当前位置:文档之家› 压电陶瓷蜂鸣片检查基准(20080715)

压电陶瓷蜂鸣片检查基准(20080715)

压电陶瓷蜂鸣片检查基准(20080715)
压电陶瓷蜂鸣片检查基准(20080715)

版次修订日期修订记事修订1 A0 2008-07-15 初版做成熊伟

版次 修订日期 修订记事 修订

确认

承认

受控印章

1 A0 2008-07-15 初版做成 熊伟 2008-08-01

测试电压应校准通常为50mV ,但最高不要超过3V ;

蜂鸣片的测量点应在波节附近,以蜂鸣片的等效电阻最小值的一点为准;(通常对于直径为

修订

版次修订日期修订记事修订确认承认受控印章生效日期1 A0 2008-07-15 初版做成熊伟

2008-08-01 的蜂鸣片,波节点选择在瓷片边缘1mm左右的位置);按图-1接入测试夹具置开关K在1的位置,调节音频信号发生器,校准测试输入电压。置开关K在2的位置,将测试夹具置两尖端夹住蜂鸣片测量点位置(或直接夹住蜂鸣片引出导线),然后调节音频信号发生器的输出频率,使毫伏电压表指示的电压为最大,此时频率计所显示的频率为该蜂鸣片的谐振频率。

4.3.2 等效阻抗Z R:测试电路同4.3.1,

将开关K在2的位置,调节可变电阻箱的阻值,使毫伏电压表指示达到谐振频率的最大值,这时可变电阻箱上读出的阻值,即为蜂鸣片的等效电阻。

4.3.3 主电极静电容量C P:通常以测试频率为120Hz,测试电压不超过1V的电容电桥(RLC表)进行测量。4.3.4 次电极静电容量C S:方法同4.3.3

4.3.5 主次电极的极性P:

参照图-4 电极的极性测试示意图;

将低频示波器(OSCILLOSCOPE)的"TIME/DIV"设置为"0.5ms";"VOLTS/DIV"设置为"1V"或合适的量程;

将待测蜂鸣片平放置于绝缘带缓冲性材料(比如:海绵)上;

用示波器引出线负极(GND端)接金属基片;探头(正极)接触到蜂鸣片主或次电极(银浆层),然后轻轻往下压,观察示波器,波形由初始位置0向下移动至1,轻轻移开探头,观察示波器,波形由1向上移动至初始位置0,由于惯性作用波形继续向上至2位置,再由2位置向下回到初始位置0。重复2次,现象均应相同.

符合上述描述的蜂鸣片主电极极性为"+".为合格品,反之(波形向相反方向移动)为不合格品;

4.3.6 压电陶瓷片粘接强度:用一根直径与压电陶压电陶瓷片相同的圆柱体金属棒,长度为60mm左右,把蜂鸣

片的金属面贴在金属棒的曲面上,将其压弯至与曲面相吻合后,检查外观;蜂鸣片经折弯后,应无压电陶瓷片脱落和翘起现象,但允许龟裂。

4.3.7 银层焊接强度:在样品银层面上,在导线上施加250g负荷,负荷时间为10s,焊点不可剥离或脱落,银

层无机械损伤。

4.3.8 自由跌落:将蜂鸣片放置在水平位置,金属片的一面朝下,从1000mm高度自由跌落至硬木板上,跌落

二次后,检查外观并测量电性能;蜂鸣片经自由跌落试验后,无脱胶及压电陶瓷片碎裂等机械损伤;4.3.9 绝缘电阻:测试电压为50V,用误差小于10%的绝缘电阻表测量,1分钟后读取绝缘电阻值;要求蜂鸣片

的绝缘电阻应不低于100MΩ。

4.4标志、包装、运输、贮存

4.4.1标志:蜂鸣片上应清晰标明:制造厂商标、型号、生产日期,由于尺寸限制不能完全标志时,应按相应的

详细规范规定标志,但应在包装上完全标志;

4.4.2内包装:内包装盒应在运输、贮存整个过程中,为防止蜂鸣片变质和物理损伤提供足够的保护。内包装

盒内只能装同一品种的产品,并应放上盖有质量部门的印章的合格证。内包装盒上应标明:

[1].制造厂名称和商标;

[2].产品名称和型号;

[3].产品数量和生产日期;

[4].包装人姓名和代号。

压电陶瓷电特性测试与分析

摘要:通过对压电陶瓷器件进行阻抗测试可得到压电振子等效电路模型参数与谐振频率。通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件电特性符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和可靠性指标较好。 关键词:压电陶瓷;等效电路模型;电特性;可靠性 0 引言 压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。 为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。我国对生态环境的保护也是相当重视的。因此,近年来对无铅压电陶瓷进行了重点发展和开发。但无铅压电陶瓷性能相对于PZT陶瓷来说,总体性能还是不足以与PZT陶瓷相比。因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。 本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。 1 测量参数和实验方法依据 目前我国现有的关于压电陶瓷材料的测试标准主要有以下: GB/T 3389-2008 压电陶瓷材料性能测试方法 GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T 16304-1996 压电陶瓷电场应变特性测试方法 GB 11387-89 压电陶瓷材料静态弯曲强度试验方法 GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试)

压电陶瓷测量原理..

