当前位置:文档之家› 材料力学公式汇总解析

材料力学公式汇总解析

材料力学公式汇总解析
材料力学公式汇总解析

材料力学重点及其公式

材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。

内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。

应力: dA dP

A P p A =

??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。

杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。

失效原因:脆性材料在其强度极限

b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应

力理想情形。塑性材料、脆性材料的许用应力分别为:

[]3n s

σσ=,

[]b b

n σσ=,强度条件:

[]σσ≤???

??=max max A N ,等截面杆 []σ≤A N m a x

轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?=

ε,A P A N ==σ。横向应变为:b

b

b b b -=?=1'ε,横向应变与轴向应变的

关系为:μεε-='

胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA

Nl

l =

? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。

圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx

d φ

ρ

γρ=。物理关系——胡克定律dx d G G φρ

γτρρ==。力学关系dA dx

d G dx d G

dA T A A

A ??

?===22

ρφφρρτρ 圆轴扭转时的应力:

t

p W T R I T ==

max τ;圆轴扭转的强度条件: ][max ττ≤=t W T

,可以进行强度校核、截面设计和确

定许可载荷。

圆轴扭转时的变形:??==

l p

l p dx GI T dx GI T ?;等直杆:p

GI Tl

=? 圆轴扭转时的刚度条件:

p GI T

dx d =

=

'??,][max max ??'≤='p

GI T 弯曲内力与分布载荷q 之间的微分关系)()(x q dx x dQ =;()()x Q dx x dM =;()()()x q dx x dQ dx

x M d ==2

2 Q 、M 图与外力间的关系

a )梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。

b )梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。

c )在梁的某一截面。

()()0==x Q dx

x dM ,剪力等于零,弯矩有一最大值或最小值。 d )由集中力作用截面的左侧和右侧,剪力Q 有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。

梁的正应力和剪应力强度条件[]σσ≤=

W

M max

max ,[]ττ≤max 提高弯曲强度的措施:梁的合理受力(降低最大弯矩max M ,合理放置支座,合理布置载荷,合理设计截面形状

塑性材料:[][]c t σσ=,上、下对称,抗弯更好,抗扭差。脆性材料:[][]c t σσ<, 采用T 字型或上下不对称的工字型截面。

等强度梁:截面沿杆长变化,恰使每个截面上的正应力都等于许用应力,这样的变截面梁称为等强度梁。

用叠加法求弯曲变形:当梁上有几个载荷共同作用时,可以分别计算梁在每个载荷单独作用时的变形,然后进行叠加,即可求得梁在几个载荷共同作用时的总变形。 简单超静定梁求解步骤:(1)判断静不定度;(2)建立基本系统(解除静不定结构的内部和外部多余约束后所得到的静定结构);(3)建立相当系统(作用有原静不定梁载荷与多余约束反力的基本系统);(4)求解静不定问题。 二向应力状态分析—解析法

(1)任意斜截面上的应力ατασσσσσα2s i n 2c o s 2

2

xy y

x y

x --+

+=

ατασστα2cos 2sin 2

xy y

x +-=

(2)极值应力 正应力:y

x xy

tg σστα--

=220,

2

2min max )2

(2xy y x y

x τσσσσσσ+-±+=???

切应力:xy y x tg τσσα221-=

, 2

2min max )2(xy y x τσσττ+-±=??? (3)主应力所在的平面与剪应力极值所在的平面之间的关系

α与1α之间的关系为:4

,2

220101π

ααπ

αα+

=+

=,即:最大和最小剪应力所在的平面与主平

面的夹角为45°

扭转与弯曲的组合(1)外力向杆件截面形心简化(2)画内力图确定危险截面(3)确定危险点并建立强度条件

按第三强度理论,强度条件为:[]σσσ≤-31 或[]στσ≤+224, 对于圆轴,W W t 2=,

其强度条件为:

][2

2σ≤+W

T M 。按第四强度理论,强度条件为:

()()()[]

[]σσσσσσσ≤-+-+-2132322212

1

,经化简得出:[]στσ≤+223,对于圆轴,其强度条件为:

