【历年高一数学期末试题】辽宁省实验中学分校2013-2014学年高一上学期期末考试 数学试题 Word版含答案
- 格式:doc
- 大小:490.00 KB
- 文档页数:8
广东省汕头市澄海实验高级中学2013-2014学年高一数学上学期期末考试试题新人教A 版参考公式:球的表面积、体积公式 24πS R =,34π3V R =第Ⅰ卷 (选择题 共50分)一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案代号填入答案卷表格中)1.在y 轴上的截距是2,且与x 轴平行的直线方程为( )A . 2y =B . 2y =-C . 2x =D .22y y ==-或 2.已知集合{}{2,A y y x B x y ==+==,则=⋂B A ( )A. (1,)+∞B. (2,)+∞C. [1,)+∞D. φ3. 已知M (2,2)和N (5,-2),点P 在x 轴上,90MPN ∠=,则点P 的坐标为( ) A. (1,6) B. (1,0) C. (6,0) D. (1,0)或(6,0) 4.若直线0ax by c ++=在第一、二、三象限,则( )A .0,0ab bc >>B . 0,0ab bc <<C .0,0ab bc <>D .0,0ab bc >< 5.已知,αβ是两个不同的平面,,,l m n 是不同的直线,下列命题不正确...的是 ( ) A .若,,,,l m l n m n αα⊥⊥⊂⊂则l α⊥; B .若//,,,l m l m αα⊂⊂/则//l α; C .若,,,,l m m l αβαβα⊥=⊂⊥则m β⊥;D .若,,,m n αβαβ⊥⊥⊥,则m n ⊥6. 入射光线 从P (2,1)出发,经x 轴反射后,通过点Q (4,3),则入射光线 所在直线的方程为( ) A . 0y = B . 250x y -+= C . 250x y +-= D .250x y -+=7.. 一个几何体的三视图如右图所示,则该几何体的体积等于( )主视图 左视图俯视图A . 483π+B . 443π+ C .84π+ D . 103π8.已知PD ⊥矩形ABCD 所在的平面(图2),图中相互垂直的平面有( ) A .1对 B .2对 C .3对 D .5对 9.设函数22(0)()(0)x f x x bx c x - >⎧=⎨++ ≤⎩,若(4)(0),(2)0,f f f -=-=则关于x 的不等式()f x ≤1的解集为( )A .(][),31,-∞--+∞) B .[]()3,10,--+∞ C .[]3,1-- D .[)3,-+∞ 10.下列函数图象中,正确的是( ).第II 卷 (非选择题 共100分)二.填空题:(本大题共4小题,每小题5分,共20分)11.计算:()1325354log ⎡⎤-+=⎣⎦12.如图所示,水平放置的直三棱柱的侧棱长和底面边长均为2,正视图是边长为2的正方形,该三棱柱的侧视图面积为_____.PABCD图213.若两条直线260ax y ++=与2(1)(1)0x a y a +-+-=平行,则a 的取值集合是____; 14.已知圆锥的表面积为23m π,且它的侧面展开图是一个半圆,求这个圆锥的底面直径 。
宜昌市部分示范高中教学协作体2013年秋季期末考试高 一 数 学 试 题考试时间:120分钟 试卷满分:150分 注意事项:1.答卷前,考生务必将自己的相关信息填写在规定的位置,并检查所持试卷是否有破损和印刷等问题。
若试卷有问题请立即向监考教师请求更换。
2.答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上的无效。
3.考生必须保持答题卡的整洁。
考试结束后,请将答题卡上交。
一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={}x y x lg =,B={}022≤-+x x x ,则=B A ( )A .)0,1[-B .]1,0(C .]1,0[D .]1,2[-2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3、设2:f x x →是集合M 到集合N 的映射, 若N={1,2}, 则M 不可能是 ( )A 、{-1}B 、{C 、{-D 、 4、已知函数xx f 1)(=,则1)1(+-=x f y 的单调递减区间为( ) A 、[0,1) B 、(-∞,0) C 、}1|{≠x x D 、(-∞,1)和(1,+∞) 5、偶函数()f x 与奇函数()g x 的定义域均为[4,4]-,()f x 在[4,0]-,()g x 在[0,4]上的图象如图,则不等式()()0f x g x ⋅<的解集为( )A 、[2,4]B 、(4,2)(2,4)--C 、(2,0)(2,4)- D 、(2,0)(0,2)-6.已知函数)(1)62sin(2)(R x x x f ∈-+=π则)(x f 在区间[0,2π]上的最大值与最小值分别是( )A. 1, -2 B .2 , -1 C. 1, -1 D.2, -2 7..函数)(x f y =的图象向右平移6π个单位后与函数)22cos(π-=x y 的图象重合.则)(x f y =的解析式是( )A.)32cos()(π-=x x f B. )62cos()(π+=x x fC. )62cos()(π-=x x f D. )32cos()(π+=x x f8.设02x π≤≤,sin cos x x =-,则( ) A.0x π≤≤ B.744x ππ≤≤C.544x ππ≤≤D.322x ππ≤≤ 9.若)2sin(3)(ϕ+=x x f +a ,对任意实数x 都有),3()3(x f x f -=+ππ且4)3(-=πf ,则实数a 的值等于( )A .-1B .-7或-1C .7或1D .7或-710.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y =f (x )(实线表示),另一种是平均价格曲线y =g(x )(虚线表示)(如f (2)=3是指开始买卖后两个小时的即时价格为3元g(2)=3表示2个小时内的平均价格为3元),下图给出四个图象:其中可能正确的图象序号是 。