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

压电陶瓷片制作工艺

工作原理 当电压作用于压电陶瓷时,就会随电压和频率的变化产生机械变形。另一方面,当振动压电陶瓷时,则会产生一个电荷。利用这一原理,当给由两片压电陶瓷或一片压电陶瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。相反,当向双压电晶片元件施加超声振动时,就会产生一个电信号。基于以上作用,便可以将压电陶瓷用作超声波传感器。 实际应用 压电陶瓷片,俗称蜂鸣片。 压电陶瓷片是一种电子发音元件,在两片铜制圆形电极中间放入压电陶瓷介质材料,当在两片电极上面接通交流音频信号时,压电片会根据信号的大小频率发生震动而产生相应的声音来。压电陶瓷片由于结构简单造价低廉,被广泛的应用于电子电器方面如:玩具,发音电子表,电子仪器,电子钟表,定时器等方面。 超声波电机就是利用相关的性质制成的。 工艺 工艺流程图如下:配料--混合磨细--预烧--二次磨细--造粒--成型--排塑--烧结成瓷--外形加工--被电极--高压极化--老化测试。 一、配料:进行料前处理,除杂去潮,然后按配方比例称量各种原材料,注意少量的添加剂要放在大料的中间。 二、混合磨细:目的是将各种原料混匀磨细,为预烧进行完全的固相反应准备条件.一般采取干磨或湿磨的方法。小批量可采取干磨,大批量可采取搅拌球磨或气流粉碎的方法,效率较高。 三、预烧:目的是在高温下,各原料进行固相反应,合成压电陶瓷.此道工序很重要。会直接影响烧结条件及最终产品的性能。 四、二次细磨:目的是将预烧过的压电陶瓷粉末再细振混匀磨细,为成瓷均匀性能一致打好基础。 五、造粒:目的是使粉料形成高密度的流动性好的颗粒。方法可以手工进行但效率较低,目前高效的方法是采用喷雾造粒。此过程要加入粘合剂。 六、成型:目的是将制好粒的料压结成所要求的预制尺寸的毛坯。 七、排塑:目的是将制粒时加入的粘合剂从毛坯中除掉。

压电电声教材 压电陶瓷蜂鸣器

第五章 压电陶瓷电声器件 1.压电蜂鸣器 1.1压电蜂鸣元件 压电蜂鸣元件是将经过极化的压电陶瓷片粘贴在弹性振动板上而成的一种复合性结构, 弹性振动板大多为金属片。有单面贴和双面贴两种,前者称单压电片型,后者称双压电片型, 用得最普通的是前者,在加交流信号驱动时,压电瓷片伸缩,使整体发生弯曲振动,这样的 复合结构(图 63)被称作压电蜂鸣元件,因为它很薄又称压电振膜或压电振动板。 压电振动板大多为圆形,也有用方型或矩形,压电蜂鸣片在特定的频率共振,为了获得 高声压需在低阻抗的共振频率fr 附近的频率驱动压电元件。 (1) 复合板的谐振频率 压电蜂鸣元件的共振频率与元件尺寸、材料的弹性系数、密度、泊松比有关,还受支撑 方式及周围声学条件的影响。 纯弹性振动板的fr 的计算公式及支撑方式的影响请参看第二章机械振动基础知识中的 有关内容,但对于复合板应作修正,修正式1: fr=αt ′/a 2{Y 2/ρ2(1-σ22)}1/2 (190) 子纯弹性板比较该式引进等效厚度概念用等效厚度t ′代替厚度t,而在对复合板估称 谐振频率时,我们常把复合板总厚度t=t 1+t 2 代替纯弹性板中的厚度t 。 式中t ′=t 2+t 1(C 1+C 2)·b/a (191) 式中C 1、C 2分别为压电瓷片的声速及弹性板的声速。 α为支撑有关的常数,这些经过计算简化,对于节圆、周边支撑、周边固定、中心支撑 α测为0.414 、 0.227 、 0.471 、 0.172 。 修正式2: fr=αt/a 2{ Y 2/ρ2(1-22σ)}1/2·[(1- 23ξ+4 3ξ2)1/2/β] (192) 式中 ξ=(1-αβ2)/(1+αβ) (193) α= Y 1/ Y 2 β=t 1/ t 2 式(190)~(193)中符号的下标1代表压电瓷片,下标2代表弹性板。

压电陶瓷性能参数解析

压电陶瓷性能参数解析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在机械自由条件下,测得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。 根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗 介质损耗是包括压电陶瓷在内的任何介质材料所 具有的重要品质指标之一。在交变电场下,介质 所积蓄的电荷有两部分:一种为有功部分(同 相),由电导过程所引起的;一种为无功部分 (异相),是由介质弛豫过程所引起的。介质损 耗的异相分量与同相分量的比值如图1-1所示, Ic为同相分量,IR为异相分量,Ic与总电流I 的夹角为δ,其正切值为 (1-4) 式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,I R大时,tanδ也大;I R小时tanδ也小。通常用 tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。 处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。 (3)弹性常数 压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的

压电陶瓷蜂鸣片检查基准(20080715)