][75.02

2σ≤+W

T M 。

欧拉公式适用范围(1)大柔度压杆(欧拉公式):即当1λλ≥,其中P E σπλ21=时,22λ

πσE

cr =(2)

中等柔度压杆(经验公式):即当12λλλ≤≤,其中b

a s

σλ-=2时,λσb a cr -=(3)小柔度压杆(强度计算公式):即当2λλ<时,s cr A

F

σσ≤=

。 压杆的稳定校核(1)压杆的许用压力:[]st

cr

n P P =,[]P 为许可压力,st n 为工作安全系数。(2)压杆的稳定条件:[]P P ≤

提高压杆稳定性的措施:选择合理的截面形状,改变压杆的约束条件,合理选择材料

1. 外力偶矩计算公式

(P 功率,n 转速)

2. 弯矩、剪力和荷载集度之间的关系式

3. 轴向拉压杆横截面上正应力的计算公式 (杆件横截面轴力F N ,横截面面积A ,拉应力为正)

4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)

5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)

6.纵向线应变和横向线应变

7.泊松比

8.胡克定律

9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式

11.轴向拉压杆的强度计算公式

12.许用应力,脆性材料,塑性材料

13.延伸率

14.截面收缩率

15.剪切胡克定律(切变模量G,切应变g )

16.拉压弹性模量E、泊松比和切变模量G之间关系式

17.圆截面对圆心的极惯性矩(a)实心圆

(b)空心圆

18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)

19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆

(b)空心圆

21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式

22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式

23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或

24.等直圆轴强度条件

25.塑性材料;脆性材料

26.扭转圆轴的刚度条件? 或

27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,

28.平面应力状态下斜截面应力的一般公式

,

29.平面应力状态的三个主应力,

,

30.主平面方位的计算公式

31.面内最大切应力

32.受扭圆轴表面某点的三个主应力,,

33.三向应力状态最大与最小正应力 ,

34.三向应力状态最大切应力

35.广义胡克定律

36.四种强度理论的相当应力

37.一种常见的应力状态的强度条件,

38.组合图形的形心坐标计算公式,

39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式

40.截面图形对轴z和轴y的惯性半径? ,

41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)

42.纯弯曲梁的正应力计算公式

43.横力弯曲最大正应力计算公式

44.矩形、圆形、空心圆形的弯曲截面系数? ,,

45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面

在中性轴处的宽度)

46.矩形截面梁最大弯曲切应力发生在中性轴处

47.工字形截面梁腹板上的弯曲切应力近似公式

48.轧制工字钢梁最大弯曲切应力计算公式

49.圆形截面梁最大弯曲切应力发生在中性轴处

50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处

51.弯曲正应力强度条件

52.几种常见截面梁的弯曲切应力强度条件

53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或

54.梁的挠曲线近似微分方程

55.梁的转角方程

56.梁的挠曲线方程?

57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式

58.偏心拉伸(压缩)

59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式

60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为

61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式

62.

63.弯拉扭或弯压扭组合作用时强度计算公式

64.剪切实用计算的强度条件

65.挤压实用计算的强度条件

66.等截面细长压杆在四种杆端约束情况下的临界力计算公式

67.压杆的约束条件:(a)两端铰支μ=l

(b)一端固定、一端自由μ=2

(c)一端固定、一端铰支μ=0.7

(d)两端固定μ=0.5

68.压杆的长细比或柔度计算公式,

69.细长压杆临界应力的欧拉公式

70.欧拉公式的适用范围

71.压杆稳定性计算的安全系数法

72.压杆稳定性计算的折减系数法

73.关系需查表求得

材料力学公式最全总汇

外力偶矩计算公式(P功率,n转速) 弯矩、剪力和荷载集度之间的关系式 轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截 面面积A,拉应力为正) 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正) 纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) ^ 纵向线应变和横向线应变 泊松比 胡克定律 受多个力作用的杆件纵向变形计算公式 承受轴向分布力或变截面的杆件,纵向变形计算公式 `

轴向拉压杆的强度计算公式 许用应力,脆性材料,塑性材料 延伸率 截面收缩率 剪切胡克定律(切变模量G,切应变g ) 、 拉压弹性模量E、泊松比和切变模量G之间关系式 圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r ) 圆截面周边各点处最大切应力计算公式 扭转截面系数,(a)实心圆 (b)空心圆 :

薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式 圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或 等直圆轴强度条件 塑性材料;脆性材料 > 扭转圆轴的刚度条件或 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 平面应力状态下斜截面应力的一般公式 , 平面应力状态的三个主应力, ,

主平面方位的计算公式 / 面内最大切应力 受扭圆轴表面某点的三个主应力,, 三向应力状态最大与最小正应力, 三向应力状态最大切应力 广义胡克定律 ~ 四种强度理论的相当应力 一种常见的应力状态的强度条件,

(完整word版)初中数学知识点总结及公式大全

知识点1:一元二次方程的基本概念 1.一元二次方程3x 2+5x-2=0的常数项是-2. 2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0. 知识点2:直角坐标系与点的位置 1.直角坐标系中,点A (3,0)在y 轴上。 2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限. 知识点3:已知自变量的值求函数值 1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=2 1-x 的值为1. 3.当x=-1时,函数y=3 21-x 的值为1. 知识点4:基本函数的概念及性质 1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 2 1-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(2 12+-=x y 的顶点坐标是(1,2). 7.反比例函数x y 2 = 的图象在第一、三象限. 知识点5:数据的平均数中位数与众数 1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4. 3.数据1,2,3,4,5的中位数是3. 知识点6:特殊三角函数值 1.cos30°= 2 3. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1. 5.cos60°+ sin30°= 1.

初一数学上下册知识点总结与重点难点、公式总结

第一册 第一章有理数 代数初步知识 1. 代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称 为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字 母也是代数式. 2.列代数式的几个注意事项: (1)数与字母相乘,或字母与字母相乘通常使用“? ”乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“? ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写 成的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a . 3.几个重要的代数式:(m、n表示整数) (1)a与b的平方差是:a2-b2 ;a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ; (4)若b>0,则正数是:a2+b ,负数是:-a2-b ,非负数是:a2 ,非正数是: -a2 . 有理数 1.1正数和负数 以前学过的0以外的数前面加上负号“-”的书叫做负数。 以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。 在同一个问题中,分别用正数和负数表示的量具有相反的意义 1.2有理数 1.2.1有理数 正整数、0、负整数统称整数,正分数和负分数统称分数。 整数和分数统称有理数。 1.2.2数轴 规定了原点、正方向、单位长度的直线叫做数轴。 数轴的作用:所有的有理数都可以用数轴上的点来表达。 注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。 ⑵同一根数轴,单位长度不能改变。 一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。 1.2.3相反数 只有符号不同的两个数叫做互为相反数。 数轴上表示相反数的两个点关于原点对称。 在任意一个数前面添上“-”号,新的数就表示原数的相反数。 1.2.4绝对值 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。 一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。 在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。 比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。 ⑵两个负数,绝对值大的反而小。 1.3有理数的加减法 1.3.1有理数的加法

材料力学基本公式

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dF A F p A = ??=→?lim 正应力σ、切应力τ。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲; 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统 称为极限应力理想情形。塑性材料、脆性材料的许用应力分别为: []s s n σσ=,[]b b n σσ= ,强度条件:[]σσ≤??? ??=max max A F N ,等截面杆 []σ≤A F max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为: l l ?= ε, A F N =σ。横向应变为: b b b b b -=?= 1'ε,横向应变与轴

