z S 为截面的整个部分对Z 轴的静矩, B=δ

(D)*z S 为截面的阴影部分对Z 轴的静矩, B =δ

τ

τ

τ

20kN

1020kN

A B C D

7. 已知梁的EI z 为常数,长度为l ,欲使两的挠曲线在x=l /3处出现一拐点,则比值m 1/m 2= ( )。

(A) 2 (B) 3 (C) 1/2 (D) 1/3

8.当系统的温度变化时,下列结构中的 ( ) 不会产生温度应力。

9.图示拉杆头和拉杆的横截面均为圆形,拉杆头的剪切面积A =(

)。

()222 (4)

.4

A Dh

B dh

C d

D D d π

πππ-

10.图示材料相同,直径相等的各杆中,从压杆稳定角度考虑

( ) 杆承受压力能力最大。

()

D

三.分析,作图题(共20分) 得分: 分 1.求做图示构件的内力图。 (10分)

σ平/σ立,说明那种放置方式合理。(10分)

四.计算题(共50分) 得分: 分 1.图示阶梯状直杆,若横截面积A 1=200mm 2,A 2=300mm 2,A 3=400mm 2。 试求横截面1-1, 2-2, 3-3上的轴力,并作轴力图; 求横截面3-3上的应力。(10分)

2. 图示实心轴和空心轴通过牙嵌式离合器连接在一起。已知轴的转速n=100 r/min ,传递的功率P=7.5kW ,材料的许用应力[τ]=40MPa ,空心圆轴的内外径之比d 2=0.5D 2。试选择实心轴的直径d 1和空心轴内外径D 2。(10分)

3.图示结构,AB 为铸铁梁,CD 为等截面圆钢杆,动载荷P 可在0≤ χ ≤3l/2 范围内移动,不考虑梁的弯曲切应力,试确定动载荷P 的许用值[P]。 (15分)

b

4b 3kN

已知:l=2m ,铸铁梁I z =4×107mm 4,y 1=100mm ,y 2=64mm ,许用拉应力[σt ]=35MPa ,许用压应力[σc ]=140MPa ,C*为截面形心;钢杆面积=300mm 2,许用应力[σ]=160M Pa

4.已知某受力构件上危险点应力状态如图所示,已知材料的弹性模量E=200GPa ,泊松比μ=0.3求该单元体的主应力、最大主应变及最大切应力(应力单位为MPa ) (15分)

西北农林科技大学课程考试

参考答案与评分标准

考试课程:材料力学 学年学期:2010-2011-1 试卷类型:A 卷 考试时间:2011-06 -12

专业年级:

一、填空题(1×10,共10分)

1. 轴向拉伸或压缩, 剪切 , 扭转 , 弯曲

2. 23%,51%

3. 矩形杆件

4. σ1=80MPa ;σ2=30 MPa 。

5. =

二、选择题(2×10,共20分)

1. (B );

2. (D );

3. (A );

4. (D );

5. (C )

6. (D );

7. (C );

8. (A );

9. (B );10. (C ) 三.分析,作图题(共20分)

1.(10分)

剪力图 (5分)

弯矩图 (5分)

2.(10分)

由弯曲正应力z M W s =和矩形梁2

6

z bh W = (4分)

可知:2

2

(4)44z z W b b W b b s s ·==·平立平立= (4分)

因此可知,梁竖立放置合理。 (2分)

+ ○

– 3KN 5KN

四.计算题(共50分) 1.(10分) 解:F N1= -20KN (压)

F N2= -10KN (压)

F N3= 10KN (3分)

轴力图 (4分)

3336

310102540010N F MPa A s -′===′ (3分)

2.(10分)

解:轴所传递的扭矩为

759549

9549716100P .T N m N m n

骣÷?==醋=?÷?÷

?桫 (2分) 由实心轴的强度条件 []3

1

16max t T T

W d t t p ==? (2分) 可得实心圆轴的直径为

145d mm ?

(2分)

由空心轴的强度条件 ()

[]34216105max t T T W D .t t p =

=?- (2分) 空心圆轴的外径为

246D mm ? (2分) 3.(15分) 由

()

s dM x F dx

=可知:当F s =0时,弯矩M(x)达到极值。又由题知,当动载在AC 段内,x=l/2时,M max 达到最大Pl/4,为正值,梁上部受压下部受拉;当动载在BC 段内,x=3l/2时,弯矩最大P l /2,为负值,梁上部受拉下部受压,此时CD 杆所受轴力F N 最大。 (4分)

由∑M A =0,得F Nmax =3P/2 (2分)

由于y 2

[][]max

max 1max

max 2t z

c z

M y I M y I s s s s =?=

?,得到P≤28KN

(2分)

x=3l/2时,梁下部边缘受最大压应力,此时根据正应力条件

[][]max

max 1max

max 2c z

t z

M y I M y I s s s s =?=

?,得到P≤21.9KN (2分)