版次修订日期修订记事修订1 A0 2008-07-15 初版做成熊伟

版次 修订日期 修订记事 修订 确认 承认 受控印章 1 A0 2008-07-15 初版做成 熊伟 2008-08-01 测试电压应校准通常为50mV ,但最高不要超过3V ; 蜂鸣片的测量点应在波节附近,以蜂鸣片的等效电阻最小值的一点为准;(通常对于直径为

修订 版次修订日期修订记事修订确认承认受控印章生效日期1 A0 2008-07-15 初版做成熊伟 2008-08-01 的蜂鸣片,波节点选择在瓷片边缘1mm左右的位置);按图-1接入测试夹具置开关K在1的位置,调节音频信号发生器,校准测试输入电压。置开关K在2的位置,将测试夹具置两尖端夹住蜂鸣片测量点位置(或直接夹住蜂鸣片引出导线),然后调节音频信号发生器的输出频率,使毫伏电压表指示的电压为最大,此时频率计所显示的频率为该蜂鸣片的谐振频率。 4.3.2 等效阻抗Z R:测试电路同4.3.1, 将开关K在2的位置,调节可变电阻箱的阻值,使毫伏电压表指示达到谐振频率的最大值,这时可变电阻箱上读出的阻值,即为蜂鸣片的等效电阻。 4.3.3 主电极静电容量C P:通常以测试频率为120Hz,测试电压不超过1V的电容电桥(RLC表)进行测量。4.3.4 次电极静电容量C S:方法同4.3.3 4.3.5 主次电极的极性P: 参照图-4 电极的极性测试示意图; 将低频示波器(OSCILLOSCOPE)的"TIME/DIV"设置为"0.5ms";"VOLTS/DIV"设置为"1V"或合适的量程; 将待测蜂鸣片平放置于绝缘带缓冲性材料(比如:海绵)上; 用示波器引出线负极(GND端)接金属基片;探头(正极)接触到蜂鸣片主或次电极(银浆层),然后轻轻往下压,观察示波器,波形由初始位置0向下移动至1,轻轻移开探头,观察示波器,波形由1向上移动至初始位置0,由于惯性作用波形继续向上至2位置,再由2位置向下回到初始位置0。重复2次,现象均应相同. 符合上述描述的蜂鸣片主电极极性为"+".为合格品,反之(波形向相反方向移动)为不合格品; 4.3.6 压电陶瓷片粘接强度:用一根直径与压电陶压电陶瓷片相同的圆柱体金属棒,长度为60mm左右,把蜂鸣 片的金属面贴在金属棒的曲面上,将其压弯至与曲面相吻合后,检查外观;蜂鸣片经折弯后,应无压电陶瓷片脱落和翘起现象,但允许龟裂。 4.3.7 银层焊接强度:在样品银层面上,在导线上施加250g负荷,负荷时间为10s,焊点不可剥离或脱落,银 层无机械损伤。 4.3.8 自由跌落:将蜂鸣片放置在水平位置,金属片的一面朝下,从1000mm高度自由跌落至硬木板上,跌落 二次后,检查外观并测量电性能;蜂鸣片经自由跌落试验后,无脱胶及压电陶瓷片碎裂等机械损伤;4.3.9 绝缘电阻:测试电压为50V,用误差小于10%的绝缘电阻表测量,1分钟后读取绝缘电阻值;要求蜂鸣片 的绝缘电阻应不低于100MΩ。 4.4标志、包装、运输、贮存 4.4.1标志:蜂鸣片上应清晰标明:制造厂商标、型号、生产日期,由于尺寸限制不能完全标志时,应按相应的 详细规范规定标志,但应在包装上完全标志; 4.4.2内包装:内包装盒应在运输、贮存整个过程中,为防止蜂鸣片变质和物理损伤提供足够的保护。内包装 盒内只能装同一品种的产品,并应放上盖有质量部门的印章的合格证。内包装盒上应标明: [1].制造厂名称和商标; [2].产品名称和型号; [3].产品数量和生产日期; [4].包装人姓名和代号。

压电陶瓷的特性及应用举例

压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应 压电效应可分为正压电效应和逆压电效应。正压电效应是指压电陶瓷受到特定方向外力的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,又缓慢恢复到不带电的状态;逆压电效应是指在对压电陶瓷的极化方向上施加电压,压电陶瓷会随之发生形变位移,电场撤去后,形变会随之消失。

Δ纳米级分辨率 压电陶瓷的形变量非常小,一般都小于1%,虽然形变量非常小,但可通过改变电场强度非常精确地控制形变量。 压电陶瓷是高精度致动器,它的分辨率可达原子尺度。在实际使用中,压电陶瓷的分辨 率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力 压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,对于小尺寸的压电陶瓷,出力 通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。