向应变的关系为:μεε-=',μ为横向变形系数或泊松比。 胡克定律:当应力低于材料的比例极限P σ时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量(GPa 1= pa MPa 931010=)。将应力与应变的表达式带入得:EA Fl l = ?EA 为抗拉或抗压刚度。 静不定(超静定):对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。需要由几何关系构造变形协调方程。 扭转变形时的应力,薄壁圆筒扭转 δ πτ202R M e = 其中 )min () (9549 )(r n kw p m N M e =? 420d D r R R +=+=为圆筒的平均半径。剪切胡克定律:当剪切应力不超过材料的剪切比例极限时,切应力 τ 与切应变γ成正比。γ τ G =. 变形几何关系—圆轴扭转的平面假设 dx d φ ρ γρ=。物理关系——剪切胡克定律 dx d G G φρ γτρρ==。力学关系P A A A I dx d G dA dx d G dx d G dA T ?ρ?φρρτρ====???2 2 圆轴扭转时的应力 : t p W T I TR == max τ, t W = R I p 称为抗弯截面系数;强度条件: ][max ττ≤= t W T ,可以进行强度 校核、截面设计和确定许可载荷。 圆截面对圆心的极惯性矩(a )实心圆 32 4 D I P π= ; 16 3 D W t π= (b )空心圆,() 4 4 44132 32 ) (αππ-= -= D d D I P ; () 43 116 απ-= D W t (D,d 分别是外,内径; D d = α) 圆轴扭转时的变形: ?? ==l p l p dx GI T dx GI T ?;等直杆: p GI Tl = ?其中为圆轴的抗弯刚度P GI

数学总结—公式大全

数学公式大全 图形公式 正方形:周长=边长×4(C = 4a) 面积=边长×边长(S = a×a = a2) 正方体:表面积=棱长×棱长×6(S = a×a×6 = 6a2) 体积=棱长×棱长×棱长(V = a×a×a = a2) 棱长和=棱长×12(l = 12a) 长方形:周长=(长+宽)×2(C = 2×(a+b)) 面积=边长×边长(S = ab) 长方体:表面积=(长×宽+长×高+宽×高)×2(S = 2(ab+ah+bh))体积=长×宽×高(V = abh) 棱长和=(长+宽+高)×4(l = 4(a+b+h)) 三角形:面积=底×高÷2 (S = ah÷2) 平行四边形:面积=底×高(S = ah) 梯形:面积=(上底+下底)×高÷2(S = (a+b)×h÷2) 圆形:直径=半径×2(d = 2r) 周长=2×π×半径(C = 2πr) 面积=半径×半径×π(S = πr2) 圆柱体:侧面积=底面周长×高(S = Ch) 表面积=侧面积+底面积×2 (S = Ch + 2πr2) 体积=底面积×高(V = Sh) 圆锥体:体积=底面积×高÷3(V = Sh÷3)

三角函数公式 和差公式:(正余同余正,余余反正正) 和差化积:(正加正,正在前;余加余,余并肩;正减正,余在前;余减余,负正弦) 积化和差: Sinαsinβ = -1/2[cos(α+β)-cos(α-β)] Cosαcosβ = 1/2[cos(α+β)+cos(α-β)] Sinαcosβ = 1/2[sin(α+β)+sin(α-β)] Cosαsinβ = 1/2[sin(α+β)-sin(α-β)] 倍角公式:

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φ ρ γρ=。物理关系——胡克定律dx d G G φρ γτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确

材料力学公式汇总

材料力学常用公式 1.外力偶矩 计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关 系式 3.轴向拉压杆横截面上正应力的计 算公式(杆件横截面轴力 F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴 正方向逆时针转至外法线的方位 角为正) 5. 6.纵向变形和横向变形(拉伸前试 样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样 直径d1) 7. 8.纵向线应变和横向线应变 9.10.泊松比 11.胡克定律 12.受多个力作用的杆件纵向变形计 算公式? 13.承受轴向分布力或变截面的杆 件,纵向变形计算公式 14.轴向拉压杆的强度计算公式 15.许用应力,脆性材 料,塑性材料 16.延伸率 17.截面收缩率 18.剪切胡克定律(切变模量G,切应变g ) 19.拉压弹性模量E、泊松比和切变 模量G之间关系式 20.圆截面对圆心的极惯性矩(a) 实心圆

21.(b)空心 圆 22.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到 圆心距离r) 23.圆截面周边各点处最大切应力计 算公式 24.扭转截面系数,(a) 实心圆 25.(b)空心圆 26.薄壁圆管(壁厚δ≤ R0 /10 , R0为圆管的平均半径)扭转切应 力计算公式 27.圆轴扭转角与扭矩T、杆长l、 扭转刚度GH p的关系式 28.同一材料制成的圆轴各段内的扭 矩不同或各段的直径不同(如阶 梯轴)时或 29.等直圆轴强度条件 30.塑性材料;脆性 材料 31.扭转圆轴的刚度条件? 或 32.受内压圆筒形薄壁容器横截面和 纵截面上的应力计算公式 , 33.平面应力状态下斜截面应力的一 般公式 , 34.平面应力状态的三个主应力 ,