黑龙江省哈尔滨市第三十二中学2013-2014学年高一上学期期末考试数学试题 新人教A 版(适用班级:高一学年;考试时间90分钟;满分100分)一、选择题(每小题只有1个选项符合题意,每小题4分,共48分)1. 已知集合{1,1}M =-,11{|22,}4x N x x Z -=<<∈则M ∩N= ( )A. {1,1}-B.{1}-C. {1}D. {1,0}- 2.函数21)(--=x x x f 的定义域为 ( ) A. [1,2)∪(2,+∞) B. (1,+∞) C. [1,2) D. [1,+∞)3.若函数f(x)=x 3+x 2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:那么方程x 3+x 2-2x-2=0的一个近似根(精确到0.1)为 ( )A. 1.2B. 1.3C. 1.4D. 1.5 4.函数)652cos(3π-=x y 的最小正周期是 ( ) A .52π B .25π C .π2 D .π5 5. 02120sin 等于 ( )A .23±B .23C .23-D .216. 已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( )A.43-B.34-C.43D.347.若α是第四象限的角,则πα-是 ( )A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角8. 已知3tan =α,23παπ<<,那么ααsin cos -的值是 ( )A .231+-B .231+-C .231-D . 231+ 9. 若,24παπ<<则 ( )A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >> 10. 化简0sin 600的值是 ( )A .0.5B .0.5- C.2 D.2- 11. 函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( )A .0B .4π C.2πD.π12. 将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( )A .1sin2y x = B .1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-哈32中2013~2014学年度上学期期末数学试题答题卡(适用班级:高一学年;考试时间90分钟;满分100分)二、填空题(每空4分,共16分)13.f(x)的图像如下图,则f(x)的值域为14.()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω=_______________________.15.若角α与角β的终边关于y 轴对称,则α与β的关系是___________________________.16.满足23sin =x 的x 的集合为_______________________________ 三、解答题(共36分)17.画出函数[]π2,0,sin 1∈-=x x y 的图象。
宁夏银川一中2013-2014学年高一数学上学期期末考试试题(含解析)新人教A 版一、选择题:本大题共12小题,每小题4分,满分48分。
在每小题给出的四个选项中只有一个选项是符合题目要求的。
把正确答案的代号填在答题卷上。
. 1.在直角坐标系中,直线033=--y x 的倾斜角是( ) A .30°B .120°C .60°D .150°3.若方程22(62)(352)10a a x a a y a --+-++-=表示平行于x 轴的直线,则a 的值是( ) A .23B .12-C .23,12-D.1【答案】B 【解析】试题分析:因为平行于x 轴的直线的斜率为零,所以由直线方程一般式220(0)Ax By C A B ++=+≠得00,0.Ak A B B=-=⇒=≠即22620,3520.a a a a --=-+≠本题易错在忽视0B ≠这一条件而导致多解.考点:直线方程斜截式或一般式中斜率与方程的关系.4.圆柱的底面积为S,侧面展开图为正方形,那么这个圆柱的侧面积为( ) A.S πB. S π2C. S π3D.S π46.某几何体三视图及相关数据如右图所示,则该几何体的体积为 ( ) A .16 B .163 C .64+163 D . 16+3348.已知两条直线m n ,,两个平面αβ,.下面四个命题中不正确...的是( ) A . ,//,,n m m ααββ⊥⊆⇒⊥n B .αβ∥,m n ∥,m n αβ⇒⊥⊥;C . ,α⊥m m n ⊥,βαβ⊥⇒⊥nD .m n ∥,m n αα⇒∥∥ 【答案】D 【解析】9.