Δ响应时间快

振动与压电陶瓷实验

压电陶瓷特性及振动的干涉测量 具有压电效应的材料叫压电材料,可将电能转换成机械能,也能将机械能转换成电能,它包括压电单晶、压电陶瓷、压电薄膜和压电高分子材料等。压电陶瓷制造工艺简单,成本低,而且具有较高的力学性能和稳定的压电性能,是当前市场上最主要的压电材料,可实现能量转换、传感、驱动、频率控制等功能。由压电陶瓷制成的各种压电振子、压电电声器件、压电超声换能器、压电点火器、压电马达、压电变压器、压电传感器等在信息、激光、导航和生物等高技术领域得到了非常广泛的应用。本实验通过迈克尔逊干涉方法测量压电陶瓷的压电常数及其振动的频率响应特性。 【实验目的】 1.了解压电材料的压电特性; 2.掌握用迈克尔逊干涉方法测量微小位移。 3. 测量压电陶瓷的压电常数。 4. 观察研究压电陶瓷的振动的频率响应特性。 【实验原理】 1. 压电效应 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释。晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象,因此压电陶瓷的压电性与极化、形变等有密切关系。 (1)正压电效应 压电晶体在外力作用下发生形变时,正、负电荷中心发生相对位移,在某些相对应的面上产生异号电荷,出现极化强度。对于各向异性晶体,对晶体施加应力j T 时,晶体将在X ,Y ,Z 三个方向出现与j T 成正比的极化强度, 即: j mj m T d P =, 式中mj d 称为压电陶瓷的 压电应力常数。 (2)逆压电效应 当给压电晶体施加一电场E 时,不仅产生了极化,同时还产生形变S ,这种由电场产生形变的现象称为逆压电效应,又称电致伸缩效应。这是由于晶体受电场作用时,在晶体内部产生了应力(压电应力),通过应力作用产生压电应变。存在如下关系n ni i E d S =,式中ni d 称为压电应变常数 ,对于正和逆压电效应来讲,d 在数值上是相同的。压电晶体的压电形变有厚度变形型、长度变形型、厚度切变型等基本形式。当对压电晶体施加交变电场时,晶体将随之在某个方向发生机械振动。在不同频率区间压电陶瓷阻抗性质(阻性、感性、容性)不同,对某一特定形状的压电陶瓷元件,在某一频率处(谐振频率),呈现出阻抗最小值,当外电场频率等于谐振频率时,陶瓷片产生机械谐振,振幅最大;而在另一频率处(反谐振频率),呈现出阻抗最大值。

有源无源蜂鸣器和动圈喇叭压电陶瓷蜂鸣片的原理差异分析

有源无源蜂鸣器和动圈喇叭压电陶瓷蜂鸣片的原理差异分析 蜂鸣器: 主要分为压电式,电磁式,机械式,有分无源和有源的区别。 动圈喇叭:普通的是永磁场中的线圈带动纸盆振动发声,直流电阻几乎是0,交流阻抗一般几欧到十几欧。 压电蜂鸣片是将高压极压化后的压电陶瓷片黏贴于振动金属片上。当添加交流电压后,会因为压电效应,而生成机械变形伸展及收缩,利用此特性使金属片振动而发出声响。 现在很常用的是一种有源蜂鸣器,内部有振荡、驱动电路。加电源就可以响。优点是用起来省事,缺点是频率固定了,就只一个单音。当然,有源蜂鸣器还有分间断音和连续音的区别,间断音要比连续音的价格贵了很多,因为两者驱动线路不同的缘故。 有源蜂鸣器和无源蜂鸣器的差别主要差别为:有源蜂鸣器和无源蜂鸣器的根本区别是产品对输入信号的要求不一样;有源蜂鸣器工作的理想信号是直流电,通常标示为VDC、VDD等。因为蜂鸣器内部有一简单的振荡电路,能将恒定的直流电转化成一定频率的脉冲信号,从面实出磁场交变,带动钼片振动发

音。但是某些有源蜂鸣器在特定的交流信号下也可以工作,只是对交流信号的电压和频率要求很高,此种工作方式一般不采用。而无源蜂鸣器没有内部驱动电路,有些公司和工厂称为讯响器,国标中称为声响器。无源蜂鸣器工作的理想信号方波。如果给预直流信号蜂鸣器是不响应的,因为磁路恒定,钼片不能振动发音。 实例中,把驱动方式给为交流驱动(PWM输出)控制,频率选为5kHz。 在实际使用蜂鸣器时,区分是有源还是无源蜂鸣器,电磁式还是压电式。 对于后者,他们的区别是: 电磁无源蜂鸣属于感性负载器件,理想输入是正向方波通常记作:VO-P。压无源蜂鸣属于容性负载器件,理想输入是双向方波通常记作:VP-P。但是如果IC是反向器4049等,取一非门的输入和输出接蜂鸣器也是很理想的,只是有时IC 的输出功率太小,声音达不到预期要求。如果蜂鸣器是作为高声压报警用的,普通的两引脚电感还不能满足要求,一般会采用三脚抽头电感,一般为10倍的升压比,有些高声压110dB 以上的可能要用小功率变压器实现升压。 他们的工作原理是: 无源电磁蜂鸣器工作原理是:交流信号通过绕在支架上的线包在支架的芯柱上产生一交变的磁通,交变的磁通和磁环恒