根据圆杆应力条件有:[]max

max N F A

s s =

?,得到P≤32KN (2分) 所以许可载荷为[P]=21.9KN (3分)

4.(15分)

解:由题知σ=50MPa 是主应力之一,考虑其它两对平面,可视为平面应力,则应力圆为:

(5分)

解得其它两个主应力为80MPa 和-20MPa ,因此三个主应力分别为:

σ1= 80MPa ,σ2= 50MPa ,σ3= -20MPa (2分) 最大切应力为τ = (σ1-σ3)/2 = 50MPa (3分) 有广义胡克定律知最大主应变为:ε1=[σ1-μ(σ2+σ3)]/E=0.355×10-3 (5分)

西北农林科技大学本科课程考试试题(卷)2010—2011学年第2学期《材料力学》课程B卷专业班级:命题教师:审题教师:

学生姓名:学号:考试成绩:

一、填空题(每空1分,共10分)得分:分1.a、b、c三种材料的应力应变曲线如图示,则其中强度最高的是,弹性模量最小的是,塑性最好的是。

2.直杆受轴向压缩时,各点处于应力状态;圆截面轴扭转时,轴表面各点均处于应力状态。

3.从强度角度出发,截面积相同的矩形杆件和圆形杆件,更适合做承受弯曲变形为主的梁。

4.图示①、②两杆材料和长度都相同,但A1>A2。若两杆温度都下降Δt℃,则两杆轴力之间的关系是F N1________F N2,应力之间的关系是σ1________σ2。(填入<,=,>)

5.某点的应力状态如图示,则主应力为:σ1=________;σ2=________。

二.单项选择题(每小题2分,共20分) 得分: 分 1.如图所示单向均匀拉伸的板条。若受力前在其表面画上两个正方形a 和b ,则受力后正方形a 、b 分别变为( )。

(A )正方形、正方形; (B )正方形、菱形; (C )矩形、菱形; (D )矩形、正方形。

2.关于低碳钢试样拉伸至屈服时,有以下结论,请判断哪一个是正确的( ): (A )应力和塑性变形很快增加,因而认为材料失效; (B )应力和塑性变形虽然很快增加,但不意味着材料失效; (C )应力不增加,塑性变形很快增加,因而认为材料失效; (D )应力不增加,塑性变形很快增加,但不意味着材料失效。 3.根据切应力互等定理,图示的各单元体上的切应力正确的是( )。

4.受扭圆轴,上面作用的扭矩T 不变,当直径减小一半时,该截面上的最大切应力与原来的最大切应力之比为:

(A) 2 (B) 4 (C) 6 (D) 8 5.图示半圆形,若圆心位于坐标原点,则( )。

x y x y x y x y .I I .I I .I I .I I x y x y x y x y A S S B S S C S S D S S =≠==≠≠≠=,;,;

,;,。

6.一矩形梁横截面尺寸为a ×4a ,水平放置(即较宽一面为承载面)与竖立放置(即较窄一面为承载面)时的最大正应力比值(σmax )平:(σmax )立

(A) 1/4 (B) 1/16 (C) 1/64 (D) 16

τ

τ

τ

20kN

1020kN

A B C

D

7. 一点的应力状态如图所示,其主应力1σ、2σ、3σ分别为( )。

(A ) 30MPa 、100 MPa 、50 MPa ; (B ) 50 MPa 、30MPa 、-50MPa ; (C ) 50 MPa 、0、-50MPa ; (D ) -50 MPa 、30MPa 、50MPa 。 8.当系统的温度变化时,下列结构中的 ( ) 不会产生温度应力。

9.图示矩形截面梁,截面宽度b =90mm ,高度h =180mm 。梁在两个互相垂直

的平面内分别受有水平力F 1和铅垂力F 2 ,则最大弯曲拉应力位置为( )点。

(A) A (B) B (C) C (D) D

10.一空间折杆受力如图示,则其中AB 的变形为( )。

(A )偏心拉伸 (B )纵横垂直方向弯曲 (C )弯、扭组合 (D )拉、弯、扭组合

()

D

三.分析、作图题(共20分,每题10分)得分:分1.图示外伸梁,试作剪力图和弯矩图。

2.在图示应力状态中,试用图解法求出最大主应力σ1,σ2,σ3(应力单位MPa)。

四.计算题(共50分)得分:分1.图所示阶梯状直杆横截面积A1=200mm2,A2=300mm2,A3=400mm2, 试求横

截面1-1,2-2,3-3上的轴力,并作轴力图, 求上述横截面上的应力。(10分)

2.如图所示的传动轴转速n=500 r/min,主动轮1输入功率P1=368kW,从动轮2

τ=,G=80GPa。试确和3分别输出功率P2=147kW,P3=221kW。已知[]70MPa

定AB段的直径d1和BC段的直径d2。(10分)

1

3.图示螺钉在拉力 F 作用下。已知材料的许用切应力[τ]和许用拉应力[σ]之间的关系为:[τ]=0.5[σ],试求螺钉直径 d 与钉头高度 h 的合理比值。(10分)

4.T 形截面铸铁梁如图所示。材料的许用拉应力[]t 30σ=MPa ,许用压应力

[]160c σ=MPa 。试校核梁的强度。

(15分)

1. 外力偶矩计算公式 (P 功率,n

转速)

2.