正方体ABCD -1111A B C D 中,1BD 与平面ABCD 所成角的余弦值为( ) AC. 23【答案】D 【解析】10.若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准方程是( )A .1)37()3(22=-+-y x B .1)1()2(22=-+-y x C .1)3()1(22=-+-y xD .1)1()23(22=-+-y x【答案】B 【解析】ABC DA 1B 1C 1D 111.如图,长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,E ,F ,G 分别是DD 1,AB ,CC 1的中点,则异面直线A 1E 与GF 所成角为( ) A . 30B . 45C . 60D . 9012.若直线y=kx+4+2k 与曲线24x y -=有两个交点,则k 的取值范围是( ). A .[1,+∞) B . [-1,-43) C . (43,1] D .(-∞,-1] 【答案】B 【解析】试题分析:直线是过定点(2,4)A -的动直线,曲线是以原点为圆心,2为半径的y 轴右侧(含y 轴上交点(0,2),B C )半圆. 由图知,[,)AB AE k k k ∈时,直线与曲线有两个交点.421,20AB k -==---由AE 32,4k =⇒=-所以3[1,)4k ∈--.借助图形进行分析,得到加强条件,再利用数进行量化.考点:数形结合,交点个数.15.直线l y x =:与圆22260x y x y +--=相交于,A B 两点,则AB =________.考点:直线与圆,圆的弦长,点到直线距离.16.下面给出五个命题:① 已知平面α//平面β,,AB CD 是夹在,αβ间的线段,若AB //CD ,则AB CD =; ② ,a b 是异面直线,,b c 是异面直线,则,a c 一定是异面直线; ③ 三棱锥的四个面可以都是直角三角形。
福建省龙岩市2013-2014学年高一数学上学期期末教学质量检查试题新人教A 版(考试时间:120分钟 满分150分)注意:1. 试卷共4页,另有答题卡,解答内容一律写在答题卡上,否则不得分.2. 作图请使用2B 铅笔,并用黑色签字笔描画.一、选择题(本大题共12小题,每小题5分,共60分. 每小题中给出的四个选项中,只有一项是符合题目要求的.) 1. 函数()39x f x =-的零点是 A .(2,0)B .(3,0)C .2D .32. 已知直线l 的方程为220x y b -+=()b R ∈,则直线l 的倾斜角为 A .30 B .45 C .135 D .与b 有关 3. 空间四点最多可确定平面的个数是A .1B .2C .3D .44.函数y =的定义域是A. (]0,2B. (]0,16C. (],2-∞D . (],16-∞5. 若直线10mx y --=与直线230x y -+=平行,则m 的值为 A .21 B .21-C .2D.2-6. 右图中的三个直角三角形是一个体积为32cm 的几何体的三视图,则b = A .1B .2C .3D .47. 已知点(,)M a b 在直线1043=+y x 上,则22b a +的最小值为 A .2B . 3C .154D .58. 设,a b 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题正确的是 A. 若αβ⊥,αγ⊥,则βγ⊥ B. 若,a b 与α所成的角相等,则//a b C. 若a α⊥,//a β,则αβ⊥D. 若//a b ,a α⊂,则//b α侧视图俯视图(第6题图)9. 设5323552525log ,(),()53a b c ===,则a ,b ,c 的大小关系是A .c b a >>B .c a b >>C .a b c >>D .b c a >>10. 在ABC ∆中,3AB =,4BC =,120ABC ∠=︒,若把ABC ∆ 绕直线AB 旋转一周,则所形成的几何体的体积是 A. 11πB. 12πC. 13πD. 14π11. 如图,有一块等腰直角三角形ABC 的空地,要在这块空地上开辟 一个内接矩形EFGH 的绿地,已知AB AC ⊥,4AB =,绿地面积 最大值为 A. 6B. C. 4D. 12. 已知函数()[2,4]f x x =∈对于满足21<<x 的任意1x ,2x ,给出下列结论: ①1221()()x f x x f x > ②2112()()x f x x f x >③2121()[()()]0x x f x f x --< ④0)]()()[(1212>--x f x f x x 其中正确的是 A. ①③B. ①④C. ②③D. ②④二、填空题(本大题共4小题,每小题4分,共16分)13. 已知正方体外接球表面积是48π,则此正方体边长为 . 14.已知集合{(,)|M x y y x m m R==+∈,集合22{(,)|2230}N x y x y x y =+++-=,若M N 是单元素集,则m = .15. 设()f x 是奇函数,且在(0,)+∞内是减函数,又(2)0f -=,则(3)()0x f x -⋅<的解集是 . 16. 如图是从上下底面处在水平状态下的棱长为a 的正方体1111ABCD A BC D -中分离出来的.有如下结论:①11DC D ∠在图中的度数和它表示的角的真实度数都是45︒; ②1111111AC D AC D DC D ∠=∠+∠;③11AC 与1BC 所成的角是30︒; (第10题图)ABC120︒(第11题图)④若BC m =,则用图示中这样一个装置盛水,最多能盛316m 的水.