压电陶瓷特性分析(一) 压电效应

压电陶瓷特性分析(一) 压电效应 压电效应是1880年由居里兄弟在α石英晶体上首先发现的。它是反映压电晶体的弹性和介电性相互耦合作用的,当压电晶体在外力作用下发生形变时,在它的某些相对应的面上产生异号电荷,这种没有电场作用,只是由于形变产生的现象称为正压电效应。当压电晶体施加一电场时,不仅产生了极化,同时还产生了形变,这种由电场产生形变的现象称为逆压电效应,逆压电效应的产生是由于压电晶体受到电场作用时,在晶体内部产生了应力,这应力称为压电应力,通过它的作用产生压电应变,实验证明凡是具有正压电效应的晶体,也一定具有逆压电效应,两者一一对应[92]。 任何介质在电场中,由于诱导极化的作用,都会引起介质的形变,这种形变与逆压电效应所产生的形变是有区别的。电介质可能在外力作用下而引起弹性形变,也可能受外电场的极化作用而产生形变,由于诱导极化作用而产生的形变与外电场的平方成正比,这是电致伸缩效应。它所产生的形变与外电场的方向无关。逆压电效应所产生的形变与外电场成正比例关系,而且当电场反向时,形变也发生变化(如原来伸长可变为缩短,或者原来缩短可变为伸长)。此外,电致伸缩效应在所有的电介质中都具有,不论是非压电晶体还是压电晶体;只是不同结构的电介质晶体的电致伸缩效应的强弱不一样。而逆压电效应只有在压电晶体中才具有。 能产生压电效应的晶体叫压电晶体。一类压电晶体是单晶,如石英(SiO2),酒石酸钾钠(又称洛瑟盐,NaKC4H4O6?H2O),锗酸铋(Bi12GeO20)等。另一类压电晶体 称为压电陶瓷,如钛酸钡(BaTiO3),锆钛酸铅[Pb(Zr x Ti rx)O3,代号PZT],日本制成的铌镁锆钛酸铅[Pb(Mg1/3Nb2/3)O3加入PZT,代号PCM],中国制成的锑锰锆钛酸铅[Pb(Mn1/2Sb2/3)O3加入PIT代号PMS]等。 电介质的极化 压电晶体都是电介质,而且是各向异性电介质,因此压电晶体的介电性质与各向同性电介质的介电性质是不同的。 电介质在电场作用下要产生极化,极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间的相互吸引力的暂时平衡统一的状态。电场是极化的外因,极化的内因在于介质的内部,随着介质内部的微观过程的不同,极化的主要机理有三种[97]。 (1) 组成电介质的原子或离子,在电场 作用下,带正电荷的原子核与其壳层电子 的负电中心出现不重合,从而产生电偶极 矩,这种极化称为电子位移极化。 (2) 组成电介质的正负离子,在电场 作用下发生相对位移,从而产生电偶极 矩,这种极化称为离子位移极化。 (3) 组成电介质的分子是有极分子,具有一定的本征电矩,但由于热运动,取向是无序的,整个电介质的总电矩为零(图5.1)。当外电场作用时,这些电偶极矩将

新型焊接方式的蜂鸣片引线制作方法

本技术新型公开了一种新型焊接方式的蜂鸣片引线,包括蜂鸣片本体和引线,所述蜂鸣片本体由压电陶瓷片和金属基片组成,压电陶瓷片连带银电极一体式粘贴在金属基片上;所述蜂鸣片本体上还焊接有引线,引线分别对应焊接在压电陶瓷片和金属基片上;本新型焊接方式的蜂鸣片引线,引入一种新技术的低温焊锡丝进行焊接试验,它是一种环保Sn42/Bi58合金的焊锡丝,焊接温度低至170摄氏度,远低于300多度的普通环保焊锡丝,可有效保护超薄型蜂鸣片,附带损伤低,不会因焊接带来品质问题;而且,这种低温焊锡丝不带助焊膏,通过调配环保助焊溶剂,辅助焊接,外观漂亮、环保。 技术要求 1.一种新型焊接方式的蜂鸣片引线,包括蜂鸣片本体(1)和引线(4),其特征在于:所述蜂鸣片本体(1)由压电陶瓷片(2)和金属基片(3)组成;所述压电陶瓷片(2)的厚度设置为0.05mm,其面积小于金属基片(3)的面积,在压电陶瓷片(2)的正反两表面还 均印刷有银电极(21);所述压电陶瓷片(2)连带银电极(21)一体式粘贴在金属基片(3)上;所述蜂鸣片本体(1)上还焊接有引线(4),引线(4)采用不带助焊膏的环保Sn42/Bi58合金的焊锡丝,其分为红引线(41)和黑引线(42);所述红引线(41)对应焊接在压电陶瓷片(2)一面的银电极(21)上,黑引线(42)对应焊接在金属基片(3)上;所述红引线(41)在与压电陶瓷片(2)的焊接处以及黑引线(42)与金属基片(3)的焊接处均留有圆润型的焊点(5)。 2.根据权利要求1所述的一种新型焊接方式的蜂鸣片引线,其特征在于:所述银电极(21)采用银浆作为电极材料,并均匀印 刷在压电陶瓷片(2)上。 3.根据权利要求1所述的一种新型焊接方式的蜂鸣片引线,其特征在于:所述引线(4)通过在环保低腐蚀的助焊溶剂中加入松香溶解,并配合Sn42/Bi58低温焊锡丝一体合金铸造而成。 4.根据权利要求1所述的一种新型焊接方式的蜂鸣片引线,其特征在于:所述金属基片(3)选用黄铜片或不锈钢片。 说明书 一种新型焊接方式的蜂鸣片引线 技术领域 本技术新型涉及蜂鸣片焊接技术领域,具体为一种新型焊接方式的蜂鸣片引线。 背景技术 压电蜂鸣片是一种利用压电陶瓷压电效应工作发声的电子产品,它因为具有功耗低、成本低、可靠性高、耐恶劣的工作环境、不易受电磁干扰等优点,故而广泛应用于家用电器、机器设备、车辆防盗、家居安防等工作领域。现压电蜂鸣片的结构是将压电陶瓷片粘贴在金属基片上面(一般是铜片或者不锈钢片),压电陶瓷片两个表面印刷有银浆作为电极材料。当高 频交流电信号加载到蜂鸣片上时,压电陶瓷片因为压电效应而产生相应有规律的几何形变,带动金属基片震动,产生声 音;压电效应为某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面 上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变 时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质 的变形随之消失,这种现象称为逆压电效应。压电陶瓷蜂鸣片正是依靠逆压电效应原理工作的。

