当前位置:文档之家› 第一章农田水分状况和土壤水分运动

第一章农田水分状况和土壤水分运动

第一章农田水分状况和土壤水分运动
第一章农田水分状况和土壤水分运动

全国土壤污染状况调查总体方案说明

一、项目的必要性与可行性 土壤是构成生态系统的基本要素之一,是国家最重要的自然资源之一,也是人类赖以生存的物质基础。土壤环境状况不仅直接影响到国民经济发展,而且直接关系到农产品安全和人体健康。 中央把防治土壤污染作为社会主义新农村建设的一项重要工作,作为新时期环境保护的一项重要任务。胡锦涛总书记强调,要让人民群众喝上干净的水,呼吸清洁的空气,吃上放心的食物,在良好的环境中生产生活,并明确要求“把防治土壤污染提上重要议程”。在第六次全国环保大会上,温家宝总理要求“积极开展土壤污染防治”。2003年12月3日,曾培炎副总理曾批示要求“环保总局会同国土资源部就我国部分地区土壤地球化学状况恶化,查清异常原因,并提出综合治理的意见”。《国民经济和社会发展第十一个五年计划纲要》明确提出,要“开展全国土壤污染现状调查,综合治理土壤污染”。《国务院关于落实科学发展观加强环境保护的决定》也明确提出,要“以防治土壤污染为重点,加强农村环境保护”,并要求“开展全国土壤污染状况调查和超标耕地综合治理……,抓紧拟订有关土壤污染方面的法律法规草案”。 近年来,环保、国土、农业等部门和有关科研单位在土壤污染防治方面做了一些积极的探索。但是,由于方方面面的原因,一些地区的土壤受到不同程度的污染,对生态环境、食品安全和农业可持续发展构成威胁,土壤污染的总体形势相当严峻。土壤污染问题已经成为影响群众身体健康、损害群众利益的重要因素。目前我国土壤污染状况不清、原因不明和环境监管体系不完善等问题十分突出。开展全国土壤污染状况调查,摸清全国土壤环境状况,掌握土壤污染情况,是制定土壤污染防治对策,做好土壤污染防治工作的基本前提,具有十分重要的现实意义。 本次全国土壤污染状况调查以环保系统监测、科研队伍为主体力量,同时联合中科院、高等院校和其他科研院所等土壤学界的技术力量和人力资源参与调查工作。环保总局先后组织开展了全国土壤环境背景值调查、全国生态现状调查、全国典型地区土壤环境质量探查、菜篮子种植基地、污灌区和有机食品基地环境质量监测调查等大型调查项目。2005年,环保总局在沈阳、南京、广州等三市组织进行了土壤污染状况调查试点工作,为开展全国土壤污染状况调查积累了丰富的经验。环保系统拥有覆盖全国的环境监测网络,目前全国共有2289个环境监测站、46984名环境监测技术人员,拥有相当数量的大型仪器设备,加上一大批科研院所和高校的研究力量,完全能够满足调查工作的实际需要。 二、项目总体目标