其中正确的结论是 (请填上你所有认为正确结论的序号). 三、解答题(共6题,74分) 17. (本小题满分12分) 已知1{|39}3x A x =<<,2{log 0}B x x =>. (Ⅰ)求AB 和A B ;(Ⅱ)定义{A B x x A -=∈且}x B ∉,求A B -和B A -.18. (本小题满分12分)已知圆C :16)1(22=+-y x 内有一点(2,2)P ,过点P 作直线l 交圆C 于A ,B 两点.(Ⅰ)当l 经过圆心C 时,求直线l 的方程;(Ⅱ)当弦AB 被点P 平分时,写出直线l 的方程.19. (本小题满分12分)已知一个几何体的三视图如图所示. (Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点A 为所在线段中点,点B 为顶点,求在几何体侧面上从点A 到点B 的最短路径的长.20. (本小题满分12分)已知以点C 为圆心的圆经过点(1,0)A -和(3,4)B ,且圆心在直线0153=-+y x 上.(Ⅰ)求圆C 的方程;(Ⅱ)设点P 在圆C 上,求PAB ∆的面积的最大值.A 侧视图正视图(第19题图)21. (本小题满分12分)如图,四棱锥E ABCD -,底面A B C D 是矩形,平面EDC ⊥底面A B C D ,4ED EC BC ===,CF ⊥平面BDE ,且点F 在EB 上. (Ⅰ)求证:DE BCE ⊥平面; (Ⅱ)求三棱锥A BDE -的体积;(Ⅲ)设点M 在线段DC 上,且满足2DM CM =,试在线段EB 上确定一点N ,使得//MN 平面ADE .22.(本小题满分14分)已知二次函数2()21(0)g x mx mx n m =-++>在区间 [0,3]上有最大值4,最小值0. (Ⅰ)求函数)(x g 的解析式; (Ⅱ)设()2()g x xf x x-=.若(2)20x x f k -⋅≤在[3,3]x ∈-时恒成立,求k 的取值范围.C B(第21题图)龙岩市2013~2014学年第一学期高一教学质量检查数学试题参考答案13. 4 14. 6 或 -4 15.(,2)(0,2)(3,)-∞-+∞ 16. ①④三、解答题(共6题,74分) 17. (本小题满分12分) 解:(Ⅰ)A {12}x x =-<< B {1}x x =>………………………………………4分(1,2)A B = ; (1,)AB =-+∞ ……………………………… 6分(Ⅱ)(]1,1A B -=- (写成()1,1-扣1分); [)2,B A -=+∞(写成()2,+∞扣1分) ………………………………12分18. (本小题满分12分)解:(Ⅰ)已知圆C :16)1(22=+-y x 的圆心为C (1,0) ………………………1分因直线过点P 、C ,所以直线l 的斜率为2, …………………………3分 直线l 的方程为2(1)yx =-, …………………………………………… 5分即220x y --=. (6)分(Ⅱ)当弦AB 被点P 平分时,l PC ⊥斜率为21-…………………………9分 直线l 的方程为12(2)2y x-=--, 即260x y +-= ……………… 12分19. (本小题满分12分)(Ⅰ)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.()(1222S π=⨯⋅=圆锥侧, ()22416S ππ=⨯⨯=圆柱侧,4S π=圆柱底, 所以)222242245S πππ=⨯+⨯+⨯=表面. ……………………6分(Ⅱ)沿A 点与B 点所在母线剪开圆柱侧面,如图:则AB ==所以从A 点到B 点在侧面上的最短路径的长为……………… 12分 20. (本小题满分12分)解:(Ⅰ)依题意所求圆的圆心C 为AB 的垂直平分线和直线0153=-+y x 的交点,AB 中点为)2,1(斜率为1,AB ∴垂直平分线方程为)1(2-=-x y 即3+-=x y ……………… 2分联立⎩⎨⎧=++-=1533y x x y 解得⎩⎨⎧=-=63y x 即圆心)6,3(-,(第19题图) B半径1026422=+=r … 6分∴所求圆方程为40)6()3(22=-++y x ……………………………… 7分(Ⅱ)244422=+=AB , ……………………………………………… 8分圆心到AB 的距离为24=d …………………………………………9分P 到AB 距离的最大值为10224+=+r d ………………………11分所以PAB ∆面积的最大值为5816)10224(2421+=+⨯⨯ …12分22. (本小题满分14分)解:(Ⅰ)∵2()(1)1g x m x m n =--++∴函数)(x g 的图象的对称轴方程为1=x ………………………………2 分0m > 依题意得(1)0(3)4g g =⎧⎨=⎩ ……………………………………… 4 分即10314m n m n -++=⎧⎨++=⎩,解得10m n =⎧⎨=⎩ ∴12)(2+-=x x x g ………………………………………… 6 分(Ⅱ)∵()2()g x x f x x -=∴()21()4g x x f x x x x-==+- ……………7 分 ∵(2)20x xf k -⋅≤在[3,3]x ∈-时恒成立,即124202xx x k +--⋅≤在[3,3]x ∈-时恒成立 ∴211()4()122x x k ≥-+在[3,3]x ∈-时恒成立只需 2max11()4()122x x k ⎛⎫≥-+ ⎪⎝⎭ ……………………………………10分令xt 21=,由[3,3]x ∈-得1[,8]8t ∈ 设()h t =241t t -+∵22()41(2)3h t t t t =-+=-- ……………………………………12 分 ∴函数()h x 的图象的对称轴方程为2t = 当8t =时,取得最大值33.∴max ()(8)33k h t h ≥== ∴k 的取值范围为[)33,+∞ …………14分。