压电陶瓷片的原理及特性

压电陶瓷片的原理及特性 压电效应具有可逆性:若在压电陶瓷片上施以音频电压,就能产生机械振动,发出声响;反之,压电陶瓷片受到机械振动(或压力)时,片上就产生一定数量的电荷Q,从电极上可输出电压信号。 目前比较常见的锗钛酸铅压电陶瓷片(PZT),是用锆、钛、铅的氧化物配制后烧结而成的。鉴于人耳对频率约为3kHz的音响最敏感,所以通常将压电陶瓷片的谐振频率f0设计在3kHz左右。考虑到在低频下工作,仅用一片压电陶瓷片难以满足频率要求,—般采用双膜片结构,其外形与符号如图1所示。它是把直径为d的压电陶瓷片与直径为D的金属振动片复合而成的。D一般为 15~40mm,复合振动片的总厚度为h。 当压电材料—定时,谐振频率与h成正比,与(D/2)2成反比。谐振频率fo 与复合振动片的直径D呈指数关系,如图2(a)所示。显然D愈大,低频特性愈

好。压电陶瓷片作传声器使用时,工作频率约为300Hz~5kHz。压电陶瓷片的阻抗Z取决于d/D之比,由图2(b)可见,阻抗随d/D比值的增大而降低。>压电陶瓷片的驱动 压电陶瓷片有两种驱动方式。第一种是自激振荡式驱动。其电路原理是通过晶体管放大器提供正反馈,构成压电晶体振荡器,使压电陶瓷片工作在谐振频率fo上而发声。此时压电陶瓷片呈低阻抗,输出音量受输入电流控制,因此亦称为电流驱动型。 第二种为他激振荡式驱动,利用方波(或短形波)振荡器来激励发声。这时压电陶瓷片一般工作于fo之外的频率上,因此阻抗较高,输入电流较小,它居于电压驱动式。其优点是音域较宽。音色较好。>压电陶瓷片的测试方法 1、电压测试法 在业余条件下,可以用万用表的电压挡来检查压电陶瓷片的质量好坏,具体方法是:将万用表拨至2.5V直流电压档,左手拇指与食指轻轻握住压电陶瓷片的两面,右手持两支表笔,红表笔接金属片,黑表笔横放在陶瓷表面上,如图1所示。然后左手拇指与食指稍用力压紧一下,随即放松,压电陶瓷片上就先后产生两个极性相反的电压倍号,使指针先是向右捏一下,接着返回零位,又向左摆一下。摆动幅度约为0.1~0.15V。在压力相同的情况下,摆幅愈大,压电陶瓷片的灵敏度愈高。若表针不动,说明压电陶瓷片内部漏电或者破损。 交换两支表笔位置后重新试验,指针摆动顺序应为:向左摆->回零->向右摆->回零。 在意事项: ①如果用交流电压档,就观察不到指针摆动情况,这是由于所产生的电压信号变化较缓慢的缘故。 ②检查之前,首先用R×1k或R×10k档测量绝缘电阻,应为无穷大,否则证明漏电,压电陶瓷片受强烈震动而出现裂纹后,可用电烙铁在裂纹处薄薄地徐上一层焊锡,—般能继续使用。 ③检查时用力不宜过大、过猛,更不得弯折压电陶瓷片;勿使表笔头划伤陶瓷片,以免损坏片子。 ④若在压电陶片上一直加恒定的压力,由于电荷不断泄漏,指针摆动一下就会慢慢地回零。

压电陶瓷蜂鸣片在仪器结构上共振腔的设计(英)