弯矩、剪力和荷载集度之间的关系式

3. 轴向拉压杆横截面上正应力的计算公式

(杆件横截面轴力F N ,横截面面积A ,拉应

力为正)

4. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方

图9

(单位:mm )

2

位角为正)

5. 纵向变形和横向变形(拉伸前试样标距l ,拉伸后试样标距l1;拉伸前试样直径d ,拉伸后试

样直径d1)

6. 纵向线应变和横向线应变

7. 泊松比

8. 胡克定律

9. 受多个力作用的杆件纵向变形计算公式?

10. 承受轴向分布力或变截面的杆件,纵向变形计算公式

11. 轴向拉压杆的强度计算公式

12. 许用应力 , 脆性材料 ,塑性材料

13. 延伸率

3

14. 截面收缩率

15. 剪切胡克定律(切变模量G ,切应变g )

16. 拉压弹性模量E 、泊松比和切变模量G 之间关系式

17. 圆截面对圆心的极惯性矩(a )实心圆

(b )空心圆

18. 圆轴扭转时横截面上任一点切应力计算公式(扭矩T ,所求点到圆心距离r )

19. 圆截面周边各点处最大切应力计算公式

20. 扭转截面系数 ,(a )实心圆

(b )空心圆

21. 薄壁圆管(壁厚δ≤ R 0 /10 ,R 0 为圆管的平均半径)扭转切应力计算公式

22. 圆轴扭转角与扭矩T 、杆长l 、 扭转刚度GH p 的关系式

23. 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时

4

24. 等直圆轴强度条件

25. 塑性材料

;脆性材料

26. 扭转圆轴的刚度条件? 或

27. 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,

28. 平面应力状态下斜截面应力的一般公式

,

29. 平面应力状态的三个主应力 ,

,

30. 主平面方位的计算公式

31. 面内最大切应力

32. 受扭圆轴表面某点的三个主应力,

33. 三向应力状态最大与最小正应力

,

5

34. 三向应力状态最大切应力

35. 广义胡克定律

36. 四种强度理论的相当应力

37. 一种常见的应力状态的强度条件 ,

38. 组合图形的形心坐标计算公式 ,

39. 任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式

40. 截面图形对轴z 和轴y 的惯性半径? ,

41. 平行移轴公式(形心轴z c 与平行轴z 1的距离为a ,图形面积为A )

42. 纯弯曲梁的正应力计算公式

6

43. 横力弯曲最大正应力计算公式

44. 矩形、圆形、空心圆形的弯曲截面系数? ,

45. 几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z 的静矩,

b 为横截面在中性轴处的宽度)

46. 矩形截面梁最大弯曲切应力发生在中性轴处

47. 工字形截面梁腹板上的弯曲切应力近似公式

48. 轧制工字钢梁最大弯曲切应力计算公式

49. 圆形截面梁最大弯曲切应力发生在中性轴处

50. 圆环形薄壁截面梁最大弯曲切应力发生在中性轴处

51. 弯曲正应力强度条件

52. 几种常见截面梁的弯曲切应力强度条件

53. 弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件

7

或 ,

54. 梁的挠曲线近似微分方程

55. 梁的转角方程

56. 梁的挠曲线方程?

57. 轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式

58. 偏心拉伸(压缩)

59. 弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式

60. 圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为

61. 圆截面杆横截面上有两个弯矩

同时作用时强度计算公式

62.

63. 弯拉扭或弯压扭组合作用时强度计算公式

8

64. 剪切实用计算的强度条件

65. 挤压实用计算的强度条件

66. 等截面细长压杆在四种杆端约束情况下的临界力计算公式

67. 压杆的约束条件:(a )两端铰支 μ=l

(b )一端固定、一端自由 μ=2 (c )一端固定、一端铰支 μ=0.7 (d )两端固定 μ=0.5

68. 压杆的长细比或柔度计算公式 ,

69. 细长压杆临界应力的欧拉公式

70. 欧拉公式的适用范围

71. 压杆稳定性计算的安全系数法

72. 压杆稳定性计算的折减系数法

73.