材料力学公式超级大汇总

1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应 力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方 位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试 样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r) 19.圆截面周边各点处最大切应力计算公式 20.扭转截面系数,(a)实心圆 (b)空心圆

21. 薄壁圆管(壁厚δ≤ R 0 /10 ,R 0 为圆管的平均半径)扭转切应力计算公式 22. 圆轴扭转角与扭矩T 、杆长l 、 扭转刚度GH p 的关系式 23. 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 24. 等直圆轴强度条件 25. 塑性材料 ;脆性材料 26. 扭转圆轴的刚度条件? 或 27. 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28. 平面应力状态下斜截面应力的一般公式 , 29. 平面应力状态的三个主应力 , ,

材料力学公式大全

材料力学常用公式 1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面 轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点 到圆心距离r) 19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转 切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如 阶梯轴)时或 24.等直圆轴强度条件 25.塑性材料;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式 , 28.平面应力状态下斜截面应力的一般公式 ,

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上与内力。 应力: dA dP A P p A =??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷与速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理 想情形。塑性材料、脆性材料的许用应力分别为:[]3n s σσ=,[]b b n σσ=,强度条件:[]σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变与横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-='。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l =? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ???===22ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计与确定许可载荷。

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

初一数学公式总结

初一数学公式总结 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解根与系数的关系 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和

材料力学定律公式汇总

材料力学重点及其公式 材料力学的任务变形固体的基本假设外力分类:(1)强度要求;(2)刚度要求;(3)稳定性要求。 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2 )在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力:P Hm —E 兰正应力、切应力。 应变。 杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转; 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷变化的载荷为动 载荷。 失效原因:脆性材料在其强度极限b破坏,塑性材料在其屈服极限 关系为:。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即为弹性模量。将应力与应变的表达式带入得:l 皿 EA 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部 未知力。 圆轴扭转时的应力变形几何关系一圆轴扭转的平面假设d_ 。物理关系——胡克定律 d G G 。力学关系T °d_dx dA 2G d G2 dA圆轴扭转时的应力: dx A A dx dx A max T R T;圆轴扭转的强度条件: I p W t T max W t [],可以进行强度校核、截面设计和确 变形与应变:线应变、切 (4)弯曲;(5)组合变形。动载荷: 载荷和速度随时间急剧 s时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: n3 b n b ,强度条件: max max ,等截面杆max A 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为: l l1l,沿轴线方向的应变和横截面上 的应力分别为: l N P 站b 。横向应变为: l 'A A b E ,这就是胡克定律。E 色-,横向应变与轴向应变的b

初中数学知识点总结公式总结(精华版)

初中数学知识点总结 一、基本知识 一、数与代数 A、数与式: 1、有理数:①整数→正整数,0,负整数; ②分数→正分数,负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。 ②任何一个有理数都可以用数轴上的一个点来表示。 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点 的两侧,并且与原点距离相等。 ④数轴上两个点表示的数,右边的总比左边的大。正数大于 0,正数大于负数。 0,负数小于绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。 ②正数的绝对值是他的本身、负数的绝对值是他的相反数、 是0。两个负数比较大小,绝对值大的反而小。 有理数的运算:带上符号进行正常运算。 0 的绝对值 加法:①同号相加,取相同的符号,把绝对值相加。 ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的 数的符号,并用较大的绝对值减去较小的绝对值。 ③一个数与0 相加不变。减法:减去一个数, 等于加上这个数的相反数。乘法:①两数相乘,同号得 正,异号得负,绝对值相乘。 ②任何数与0 相乘得0。 ③乘积为 1 的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。 ②0 不能作除数。 乘方:求N 个相同因数 A 的积的运算叫做乘方,乘方的结果叫幂, N 叫次数或指数。 A 叫底数,混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数无理数 无理数:无限不循环小数叫无理数,例如:π=3.1415926 平方根:①如果一个正数X 的平方等于A,那么这个正数 方根。 X 就叫做A 的算术平 ②如果一个数 ③一个正数有 ④求一个数 A 立方根:①如果一个数X 的平方等于A,那么这个数X 就叫做A 的平方根。 2 个平方根;0 的平方根为0;负数没有平方根。 的平方根运算,叫做开平方,其中 A 叫做被开方数。X 的立方等于A,那么这个数X 就叫做A 的立方根。 ②正数的立方根是正数、0 的立方根是0、负数的立方根是负数。 ③求一个数 A 的立方根的运算叫开立方,其中 实数:①实数分有理数和无理数。 A 叫做被开方数。