DESIGN OF A "HELMHOLTZ" RESONATING CASE FOR A PIEZO BENDER Overview When a piezoelectric element is supported in an Edge or Nodal mode, and has no case or tuned enclosure, the resulting sound pressure level (SPL) produced is very low. This is because the acoustical impedance of the piezoelectric element does not match that of any open air loading. However, by constructing a HELMHOLTZ resonating case and by using proper mounting techniques, the acoustical impedance of the piezo element and the encased air can be more closely matched to that of open air. Mounting The mode of mounting influences the resonant frequency, impedance, bandwidth and resulting sound pressure level. Mounting a piezoelectric bender at its nodal circle results in lowest bender impedance, highest resonating frequency, narrow bandwidth and highest sound pressure level. Mounting a piezoelectric bender at its edge results in higher bender impedance, lower resonating frequency, broader bandwidth and lower sound pressure level. Resonator The highest sound pressure levels are obtained when the piezoelectric element excites a resonator with a resonant frequency equal to the resonant frequency of the piezoelectric element regardless of the mounting method chosen. The following equation can be used to design such a resonator, known as a "Helmholtz Resonator". Helmholtz Resonator Where: fo = Resonant frequency of Helmholtz cavity in Hz C = Constant - Velocity of sound @ 344 m/sec @ 24°C h = Resonator cavity in height in meters D = Resonator cavity (support) diameter in meters d = Sound emitting hol e diameter in meters t = Sound emitting hole length in meters K = Constant - @ 1.5 N = Number of sound emitting holes p = Constant - @ 3.14 2p = Constant - @ 6.28 a = Constant - @ 4.0 fB = Bender vibrating plate diameter in inches fA = 0.65 (fB) Bender nodal mount diameter in inches fn = Bender nodal mounted resonant frequency fe = 0.64 (fn) Bender edge mounted resonant frequency

压电陶瓷电特性测试与分析

压电陶瓷电特性测试与 分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

摘 ?要:?通过对器件进行阻抗测试可得到压电振子参数与谐振频率。通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和指标较好。 关键词:?压电陶瓷;等效电路模型;电特性;可靠性 0 引言 压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。 为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。我国对生态环境的保护也是相当重视的。因此,近年来对

无铅压电陶瓷进行了重点发展和开发。但无铅压电陶瓷性能相对于PZT 陶瓷来说,总体性能还是不足以与PZT陶瓷相比。因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。 本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。 1 测量参数和实验方法依据 目前我国现有的关于压电陶瓷材料的测试标准主要有以下: GB/T 3389-2008 压电陶瓷材料性能测试方法 GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T 16304-1996 压电陶瓷电场应变特性测试方法 GB 11387-89 压电陶瓷材料静态弯曲强度试验方法 GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试) GB 11312-89 压电陶瓷材料和压电晶体声表面波性能测试方法 GB 11310-89 压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 压电陶瓷蜂鸣片由一块两面印刷有电极的压电陶瓷板和一块金属板(黄铜或不锈钢等)组成。当在压电振动板的两个电极间施加直流电压

直径12mm 频率9kHz压电蜂鸣片规格书

直径12mm 频率9kHz压电蜂鸣片规格书 No:Product: Piezoelectric elementsSWT Part No:3B12+9、0TEAWC 一、ConfigurationAppearance and dimension: see the drawing MaterialPiezoelectricConfiguration1:plane√2:discalElectr ode formA: fullness √ B: feedbackMetal materialB: brass √ S: stainless steel N: nickel二,Electrical specification Resonant frequency (kHz)Fs=9、01、0 Resonant impedance (Ω) Rr≤500Ω Capacitance at120Hz (NF)Co =1030%Standard Test ConditionsTemperature:251℃ Humidity:45%~75%Air Pressure:86~106kPa Operating temperature (℃)-20~+70 Storage temperature (℃)-30~+80Piezoelectric elements Manual Soldering processSoldering ParameterTemp、( ℃)Time(Sec、)TimesLead Free★silver electrode300102 second or less、1~2★metal plate330203 second or less、1~2Solder Dot: Diameter MAX3、0mm, High MAX1、5mm, Soldering sequence: 1、silver electrode