2013-2014学年上学期期末考试一年级《数学》试卷一、选择题(每小题3分,共30分)1、若集合{0}A x x =<,集合{1}B x x =<,则集合A 与集合B 的关系是( ) ) A 、A B = B 、B A ⊆ C 、A B ⊆ D 、B A ∈2、设集合},{b a A =, },{c b B =, },{c a C =, 则)(C B A 等于 ( ) A 、},,{c b a B 、}{a C 、∅ D 、},{b a3、0ab >是0,0a b >>的( )A 、充分条件B 、必要条件C 、充要条件D 、无法确定4、若不等式20x x c ++<的解集是{|43}x x -<<, 则c 的值等于 ( ) A 、12 B 、11 C 、-12 D 、-115、函数3()log f x x =的定义域是( )A 、(0,)+∞B 、[0,)+∞C 、(0,2)D 、R6、函数14)(2+-=x x x f 的最小值是 ( ) A 、3 B 、1 C 、-1 D 、 -37、设函数1()()2xx f x e e -=+, 则()f x 是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既是奇函数又是偶函数 8、若函数()(1)f x a x b =++在R 上是减函数,则 ( ) A 、1a >- B 、1a <- C 、0b < D 、0b >9、若32a >a 的取值范围为 ( ) A 、0a >B 、01a <<C 、1a >D 、无法确定10、指数函数3x y = 的图像不经过的点是 ( )A 、(1,3)B 、(0,1)C 、1(2D 、(2,9)-二、填空题(每小题3分,共24分)1、满足条件{0,1,2}M ∅⊆⊆的集合共有 个。
2、已知集合{(,)5}A x y x y =+=,{(,)1},B x y x y =-=-则A B = 。
2013-2014学年度第一学期高一级期末考试一.选择题(每小题5分,共50分,每小题只有一个选项是正确的) 1. 已知集合M ={x|x <3},N ={x |122x>},则M ∩N 等于( ) A ∅B {x |0<x <3}C {x |-1<x <3}D {x |1<x <3}2. 已知三条不重合的直线m 、n 、l 两个不重合的平面βα,,有下列命题 ①若αα//,,//m n n m 则⊂; ②若βαβα//,//,则且m l m l ⊥⊥; ③若βαββαα//,//,//,,则n m n m ⊂⊂;④若αββαβα⊥⊥⊂=⊥n m n n m 则,,,, ;其中正确的命题个数是( )A .1B .2C .3D .4 3. 如图,一个简单空间几何体的三视图中,其正视图与侧视图都是边长 为2的正三角形,俯视图轮廓为正方形,则其侧面积是( ) A .4. 函数()23xf x x =+的零点所在的一个区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,25. 如图,在正方体ABCD-A 1B 1C 1D 1中,异面直线A 1B 和AD 1所成角的大小是( ) A. 30° B. 45° C.90° D.60°6. 已知函()()21,1,log ,1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为( ) A . ()1,2B . ()2,3C . (]2,3D . ()2,+∞7. 如图在正三棱锥A-BCD 中,E 、F 分别是AB 、BC 的中点,EF ⊥DE ,且BC =1,则正三棱锥A-BCD的体积是 ( )243D. 123C. 242B. 122.A8. 函数y =log 2(1-x )的图象是( )俯视图正视图 侧视图9. 已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )A .42-x B .42+x C .2)4(+x D . 2)4(-x10. 已知)91(log 2)(3≤≤+=x x x f ,则函数[])()(22x f x f y +=的最大值为( )A .6B .13C .22D .33二.填空题(每小题5分,共20分)11. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .12. 已知函数()()223f x x m x =+++是偶函数,则=m .13. 已知直二面角βα--l ,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足, 若AB=2,AC=BD=1则C,D 两点间的距离是_______14. 若函数2()log (2)(0,1)a f x x x a a =+>≠在区间102⎛⎫ ⎪⎝⎭,恒有()0f x >,则()f x 的单调递增区间是三.解答题(本大题共6小题,共80分。