关系需查表求得

材料力学公式最全总汇

外力偶矩计算公式(P功率,n转速) 弯矩、剪力和荷载集度之间的关系式 轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截 面面积A,拉应力为正) 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正) 纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) ^ 纵向线应变和横向线应变 泊松比 胡克定律 受多个力作用的杆件纵向变形计算公式 承受轴向分布力或变截面的杆件,纵向变形计算公式 `

轴向拉压杆的强度计算公式 许用应力,脆性材料,塑性材料 延伸率 截面收缩率 剪切胡克定律(切变模量G,切应变g ) 、 拉压弹性模量E、泊松比和切变模量G之间关系式 圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r ) 圆截面周边各点处最大切应力计算公式 扭转截面系数,(a)实心圆 (b)空心圆 :

薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式 圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或 等直圆轴强度条件 塑性材料;脆性材料 > 扭转圆轴的刚度条件或 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 平面应力状态下斜截面应力的一般公式 , 平面应力状态的三个主应力, ,

主平面方位的计算公式 / 面内最大切应力 受扭圆轴表面某点的三个主应力,, 三向应力状态最大与最小正应力, 三向应力状态最大切应力 广义胡克定律 ~ 四种强度理论的相当应力 一种常见的应力状态的强度条件,

材料力学常用公式

材料力学常用公式 1.外力偶矩计算公式(P功 率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件 横截面轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标 距l1;拉伸前试样直径d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式 ? 10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力 ,脆性材料 ,塑 性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所 求点到圆心距离r) 19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径) 扭转切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不 同(如阶梯轴)时 或 24.等直圆轴强度条件 25.塑性材料 ;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公 式, 28. 平面应力状态下斜截面应力的一般公式 , 29.平面应力状态的三个主应力 , , 30.主平面方位的计算公式 31.面内最大切应力 32.受扭圆轴表面某点的三个主应力, ,33.三向应力状态最大与最小正应力 , 34.三向应力状态最大切应力 35.广义胡克定律

材料力学公式汇总

材料力学常用公式 1.外力偶矩 计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关 系式 3.轴向拉压杆横截面上正应力的计 算公式(杆件横截面轴力 F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴 正方向逆时针转至外法线的方位 角为正) 5. 6.纵向变形和横向变形(拉伸前试 样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样 直径d1) 7. 8.纵向线应变和横向线应变 9.10.泊松比 11.胡克定律 12.受多个力作用的杆件纵向变形计 算公式? 13.承受轴向分布力或变截面的杆 件,纵向变形计算公式 14.轴向拉压杆的强度计算公式 15.许用应力,脆性材 料,塑性材料 16.延伸率 17.截面收缩率 18.剪切胡克定律(切变模量G,切应变g ) 19.拉压弹性模量E、泊松比和切变 模量G之间关系式 20.圆截面对圆心的极惯性矩(a) 实心圆

21.(b)空心 圆 22.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到 圆心距离r) 23.圆截面周边各点处最大切应力计 算公式 24.扭转截面系数,(a) 实心圆 25.(b)空心圆 26.薄壁圆管(壁厚δ≤ R0 /10 , R0为圆管的平均半径)扭转切应 力计算公式 27.圆轴扭转角与扭矩T、杆长l、 扭转刚度GH p的关系式 28.同一材料制成的圆轴各段内的扭 矩不同或各段的直径不同(如阶 梯轴)时或 29.等直圆轴强度条件 30.塑性材料;脆性 材料 31.扭转圆轴的刚度条件? 或 32.受内压圆筒形薄壁容器横截面和 纵截面上的应力计算公式 , 33.平面应力状态下斜截面应力的一 般公式 , 34.平面应力状态的三个主应力 ,

材料力学基本公式

材料力学基本公式 (1)外力偶矩计算公式 (P功率,n转速) (2)弯矩、剪力和荷载集度之间的关系式 d a M(x) dF(x^ -d^ = -dT = qCx) (3)轴向拉压杆横截 面上正应力的计算公式(杆件横截面轴力 拉应力为正) (4)轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 转至 外法线的方位角为正) T n—p a sinct —Qcosasina ——sin2a (5)纵向变形和横向变形(拉伸前试样标距I,拉伸后试样标距拉 伸后试样直径d i) Al = li - 1 Ad = —d P(K^) 口(r/min) (6)纵向线应变和横向线应 变 ■'jj,横截面面积A, 从x轴正方向逆时针 @疋=:p a cosa —a cos3a —cos2a) l i;拉伸前试样直径d ,

⑺泊松比 (8)胡克定律 (9)受多个力作用的杆件纵向变形计算公式 (10)承受轴向分布力或变截面的杆件,纵向变形计算公式 (11)轴向拉压杆的强度计算公式 (12)延伸率 (13)截面收缩率 A- 屮二 X 100% (14)剪切胡克定律(切变模量G,切应变g) T= Gy