完整版初中数学面积公式总结.doc

四边形的面积公式 长方形:S=ab{长方形面积=长×宽} 正方形:S=a^2{正方形面积=边长×边长} 平行四边形:S=ah{平行四边形面积=底×高} 梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2} 三角形的面积公式 三角形:S=ah÷2{三角形面积=底×高÷2} 圆的面积公式 圆形(正圆):S=πr^2{圆形(正圆)面积=圆周率×半径×半径} 圆环:S=(R^2-r^2)×π{圆形(外环)面积={圆周率×(外环半径^2-内环半径^2)} 扇形:S=πr^2×n/360{圆形(扇形)面积=圆周率×半径×半径×扇形角度/360} 椭圆S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长). 半圆半圆形的面积公式=圆周率×半径的平方÷2 用字母公式表示是:S半=Πr^2÷2 立方体的面积公式 长方体表面积:S=2(ab+ac+bc){长方体表面积=(长×宽+长×高+宽×高)×2} 正方体表面积:S=6a^2{正方体表面积=棱长×棱长×6} 球体(正球)表面积:S=4πr^2{球体(正球)表面积=圆周率×半径×半径×4}

2018中考数学复习快速记忆的6个技巧 日期:2018-06-27 来源:中考网责编:樊亚蕾 1、归类记忆法 就是根据识记材料的性质、特征及其内在联系,进行归纳分类,以便帮助学生记忆大量的知识。比如,学完计量单位后,可以把学过的所有内容归纳为五类:长度单位;面积单位;体积和容积单位;重量单位;时间单位。这样归类,能够把纷纭复杂的事物系统化、条理化,易于记忆。 2、歌诀记忆法 就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。”再如,小数点位置移动引起数的大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找‘0’拉拉钩。”采用这种方法来记忆,学生不仅喜欢记,而且记得牢。 3、规律记忆法 即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值×进率=低级单位的数值,低级单位的数值÷进率=高级单位的数值。掌握了这两条规律,化聚问题就迎刃而解了。规律记忆,需要学生开动脑筋对所学的有关材料进行加工和组织,因而记忆牢固。 4、列表记忆法

材料力学公式汇总

材料力学公式汇总 一、应力与强度条件 1、拉压 []σσ≤= max max A N 2、剪切 []ττ≤= A Q max 挤压 [] 挤压挤压挤压σσ≤= A P 3、圆轴扭转 []ττ≤=W t T max 4、平面弯曲 ①[]σσ≤= max z max W M ②[]max t max t max max σσ≤=y I M z t max c max max y I M z c =σ[]cnax σ≤ ③[]ττ≤?=b I S Q z * max z max max 5、斜弯曲 []σσ≤+= max y y z z max W M W M 6、拉(压)弯组合 []σσ≤+= max max z W M A N []t max t z max t σσ≤+= y I M A N z []c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+= z 2n 2w 2n 2w r34W M M ②第四强度理论 []στσσ≤+= += z 2n 2w 2n 2 w r475.03W M M 二、变形及刚度条件 1、拉压 ∑ ? === ?L EA x x N EA L N EA NL L d )(i i 2、扭转 ()? = ∑==Φp p i i p GI dx x T GI L T GI TL πφ0180?=Φ=p GI T L (m / ) 3、弯曲 (1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==?d )()()('θ D Cx x x x M x EIy ++=?? d ]d )([)( (2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ… (3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号) EI ML B =θ EI PL B 22=θ EI qL B 63 = θP A B M A B A B q L L L