农田水利(大学期末复习资料

我国水资源分布的特点:①总量大,人均少②时间分布不均衡③空间分布不均衡④水土资源不匹配 农田水利: 为防治干旱、渍、涝和盐碱灾害,对农田实施灌溉、排水等人工措施的总称。 灌溉: 按照作物生长的需要,利用水利工程设施将水送到田间,以补充农田水分的人工措施。 农田排水: 将农田中过多的地面水、土壤水和地下水排除,改善土壤的水、肥、气、热关系,以利于作物生长的 人工措施。 农田水利学: 是一门研究利用灌溉排水工程措施来调节农田水分状况及改变和调节地区水情,以消除水旱灾害, 合理而科学地利用水资源,为农业生产服务的科学。 灌溉分区 :①常年灌溉带②不稳定灌溉带③水稻灌溉带 农田水分状况: 指农田地面水、土壤水和地下水的多少及其在时间上的变化。 土壤水: 是地表水和地下水的过渡环节;存储的水随大气降水或灌溉补给增加;通过蒸发蒸腾的消耗而减少;在 土壤中存储之外的剩余水经向下渗漏或形成地表径流而排出。 土壤水按其形态分: 1、 汽态水: 2、 吸着水: 3、毛管水: 形式间并无严格的分界线,其所占的比例与土壤质地结构,有机质含量,温度有关 存在于土壤空隙中的水汽,利于微生物活动,数量少,忽略。 ①吸湿水:分子力、紧紧束缚在土粒表面、不能在重力和毛管力作用下移动、分子状态水 ( 吸湿系数: 吸湿水达到最大时的土壤含水率) ②薄膜水:分子力、束缚在土粒表面、可沿表面移动但不能脱离土粒表面、液态水膜 (最大分子持水率: 膜状水达到最大时的土壤含水率) 在毛管作用下土壤中所能保持的水分 ,或在重力作用下不易排除的水分中超出吸着水的部分 ① 上升毛管水:地下水沿土壤毛细管上升的水分 ② 悬着毛管水:不受地下水补给时,上层土壤由于毛细管作用所能保持的地面渗入的水 (土壤储存水的主要形式) 土壤中超过田间持水率的那部分水;重力水以深层渗漏的形式进入更下的土层或地下水;旱地应避 4、重力水: 免深层渗漏,防止水的浪费和肥料的流失;水田保持适宜的深层渗漏是有益的,增加根部氧分,有利于根系发育 田间持水率: 悬着毛管水达到最大时的土壤含水率。在生产实践中常指灌水两天后土壤所能保持的含 水率 土壤水按其对作物的有效性分: 无效水、有效水和过剩水(重力水) 1) 吸着水紧缚于土壤表面,低于吸着水的水分为无效水 2) 重力水在无地下水顶托的情况下,很快排出根系层;在地下水位高的地区,重力水停留在根系层内时,会影 响 土壤正常的通气状况,这部分水分有时称为过剩水 3) 在重力水和无效水之间的毛管水,容易为作物吸收利用,属于有效水 4) 一般常将田间持水率作为重力水和毛管水以及有效水分和过剩水分的分界线 凋萎系数: 当土壤含水率降低至吸湿系数的 1.5-2.0 倍时,就会使植物发生永久性凋萎现象,这时的含水率 烘干测定法: 1、仪器设备:土钻、铝盒(已知重量和编号) 、烘箱、剖面刀和电子天平(或分析天平) 2、操作步骤:仪器准备——取土——称重——烘干——称重——计算 三水转化过程: (地面水、土壤水、地下水) (1)地下水位埋深较大 (2)地下水位埋深较小 农田水分状况的调节措施: 1、 水分过多: 2、 水分不足: 3、 调节措施: 降雨量过多 降雨量不足 1)干旱— :降雨(灌水)-地面水入渗-表层逐渐饱和—下层土壤含水量相加 降雨停止后-超出田持的水在重力的作用下,向下移动,土壤水分再面分布 :当地面水补给土壤的数量超过原地下水位以上土层的田间持水能力,造成地下水位上升 盖--用麦桔、地膜覆盖阻止土壤蒸发④化学抗旱 2) 涝害 3) 渍害 4) 洪灾 ; 河流湖泊水浸入农田 ;地形低洼,地下水位上升 ;过流不畅(涝害、渍害、洪灾) ;降雨形成的地表径流大量流失 ;土壤保水能力差水分大量渗漏 ;蒸发量大(干旱) 农田水分不足:①灌溉--主要措施②疏松土层 --减少叶面蒸腾 --切断毛细管,减少土壤蒸发③地表 覆 降水过多,积水难排,造成灾害:①开挖排水河道, 土壤长期过湿,危害作物生长:①开挖田间排水沟, 河湖泛滥而形成的灾害:①整治排洪河道,兴算修水库,加固堤防等 修建排涝闸、站等 防止过量灌溉等 旱:农田水分不足,造成植物根系吸水不足以致破坏了植物体水分平衡和协调的现象 涝:农田水分过多,如果是由于降雨过多,稻田淹水过深,造成农业欠收的现象 渍:由于地下水位过高或土壤上层滞水,因而土壤过湿,影响作物生长发育,导致农作物减产或失收的现象