一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.与角-6π终边相同的角是( )A .56π B. 3π C. 116π D. 23π 2.某扇形的半径为1cm ,它的弧长为2cm ,那么该扇形的圆心角为( ) A .2° B. 4rad C. 4° D. 2rad 3.已知平面向量a =(3,1),b =(x,-3),且a ⊥b ,则x 等于( )A .3 B.1 C.-1 D.-34.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为( )A .7B .25C .15D .355.在[0,2π]内,满足sinx >cosx 的x 的取值范围是( )A.8.已知MP ,OM ,AT 分别为角θ()42ππθ<<的正弦线、余弦线、正切线,则一定有( )A.MP OM AT <<B.OM MP AT <<C.AT OM MP <<D.OM AT MP <<9.利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程x 2-x+a=0无实根的概率为( ) A .12 B.14 C.34 D.2310.已知平面向量a =(2,-1),b =(1,1),c =(-5,1),若()a kb +∥c ,则实数k 的值为( ) A .2 B.12 C.114 D.114- 11.要得到y =sin ⎝ ⎛⎭⎪⎫x 2+π3的图象,需将函数y =sin x 2的图象至少向左平移( )个单位.卷Ⅱ二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上)13.已知1,2,,60,2a b a b a b ==<>=+=则14. 若α为锐角,且sin ⎝⎛⎭⎫α-π6=13,则sin α的值为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分(1)化简()f α;(2)若α是第三象限角,且cos(32πα-)=19. (本小题满分12分) 已知函数f (x )=2sin x 4cos x 4+3cos x2.(1)求函数f (x )的最小正周期及最值;(2)令g (x )=f ⎝ ⎛⎭⎪⎫x +π3,判断函数g (x )的奇偶性,并说明理由.20.(本小题满分12分) 在△ABC 中,中线长AM =2.(1)若OA→=-2OM →,求证:OA →+OB →+OC →=0; (2)若P 为中线AM 上的一个动点,求P A →·(PB→+PC →)的最小值.21. (本小题满分12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(1)求A的大小;(2)求sinB+sinC的最大值.高一数学下学期期末考试答案:一、选择题:1.C2.D3.B4.C5.B6.D7.A8.B9.C 10.B 11.A 12.C二、填空题:13.14.15. 16.三、解答题:17.解:...............5分=157.....................................2分乙班学生成绩的中位数正好是150+x=157,故x=7;........................................2分(Ⅱ)用A表示事件“甲班至多有1人入选”.设甲班两位优生为A,B,乙班三位优生为1,2,3.则从5人中选出3人的所有方法种数为:(A,B,1),(A,B,2),(A,B,3),(A,1,2),(A,1,3),(A,2,3),(B,1,2),(B,1,3),(B,2,3),(1,2,3)共10种情况,..........................3分其中至多1名甲班同学的情况共(A,1,2),(A,1,3),(A,2,3),(B,1,2),(B,1,3),(B,2,3),(1,2,3)7种......................3分(1)(x)sinf=(2)g (x )是偶函数.理由如下:.................................................................................1分∴函数g (x )是偶函数. ......................................................................................... ...1分20. 解:(1)证明:∵M 是BC 的中点,∴OM →=12(OB →+OC →). (3)分代入OA →=-2OM →,得OA →=-OB →-OC →,.................................................................2分即OA→+OB →+OC →=0........................................................................................................1分(2)设|AP →|=x ,则|PM →|=2-x (0≤x ≤2).....................................................................1分∵M 是BC 的中点,∴PB→+PC →=2PM→................................................................................................................2分 ∴PA→·(PB →+PC →)=2PA →·AM →=-2|PA →||PM →| =-2x (2-x )=2(x 2-2x )=2(x -1)2-2,...................................................................2分当x =1时,取最小值-2.................................................................................................1分则a=2RsinA,b=2RsinB,c=2RsinC................................................................................2分∵2asinA=(2b+c)sinB+(2c+b)sinC方程两边同乘以2R∴2a2=(2b+c)b+(2c+b)c...........................................................................................2分整理得a2=b2+c2+bc............................................................................................................1分∵由余弦定理得a2=b2+c2-2bccosA..................................................................................1分(Ⅱ)由(Ⅰ)得:sinB+sinC=sinB+sin(60°-B)....................................................1分sin(60B)+ (2)B=30°时,sinB+sinC取得最大值1......................................................................1分故当故函数y=f(x)在区间[0,π]上的图象是.................................................2分。
数学学科 高一年级 命题人:解祎美 校对人:刘敬
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设全集}4,2,1,01{,-=U ,}1,1{-=M C U 则集合=M A.
{}0,2 B. {}0,4 C. {}4,2 D. {}0,2,4
2.已知幂函数)(x f y =的图象经过点)2
2
,
21
(,则)2(log 2f 的值为 A .
21 B.2
1
- C.2 D.2- 3.若m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是
A.若α//m ,α//n ,则n m //
B.若α⊂m ,α⊂n ,β//m ,β//n ,则βα//
C.若βα⊥,α⊂m ,则β⊥m
D.若βα⊥,β⊥m ,α⊄m ,则α//m
4.圆4)2(2
2
=++y x 与圆9)1()2(2
2
=-+-y x 的位置关系是
A .内切 B.相交 C.外切 D.相离
5.已知bx ax x f +=2)(是定义在]2 1
[a a ,-上的偶函数, 那么b a +的值是 A. 13-
B. 13
C. 12
D. 12
- 6.下列函数中,既是偶函数又在)0,(-∞上单调递增的是 A .1
y x
=-
B .2log y x =
C . x y 3-=
D .3
1y x =-
7.已知正ABC ∆的边长为2,以它的一边为x 轴,对应的高线为y 轴,画出它的水平放置的直观图
'''C B A ∆,则'''C B A ∆的面积是
A.3
B.
23 C.26 D.4
6 8. 一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由这样的正方体组成的个数为
A.12个
B.13个
C.14个
D.18个 9.若直线m y x =+43与圆1)1()1(22=-+-y x 有公共点,则
A .122≤≤m B.2≤m 或12≥m C.122<<m D.2<m 或12>m 10. 已知实数x ,y 满足方程3)2(22=+-y x ,求
x
y
的最小值 A .3- B.3 C.3- D.3 11.已知P
、
A 、
B 、
C 是球O 表面上的点,⊥PA 平面
ABC ,BC AC ⊥,1=AC ,3=BC ,5=PA ,则球O 的表面积为
A .π9 B.π8 C.π6 D.π4
12.若定义在R 上的函数)(x f y =满足)()1(x f x f -=+,且当]1,1[-∈x 时,2)(x x f =,
函数⎩
⎨⎧-=x
x x g 2)1(log )(3)1()
1(≤>x x ,则函数)()()(x g x f x h -=在区间[]5,5-内的零点个数为 A.9 B.8 C.7 D.6
主视图 左视图
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)
13.若直线012:1=++my x l 与直线13:2-=x y l 平行,则=m __________.