初一数学概念、公式总结(苏教版)

初一数学上册概念、公式总结(苏教版) 第一章我们与数学同行 1.1生活数学 1.2活动思考 第二章有理数 2.1比0小的数 像13、155、117.3、0.03%这样的数是正数,它们都是比0大的数; 像-13、-155、-117.3、-0.03%这样的数是负数,它们都是比0小的数; 0既不是正数,也不是负数。 正整数、负整数与0统称为整数. 正分数、负分数统称为分数. 整数和分数统称为有理数. 2.2数轴 规定了原点、正方向和单位的直线叫做数轴. 2.3绝对值与相反熟 数轴上表示一个数的点与原点的距离,叫做这个数的绝对值. 像5与-5、-2.5与2.5等等符号不同、绝对值相等的两个数互为相反数,其中一个是另一个的相反数。 0的相反数是0。 2.4有理数的加法与减法 有理数加法法则 同号两数相加,取相同的符号,并把绝对值相加。 异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 一个数与0相加,仍得这个数。 有理数加法运算律 交换律:a+b=b+a.结合律:(a+b)+c=a+(b+c) 有理数减法法则 减去一个数,等于加上这个数的相反数。 2.5有理数的乘法与除法 有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘都得0.

有理数乘法运算律 交换律:a×b=b×a. 结合律:(a×b)×c=a×(b×c). 分配律:a×(b+c)=a×b+a×c 有理数除法法则 除以一个不等于0的数,等于乘这个数的倒数. 两数相除,同号得正,异号得负,并把绝对值相除. 0除以任何一个不等于0的数,都得0. 2.6有理数的乘方 求相同因数的积的运算叫做乘方. 乘方运算的结果叫幂. 正数的任何次幂都是正数。 负数的奇数次幂是负数,负数的偶数次幂是正数. 一般地,一个大于10的数可以写成a×10n的形式,其中1≤a<10, n是正整数.这种记数法称为科学记数法. 2.7有理数的混合运算 有理数混合运算顺序 先乘方,再乘除,最后加减.如果有括号,先进行括号内的运算. 第三章用字母表示数 3.1字母表示数 3.2代数式 像n-2、0.8a、2n+500、2ab+2ac+2bc等式子都是代数式. 单独一个数或一个字母也是代数式. 像2a、0.8a、15×1.5%、abc和s/5等都是数与字母的积,这样的代数式叫做单项式。单独一个数或一个字母也是单项式. 几个单项式的和叫做多项式. 多项式中,每个单项式叫做一个多项式的项;次数最高的次数,叫做这个多项式的次数. 单项式和多项式统称为整式. 3.3代数式的值 3.4合并同类项 所含字母相同,并且相同字母的指数也相同的项是同类项. 合并同类项的法则 同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.

中考数学公式大全总结

初中数学知识点总结及公式大全 1、一元一次方程根的情况 △=b2-4ac 当△>0时,一元二次方程有2个不相等的实数根; 当△=0时,一元二次方程有2个相同的实数根; 当△<> 2、平行四边形的性质: ① 两组对边分别平行的四边形叫做平行四边形。 ② 平行四边形不相邻的两个顶点连成的线段叫他的对角线。 ③ 平行四边形的对边/对角相等。 ④平行四边形的对角线互相平分。 3、菱形: ①一组邻边相等的平行四边形是菱形 ②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。 ③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。 4、矩形与正方形: ① 有一个内角是直角的平行四边形叫做矩形。 ② 矩形的对角线相等,四个角都是直角。 ③ 对角线相等的平行四边形是矩形。

④ 正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。 5、多边形: ①N边形的内角和等于(N-2)180度 ②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 6、平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N 个数的算术平均数,记为X 7、加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。 二、基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行

材料力学公式总结大全

材料力学 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理想情形。塑性材 料、脆性材料的许用应力分别为: []3n s σσ=, []b b n σ σ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?=ε,A P A N == σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ??? === 2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T ==max τ;圆轴扭转的强度条件: ][max ττ≤= t W T ,可以进行强度校核、截面设计和确定许可载荷。

相关主题
文本预览
相关文档 最新文档