(15)拉压弹性模量E 、泊松比?和切变模量G 之间关系式 E 2(1 + 4) (16)圆截面对圆心的极惯性矩( -) (17)圆轴扭转时横截面上任一点切应力计算公式(扭矩 ■ ■.,所求点到圆心距 离:) (18)圆截面周边各点处最大切应力计算公式 (20)圆轴扭转角二与扭矩%、杆长I 、扭转刚度即■的关系式 一 d 1) 32 (19)扭转截面系数' - (21)等直圆轴强度条件 I mas CI p (a )实心圆 nD 5 (b )空心圆 (22)扭转圆轴的刚度条件:

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φ ρ γρ=。物理关系——胡克定律dx d G G φρ γτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确

材料力学常用公式

材料力学常用公式 1.外力偶矩计算公式 (P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式 (杆件横截面轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计 算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正) 5. 6.纵向变形和横向变形(拉伸前试样标距l, 拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) 7. 8.纵向线应变和横向线应变 9.10.泊松比 11.胡克定律 12.受多个力作用的杆件纵向变形计算公式? 13.承受轴向分布力或变截面的杆件,纵向变形 计算公式 14.轴向拉压杆的强度计算公式 15.许用应力,脆性材料 ,塑性材料 16.延伸率 17.截面收缩率 18.剪切胡克定律(切变模量G,切应变g ) 19.拉压弹性模量E 、泊松比和切变模量G之 间关系式 20.圆截面对圆心的极惯性矩(a)实心圆

21. (b)空心圆 22.圆轴扭转时横截面上任一点切应力计算公 式(扭矩T,所求点到圆心距离r) 23.圆截面周边各点处最大切应力计算公式 24.扭转截面系数,(a)实心圆 25. (b)空心圆 26.薄壁圆管(壁厚δ≤ R 0 /10 ,R 为圆管 的平均半径)扭转切应力计算公式 27.圆轴扭转角与扭矩T、杆长l、扭转刚度 GH p 的关系式 28.同一材料制成的圆轴各段内的扭矩不同或 各段的直径不同(如阶梯轴)时 或 29.等直圆轴强度条件 30.塑性材料;脆性材料 31.扭转圆轴的刚度条件? 或 32.受内压圆筒形薄壁容器横截面和纵截面上 的应力计算公式, 33.平面应力状态下斜截面应力的一般公式 , 34.平面应力状态的三个主应力 ,

材料力学公式超级大汇总

1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应 力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方 位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试 样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r) 19.圆截面周边各点处最大切应力计算公式 20.扭转截面系数,(a)实心圆 (b)空心圆

21. 薄壁圆管(壁厚δ≤ R 0 /10 ,R 0 为圆管的平均半径)扭转切应力计算公式 22. 圆轴扭转角与扭矩T 、杆长l 、 扭转刚度GH p 的关系式 23. 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 24. 等直圆轴强度条件 25. 塑性材料 ;脆性材料 26. 扭转圆轴的刚度条件? 或 27. 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28. 平面应力状态下斜截面应力的一般公式 , 29. 平面应力状态的三个主应力 , ,

孙训方版 材料力学公式总结大全

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A =??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为 极限应力理想情形。 塑性材料、脆性材料的许用应力分别为: []3n s σσ=, []b b n σ σ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横

截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确定许可载荷。 圆轴扭转时的变形:??== l p l p dx GI T dx GI T ?;等直杆:p GI Tl =? 圆轴扭转时的刚度条件: p GI T dx d == '??,][max max ??'≤='p GI T 弯曲内力与分布载荷q 之间的微分关系 )() (x q dx x dQ =; ()()x Q dx x dM =;()()()x q dx x dQ dx x M d ==2 2 Q 、M 图与外力间的关系 a )梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。 b )梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。 c )在梁的某一截面。 ()()0==x Q dx x dM ,剪力等于零,弯矩有一最大值或最小值。 d )由集中力作用截面的左侧和右侧,剪力Q 有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。

材料力学经典公式汇集

材料力学重点及其公式 材料力学的任务(1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设(1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力:dA dP A P p A = ??=→?lim 0正应力、切应力。变形与应变:线应变、切应变。 杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理想情形。塑性材 料、脆性材料的许用应力分别为: []3n s σσ=, []b b n σ σ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?=ε,A P A N == σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ??? === 2 2ρφφρρτρ圆轴扭转时的应力:t p W T R I T ==max τ;圆轴扭转的强度条件: ][max ττ≤= t W T ,可以进行强度校核、截面设计和确定许可载荷。 圆轴扭转时的变形:??== l p l p dx GI T dx GI T ?;等直杆:p GI Tl =? 圆轴扭转时的刚度条件: p GI T dx d == '??,][max max ??'≤='p GI T 弯曲内力与分布载荷q 之间的微分关系)() (x q dx x dQ =;()()x Q dx x dM =;()()()x q dx x dQ dx x M d ==2 2 Q 、M 图与外力间的关系 a )梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