土壤中水分含量的

实训四土壤水分含量的测定 一、目的要求 土壤水分是土壤的重要组成部分,也是重要的土壤肥力因素。进行土壤水分捍联的测定有两个目的:一是了解田间土壤的水分状况,为土壤耕作、播种、合理排灌等提供依据;二是在室内分析工作中,测定风干土的水分,把风干土重换算成烘干土重。可作为各项分析结果的计算基础。 本试验要求掌握烘干法和酒精燃烧法测定土壤水分 的原理和方法,能较准确地测定出土壤的水分含量。 二、仪器与试剂 天平(感量0.01g和0.001g)、烘箱、干燥器、称样皿、铝盒、量筒(10ml)、无水酒精、滴管、小刀、木箱等。 三、测定方法 测定土壤中水分含量的方法很多,常用的有烘干法和酒精燃烧法。烘干法是目前测地水分的标准方法,其测定结果比较准确,适合于大批量样品的测定,但这种方法需要时较长。究竟燃烧法测定土壤水分快但精确度较低,只适合田间速测。 (一)烘干法 1. 方法原理在105±2℃的温度下从土壤中全部蒸发,而结构水不会破坏,土壤有机质也不被分解。因此,将土壤样品至于105±2℃下烘至恒重,根据其烘干前后质量之差,就可以计算出土壤水分含量的百分数。 2. 操作步骤 (1)取由盖的铝盒(或称样皿),洗净,放入干燥器中冷却至室温,然后再分析天平上称重(W1),并注意标

好号,以防弄错。 (2)用角匙取过1mm筛孔的风干土样4~5g(精确至0.001g),铺在铝盒中(或称样皿中)进行称重(W2)(3)将铝盒盖打开,放入恒温箱中,在105±2℃的温度下烘6h左右。 (4)盖上铝盒盖子,将铝盒放入干燥器中20~30min,使其冷却至室温,取出称重。 (5)打开铝盒盖子,放入恒温箱中,在105±2℃的温度下再烘2h,冷却,称重至恒重(W3)。 3.结果计算 以烘干土为基数计算土壤水分得百分含量(W%) 土壤水分含量= (风干土重-烘干土重)/烘干土重*100% 水分系数(x)=烘干土重/风干土重 风干土重换算成烘干土重为: 烘干土重=风干土重*水分系数 4.注意事项 (1)测定风干土样中吸湿水含量时,一般用感量0.001g 的分析天平称重,前后两次称重相差不大于0.003g为恒重。 (2)一般土壤样品的烘干温度不超过105±2℃,温度过高,土壤有机质易碳化损失。 (二)酒精燃烧法 1. 方法原理 本方法是利用酒精在土壤样品中燃烧释放出的热量,使土壤水分蒸发干燥,通过燃烧前后的质量之差,计算出土壤含水量的百分数。酒精燃烧在火焰熄灭前几秒钟,即火焰下降时,土温才迅速上升到180~200℃。然后温度很快降至85~90℃,再缓慢冷却。由于高温阶段时间短,样品中有机质及盐类损失很少。故此法测定土壤水分