压电陶瓷片特性及常用型号

压电陶瓷片用作把电信号转变为声音;驻极体话筒用作接收声音转变成电信号。 制作声控开关应该使用驻极体话筒,型号不受限制。 另外,家用OK那种话筒一般是动圈式,体积较大、阻抗小于驻极体话筒。 CZ25437-0038-0001] 一种以Ni-Cu膜为基底的压电陶瓷频率元器件芯片 [摘要] 本实用新型公开了一种以Ni-Cu膜为基底的压电陶瓷频率元器件芯片,包括陶瓷基片,Ni-Cu膜、Ag膜,其主要特征在于陶瓷基片镀Ni-Cu膜基底后再镀Ag膜而成。本实用新型的优点是镀膜质量高,附着力强,能适应无铅焊接工艺要求,产品能满足含铅元器件限制国家安全环保要求。 [CZ25437-0015-0002] 以压电材料片为压力传感元件的陶瓷电热塞点火装置 [摘要] 以压电材料片为压力传感元件的陶瓷电热塞点火装置,属于内燃机点火塞技术领域。所要解决的技术问题是提供一种从电热塞中心孔进气以压电材料片为压力传感元件的陶瓷电热塞点火装置。解决其技术问题的技术方案,包含陶瓷电热体、点火装置外筒、导电环、内管、绝缘垫、压电材料片;导电环装在陶瓷电热体下段外面,点火装置外筒内孔上段装在导电环外面;点火装置装在汽缸点火塞安装孔中,陶瓷电热体伸入汽缸内;绝缘垫装在点火装置外筒内孔中段上,内管位于陶瓷电热体中心孔下段与绝缘垫之间;压电材料片装在绝缘垫中;信号引出线与压电材料片信号输出端连接。点火电源与陶瓷电热体外电阻层和内导电层连接。 [CZ25437-0011-0003] 永久性压电陶瓷晶片换能器 一种永久性压电陶瓷晶片换能器,属于压电器件技术领域。本实用新型是由压电陶瓷晶片1、圆柱壳体2及其底板3、隔仓板4、二个金属环5、电解液6、导线7构成。本实用新型是以电解液6作为压电导瓷晶片换能器的电极,不存在压电导瓷晶片1两极面的金属电极腐蚀剥落问题,保证了压电陶瓷晶片1的永久性使用。本实用新型结构简单,构思新颖,安全可靠,寿命永久,成本低廉,是一种较为理想的压电陶瓷晶片换能器。 [CZ25437-0035-0004] 一种低压驱动压电陶瓷雾化片的雾化器 [摘要] 一种低压驱动压电陶瓷雾化片的雾化器,主要解决雾化器低压驱动的技术问题,采用的技术方案是,雾化器的驱动电路,包括电源电路、雾化片驱动电路和脉冲发生控制电路,电源电路的输出端分别与雾化片驱动电路的电源端和脉冲发生控制电路的电源端连接,脉冲发生控制电路的输出端与雾化片驱动电路的控制端连接,电源电路的电源电压为0.7V至5V 之间的低压电源。电源电路给脉冲发生控制电路和雾化片驱动电路供电。脉冲发生控制电路输出脉冲信号控制雾化片驱动电路,使其产生交流电流,驱动雾化片工作。本实用新型可以大大减小雾化器的电源体积,给雾化器的整体设计带来方便,使雾化器的整体做得更加小巧精致,适用于客厅、卧室或车内使用。 [CZ25437-0036-0005] 叠层共烧压电陶瓷蜂鸣片 [摘要] 本实用新型涉及一种电声产品,尤其是一种叠层共烧压电陶瓷蜂鸣片。具有由压电陶瓷谐振体和金属基片,银层电极在压电陶瓷谐振片的两面,压电陶瓷谐振体胶合在金属基片的单面或双面,压电陶瓷谐振体由两片或以上的压电陶瓷谐振片通过银层电极并联连接共烧而成。本实用新型的有益效果是,两层或以上的压电陶瓷谐振片采用并联连接,扩大电容量,降低容抗,增大耐压,提高微位移量,提高灵敏度,有利于缩小产品体积。 [CZ25437-0020-0006] 多层片状压电陶瓷自耦合式降压变压器及其制作方法 [摘要] 一种多层片状压电陶瓷自耦合式降压变压器及其制作方法,其特征在于:多层片状自耦合式压电陶瓷降压变压器是由作为电压输入的二组多层压电陶瓷1和夹在这二组多层陶瓷之间作为输出端的一组多层压电陶瓷2组成变压器的。其中变压器的多层压电陶瓷采用轧膜和流延方法经多层共烧结制。该变压器具有体积小、输入和输出端不共地连接、结构设

几种材料压电陶瓷的特性

1. 大功率发射材料YT-8型压电陶瓷: 该压电陶瓷材料具有良好压电性,机械强度高、矫顽场高,强场介电损耗低。它主要用于超声清洗、强力超声钻孔、超声焊接、洁牙机探头、美容仪探头、超声手术刀探头、心血管治疗仪探头等。 2. 高灵敏度接收材料YT-5型压电陶瓷: 该压电陶瓷材料具有高机电耦合系数,适宜的介电常数、较高的灵敏度。它主要用于高灵敏度换能器、流量计换能器、液位计换能器、加速度计换能器、超声检测换能器等。 3. 收发两用材料YT-4型压电陶瓷: 该压电陶瓷材料介于YT-8与YT-5之间,兼顾二者特点,具有较高的灵敏度,又具有较低介电损耗,对于发射功率不大而且可同时做接收用的收发两用换能器,选用本材料最合适。目前用该压电陶瓷材料生产的超声雾化换能器已批量投产。 4. PZT压电陶瓷是将二氧化铅、锆酸铅、钛酸铅在1200度高温下烧结而成的多晶体。具有正压电效应和负压电效应。 PZT压电陶瓷(锆钛酸铅):其中P是铅元素Pb的缩写,Z是锆元素Zr的缩写,T是钛元素Ti的缩写 PZT是反铁电相PbZrO3和铁电相PbTiO3的二元固溶体,具有钙钛矿型结构。PbTiO3和PbZrO3是铁电体和反铁电体的典型代表,因为Zr和Ti属于同一副族, PbTiO3和PbZrO3具有相似的空间点阵形式,但两者的宏观特性却有很大的差异,钛酸铅为铁电体,其居里温度为492℃,而锆酸铅却是反铁电体,居里温度为232℃,如此大的差异引起了人们的广泛关注。 研究PbTiO3和PbZrO3的固溶体后发现PZT具有比其它铁电体更优良的压电和介电性能,PZT以及掺杂的PZT系列铁电陶瓷成为近些年研究的焦点.

相关主题
文本预览
相关文档 最新文档