材料力学定律公式汇总

材料力学重点及其公式 材料力学的任务变形固体的基本假设外力分类:(1)强度要求;(2)刚度要求;(3)稳定性要求。 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2 )在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力:P Hm —E 兰正应力、切应力。 应变。 杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转; 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷变化的载荷为动 载荷。 失效原因:脆性材料在其强度极限b破坏,塑性材料在其屈服极限 关系为:。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即为弹性模量。将应力与应变的表达式带入得:l 皿 EA 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部 未知力。 圆轴扭转时的应力变形几何关系一圆轴扭转的平面假设d_ 。物理关系——胡克定律 d G G 。力学关系T °d_dx dA 2G d G2 dA圆轴扭转时的应力: dx A A dx dx A max T R T;圆轴扭转的强度条件: I p W t T max W t [],可以进行强度校核、截面设计和确 变形与应变:线应变、切 (4)弯曲;(5)组合变形。动载荷: 载荷和速度随时间急剧 s时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: n3 b n b ,强度条件: max max ,等截面杆max A 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为: l l1l,沿轴线方向的应变和横截面上 的应力分别为: l N P 站b 。横向应变为: l 'A A b E ,这就是胡克定律。E 色-,横向应变与轴向应变的b

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上与内力。 应力: dA dP A P p A =??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷与速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理 想情形。塑性材料、脆性材料的许用应力分别为:[]3n s σσ=,[]b b n σσ=,强度条件:[]σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变与横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-='。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l =? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ???===22ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计与确定许可载荷。

材料力学公式汇总

材料力学常用公式 1.外力偶 矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的 关系式 3.轴向拉压杆横截面上正应力的 计算公式(杆件横截面轴力F N,横截面面积A,拉应 力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线 的方位角为正) 5. 6.纵向变形和横向变形(拉伸前 试样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样 直径d1)7. 8.纵向线应变和横向线应变 9. 10.泊松比 11.胡克定律 12.受多个力作用的杆件纵向变形 计算公式? 13.承受轴向分布力或变截面的杆 件,纵向变形计算公式 14.轴向拉压杆的强度计算公式 15.许用应力,脆性 材料,塑性材料 16.延伸率 17.截面收缩率

18.剪切胡克定律(切变模量G,切应变g ) 19.拉压弹性模量E 、泊松比和切变模量G之间关系式 20.圆截面对圆心的极惯性矩(a) 实心圆 21.(b)空 心圆 22.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点 到圆心距离r) 23.圆截面周边各点处最大切应力 计算公式 24.扭转截面系数,(a) 实心圆 25.(b)空心圆26.薄壁圆管(壁厚δ≤ R0 /10 , R0为圆管的平均半径)扭转切 应力计算公式 27.圆轴扭转角与扭矩T、杆长l、 扭转刚度GH p的关系式 28.同一材料制成的圆轴各段内的 扭矩不同或各段的直径不同(如 阶梯轴)时或 29.等直圆轴强度条件 30.塑性材料;脆 性材料 31.扭转圆轴的刚度条件? 或

32.受内压圆筒形薄壁容器横截面 和纵截面上的应力计算公式 , 33.平面应力状态下斜截面应力的 一般公式 , 34.平面应力状态的三个主应力 , , 35.主平面方位的计算公式 36.面内最大切应力 37.受扭圆轴表面某点的三个主应 力,,38.三向应力状态最大与最小正应 力, 39.三向应力状态最大切应力 40.广义胡克定律 41. 42. 43.四种强度理论的相当应力 44.一种常见的应力状态的强度条 件,45.组合图形的形心坐标计算公式 , 46.任意截面图形对一点的极惯性 矩与以该点为原点的任意两正

材料力学常用公式

1 . 外力偶 率,n转速) 2 . 3 . 4 . 材料力学常用公式 "山.矩计算公式 弯矩、剪力和荷载集度之间的关系式 dW) iF s U)… 轴向拉压杆横截面上正应力的计算公式 横截面轴力F N,横截面面积A,拉应力为正) 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角(P功 (杆 件 9.受多个力作用的杆件纵向变形计算公式 10 . 11 . 12 . 承受轴向分布力或变截面的杆件,纵向变形计算公式 轴向拉压杆的强度计算公式 许用应力恥a-a ,脆性材料,塑 从x轴正方向逆时针转至外法线的方位角为正) 7 (T = j?H CDsar=acn5 ff= —(l+cosloj 2 T= p sin a= crcDsasma= —sin2a B弘2 ^xlOO% 13 . 14 . 15 . 延伸率 截面收缩率 剪切胡克定律 (切变模量G,切应变g)「一〔?■ $ 5.纵向变形和横向变形(拉伸前试样标距I,拉伸后试样标16 . 拉压弹性模量E、泊松比和切变模量G之间关系式距I1 ;拉伸前试样直径d,拉伸后试样直径di) bl — ly ~ I Ai/ 二£ - d 6.纵向线应变和横向线应变 '2(1 + v) 17 . 宀』 圆截面对圆心的极惯性矩(a)实心圆32 (b)空心圆 8. 胡克定律18 . 圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)