14.计算:=-+++-3
1
2
log 3
)27
8(7
4lg 25lg 27log 7__________. 15.已知正三棱柱111C B A ABC -的底面边长为cm 2,高为cm 5,则一质点自点A 出发,沿着,三棱柱的侧面绕行两周到达1A 的最短路线的长为__________cm .
16.若函数12)(22
-=--a
ax x
x f 的定义域为R ,则a 的取值范围是__________.
三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程和演算步骤) 17.(本小题满分10分)
已知集合}22|{a x a x A +≤≤-=,}045|{2≥+-=x x x B . (1)当3=a 时,求B A ,)(B C A R ; (2)若φ=B A ,求实数a 的取值范围.
18.(本小题满分12分)
如图,半径为2的半圆内的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,求该几何体的体积.(其中∠BAC=30°)
19. (本小题满分12分)
已知圆O 以032=-+y x 与012=--y x 的交点为圆心,且与两个坐标轴相切. (1)求圆O 的标准方程;
(2)若斜率为3的直线l 与圆O 交与A 、B 两点,且3=AB ,求直线l 的方程.
20. (本小题满分12分)
已知二次函数)(x f 的图象经过点)3,0(,)0,1(,)3,2(-,)(log )(x f x g a =,其中
10≠>a a 且.
(1)求)(x g 的解析式及其定义域;
(2)当02≤≤-x 时,2)(max =x g ,求a 的值.
21. (本小题满分12分)
直四棱柱1111D C B A ABCD -,底面ABCD 为菱形,1=AB ,
60=∠ABC
(1)求证:1BD AC ⊥; (2)若2
6
1=
AA ,求四面体C AB D 11的体积.
22. (本小题满分12分)
设函数)10()1()(≠>--=-a a a k a x f x x 且是定义域为R 的奇函数. (1)求k 的值; (2)若2
3)1(=f ,且)(2)(22x f m a a x g x x ⋅-+=-在),1[∞+上的最小值为2-,求m 的值.
辽宁省实验中学分校2013—2014学年度上学期期末考试
高一数学 答案
13. 3
2
-
14. 4 15. 13 16. []0,1-
18.解:ππ332
2343==
球V -----4分 ππ44)3(3
12
==中V -----8分
所以π3
20
-==中球V V V -----12分 19. 解:(1)1)1()1(22=-+-y x -----4分
(2)设b x y l +=3:,则圆心到l 的距离2
1
2|13|=+-=
b d ,
解得32-=b 或3-=b .-----10分 所以:
l 0323=-+-y x 或033=--y x .-----12分
20.解:(1))32(log )(2
+--=x x x g a -----4分
定义域}13|{<<-x x -----6分
(2)因为02≤≤-x ,所以4)(3≤≤x f -----8分
当1>a 时,24log =a ,2=a ;-----10分 当10<<a 时,23log =a ,3=a (舍)
综上,2=a .-----12分
21.解: (1)连结BD 交AC 于O.
四边形ABCD 为菱形 ∴AC⊥BD ,
直四棱柱ABCD-A 1B 1C 1D 1 ∴DD 1⊥平面ABCD ∴DD 1⊥AC,
又DD 1交BD 于D, 则AC⊥平面BB 1D 1D, 又BD 1⊂平面BB 1D 1D, 则AC⊥BD 1. -----6分
(2) 111111*********D AB C ABCD A B C D B ABC D ACD A A B D CC B D V V V V V V -=----
=
111111442344ABCD A B C D B ABC V V --=
⋅⋅=
. -----12分 22解:(1)由题意,对任意R ∈x ,)()(x f x f -=-, 即x x x x
a k a a k a
---+-=--)1()1(,
即0)())(1(=+-+---x x x
x
a a a
a k ,0))(2(=+--x x a a k ,
因为x 为任意实数,所以2=k (4)。