19.圆截面周边各点处最大切应力计算公式27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公 20.扭转截面系数(a)实心圆 28. 平面应力状态下斜截面应力的一般公式 (b)空心圆 a厂— ------ sm2a+r cas2a 2 x 21.薄壁圆管(壁厚5 < R o /10 R o为圆管的平均半径) 29. 平面应力状态的三个主应力 扭转切应力计算公式 22.圆轴扭转角丁与扭矩T、杆长I、扭转刚度GH P的关系 2 匕7 2 q\ 2 23. 同一材料制成的圆轴各段内的扭矩不同或各段的直径不 同(如阶梯轴)时30. 主平面方位的计算公式C- 24. 25. 26. Ir l 31. 面内最大切应力 2 等直圆轴强度条件 塑性材料⑴创。];脆性材料 32. 33. 受扭圆轴表面某点的三个主应力 三向应力状态最大与最小正应力扭转圆轴的刚度条件? 34. 斫一6 三向应力状态最大切应力

材料力学公式总结大全

材料力学 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理想情形。塑性材 料、脆性材料的许用应力分别为: []3n s σσ=, []b b n σ σ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?=ε,A P A N == σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ??? === 2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T ==max τ;圆轴扭转的强度条件: ][max ττ≤= t W T ,可以进行强度校核、截面设计和确定许可载荷。

材料力学常用公式完整版

材料力学常用公式 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

材料力学常用公式 1.外力偶矩计算公式 (P 功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式 (杆件横截面轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计 算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距 l,拉伸后试样标距l1;拉伸前试样直径 d ,拉伸后试样直径d1) 6. 7.纵向线应变和横向线应变 8. 9.泊松比10.胡克定律 11.受多个力作用的杆件纵向变形计算公式 12.承受轴向分布力或变截面的杆件,纵向变 形计算公式 13.轴向拉压杆的强度计算公式 14.许用应力,脆性材料 ,塑性材料 15.延伸率 16.截面收缩率 17.剪切胡克定律(切变模量G,切应变g ) 18.拉压弹性模量E、泊松比和切变模量G之 间关系式

19.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 20.圆轴扭转时横截面上任一点切应力计算公 式(扭矩T,所求点到圆心距离r ) 21.圆截面周边各点处最大切应力计算公式 22.扭转截面系数,(a)实心圆 (b)空心圆 23.薄壁圆管(壁厚δ≤ R /10 ,R 为圆管 的平均半径)扭转切应力计算公式 24.圆轴扭转角与扭矩T、杆长l、扭转刚 度GH p 的关系式 25.同一材料制成的圆轴各段内的扭矩不同或 各段的直径不同(如阶梯轴)时 或 26.等直圆轴强度条件 27.塑性材料;脆性材料 28.扭转圆轴的刚度条件 或 29.受内压圆筒形薄壁容器横截面和纵截面上 的应力计算公式, 30.平面应力状态下斜截面应力的一般公式 , 31.平面应力状态的三个主应力 , ,

材料力学公式超级大汇总汇总

材料力学公式超级大汇总汇总 (P功率,n转速)2、弯矩、剪力和荷载集度之间的关系式3、轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截面面积A,拉应力为正)4、轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5、纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) 6、纵向线应变和横向线应变 7、泊松比 8、胡克定律 9、受多个力作用的杆件纵向变形计算公式? 10、承受轴向分布力或变截面的杆件,纵向变形计算公式 11、轴向拉压杆的强度计算公式 12、许用应力,脆性材料,塑性材料 13、延伸率 14、截面收缩率 15、剪切胡克定律(切变模量G,切应变g ) 16、拉压弹性模量E、泊松比和切变模量G之间关系式 17、圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18、圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r ) 19、圆截面周边各点处最大切应力计算公式

20、扭转截面系数,(a)实心圆 (b)空心圆 21、薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式 22、圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式 23、同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或 24、等直圆轴强度条件 25、塑性材料;脆性材料 26、扭转圆轴的刚度条件? 或 27、受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28、平面应力状态下斜截面应力的一般公式 , 29、平面应力状态的三个主应力 , , 30、主平面方位的计算公式 31、面内最大切应力 32、受扭圆轴表面某点的三个主应力,, 33、三向应力状态最大与最小正应力 , 34、三向应力状态最大切应力 35、广义胡克定律 36、四种强度理论的相当应力 37、一种常见的应力状态的强度条件,

材料力学公式总结

材料力学公式总结

————————————————————————————————作者:————————————————————————————————日期:

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φ ρ γρ=。物理关系——胡克定律dx d G G φρ γτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确

材料力学公式总结完全版

材料力学公式总结完全版

————————————————————————————————作者:————————————————————————————————日期:

1 截面几何参数 序号 公式名称 公式 符号说明 (1.1) 截面形心位置 A zdA z A c ?= ,A ydA y A c ?= Z 为水平方向 Y 为竖直方向 (1.2) 截面形心位置 ∑∑=i i i c A A z z , ∑∑= i i i c A A y y (1.3) 面积矩 ?=A Z ydA S ,?=A y zdA S (1.4) 面积矩 i i z y A S ∑=,i i y z A S ∑= (1.5) 截面形心位置 A S z y c = ,A S y z c = (1.6) 面积矩 c y Az S =,c z Ay S = (1.7) 轴惯性矩 dA y I A z ?=2,dA z I A y ?=2 (1.8) 极惯必矩 dA I A ?=2ρρ (1.9) 极惯必矩 y z I I I +=ρ (1.10) 惯性积 dA zy I A zy ?= (1.11) 轴惯性矩 A i I z z 2=,A i I y y 2 = (1.12) 惯性半径 (回转半径) A I i z z = ,A I i y y = (1.13) 面积矩 轴惯性矩 极惯性矩 惯性积 ∑=zi z S S ,∑=yi y S S ∑=zi z I I ,∑=yi y I I ∑=i I I ρρ,∑=zyi zy I I (1.14) 平行移轴公式 A a I I zc z 2+= A b I I yc y 2+= abA I I zcyc zy +=

材料力学公式汇总完全版

材料力学公式汇总完全版 1 截面的几何参数 序号公式名称公式符号说明 ydAzdAZ为水平方向 ,,AA(1.1) 截面形心位置, yz,,ccY为竖直方向 AA yAzA,,iiii, zy,,(1.2) 截面形心位置 ccAA,,ii , S,ydAS,zdAZy,,(1.3) 面积矩 AA , S,AyS,Az(1.4) 面积矩 ,,ziiyii SSyz(1.5) 截面形心位置 z, y,,ccAA , S,AzS,Ay(1.6) 面积矩 yczc 22, I,ydAI,zdAzy,,(1.7) 轴惯性矩 AA 2 I,,dA,,(1.8) 极惯必矩 A I,I,I(1.9) 极惯必矩 ,zy I,zydAzy,(1.10) 惯性积 A 22,I,iA I,iA(1.11) 轴惯性矩 yyzz I惯性半径 Iyz(1.12) , i,i,zy(回转半径) AA , S,SS,S面积矩 ,,zziyyi 轴惯性矩 , I,II,I(1.13) 极惯性矩 ,,zziyyi 惯性积 , I,II,I ,,,,izyzyi 2 I,I,aAzzc 2I,I,bA (1.14) 平行移轴公式 yyc I,I,abAzyzcyc

1 2 应力和应变 序号公式名称公式符号说明 N轴心拉压杆横 ,,(2.1) 截面上的应力 A N危险截面上危 ,,(2.2) max险点上的应力 A ,l轴心拉压杆的 ,,(2.3a) 纵向线应变 l 轴心拉压杆的 ,l,l,l,,.l(2.3b) 1纵向绝对应变 ,,E,(2.4a) , ,, 胡克定律 E(2.4b) N.l ,l,(2.5) 胡克定律 EA Nlii ll,,,,(2.6) 胡克定律 ,,iiEAi ,bb,b'1,, ,(2.7) 横向线应变 bb ',, ,泊松比(横向 ,(2.8) 变形系数) ' ,,,,, 剪力双生互等 ,,,(2.9) xy定理 ,,G, (2.10) 剪切虎克定理实心圆截面扭 T,, ,,(2.11) 转轴横截面上 I,的应力 TR实心圆截面扭 , ,maxI(2.12) 转轴横截面的 , 圆周上的应力 I抗扭截面模量 ,(2.13) W ,T(扭转抵抗矩) R 2 实心圆截面扭 T ,,(2.14) 转轴横截面的 maxWT圆周上的应力 T.l圆截面扭转轴的 ,,(2.15) GI变形 , Tli圆截面扭转轴的 i ,,,,(2.16) ,,iGI变形 ,i T,单位长度的扭转, ,,,,(2.17) lGI角 ,

相关主题
文本预览
相关文档 最新文档