农田水利知识点

农田水分状况:指农田土壤水、地面水和地下水的状况及其相关的养分、通气、热状况 土壤水:通常将存在于非饱和带的水分称为土壤水,(土壤水是联系农田地表水和地下水的纽带,农田土壤水直接影响作物生长的水,气,热,养分等状况,与作物生长关系密切,是作物生长环境的核心要素之一。) 地下水:储存于饱和带的水分称为地下水。 土壤含水率:(习惯上称为含水量)是指一定量的土壤中所含有水分数量的多少,又称土壤湿度。 毛管水:是受土壤毛管力作用保持在土壤中的水分,(毛管水依其在土壤中的分布又可分为毛管悬着水和毛管上升水)。 毛管悬着水:在地下水埋深较大时,降水或灌溉水等地面水进入土壤,借助毛管力保持在上层土壤毛管孔隙中的水分 毛管上升水:借助毛管力的作用,由地下水上升进入上层土体的水。 凋萎系数:出现永久凋萎时的土壤含水量称为凋萎点含水量,也称凋萎系数。 田间持水量:在地下水埋藏较深和排水良好的土地上,当充分降水或灌溉后,地表水完全入渗,并防止蒸发,经过几天时间,土壤剖面所保持的含水量,即为田间持水量。(田间持水量包括吸湿水,薄膜水和毛管悬着水,其数量是三者数量的和) 田间持水率:在生产实践中常将灌水两天后土壤所能保持的含水率叫做田间持水率。 SPAC系统的主要内容:水分经由土壤到达植物根系,进入根系,通过细胞传输进入木质部,由植物的木质部到达叶片,再由气孔扩散到大气中去,最后参与大气的湍流交换,形成一个统一、动态的互反馈连续系统,即土壤-植物-大气连续体(SPAC)系统。 在这一连续体中存在物质、能量和信息的传递和交换,土壤、植物和大气是SPAC系统的研究对象。 SPAC系统研究的核心内容:水分在土壤、植物和大气中的传输。水分总是从水势高的地方向水势低的地方运动。作物需水量:指生长在大面积上的无病虫害,土壤水分和肥力适宜,能取得高产潜力条件下的作物植株蒸腾和棵间蒸发量,包括组成植株体所需的水量。 参照作物需水量(潜在腾发量):指土壤水分充足、地面完全覆盖、生长正常、高矮整齐的开阔(地块的长度和宽度都大于200m)矮草地(草高8~15cm)上的蒸发量。 作物系数:指不同发育期中需水量与可能蒸散量之比值。 植株蒸腾:作物根系从土壤中吸入体内的水分,通过叶片的气孔扩散到大气中去的现象。 棵间蒸发:植株间土壤或田面的水分蒸发,又称株间蒸发。 深层渗漏:是指灌溉水或降水水量太多,使土壤水分超过了作物根系层土壤田间持水量,下渗到不能为作物利用的深层土壤现象。 作物水分生产函数:是指在农业生产水平基本一致的条件下,作物生长过程中,作物产量与投入水量(或作物蒸发蒸腾量)之间的函数关系。 灌溉制度:是指某一作物在一定的气候、土壤等自然条件和一定的农业技术措施下,为了获得稳定高产,所制定的一整套向农田灌溉水的方案,包括作物播种前(或水稻插秧前)及全生育期内的灌水次数、每次灌水的灌水时间、灌水定额以及灌溉定额等四项内容。 灌溉设计保证率:灌区灌溉用水量在多年期间能够得到充分满足的几率,一般用设计灌溉用水量全部获得满足的年数占计算总年数的百分率表示。 灌溉水利用系数:净灌溉用水量W净与毛灌溉用水量W毛之比称为灌溉水利用系数,用η水表示。 W毛=W净/η水(W毛:毛灌溉用水量,W净灌溉用水量) 灌水率:是指灌区单位面积上所需灌溉的净流量,又称为灌溉模数。 畦灌:畦灌是将田块用畦梗分隔成许多矩形条状地块,灌溉水以薄层水流形式输入田间并渗入土壤的灌水方法。喷灌:是利用专门设备将有压水送到灌溉地段,并喷射到空中散成细小的水滴,像天然降雨一样进行喷灌。 沟灌:沟灌是在作物行间开挖灌水垄沟,将灌溉水引入田间垄沟,在流动的过程中借助重力作用和毛细管作用湿润土壤的灌水方法。 滴灌:滴灌是利用喷头、滴灌管等设备,以滴水或细小水流的方式,湿润植物根区附近土壤的灌水方法。 田间工程:通常指最末一级固定渠道(农渠)和固定沟道之间的条田范围内的临时渠道,排水小沟,田间道路,稻田的格田和田埂,旱地的灌水畦和灌水沟,小型建筑物以及土地平整等农田建设工程,是灌溉渠道输配水工程的重要组成部分。

土壤水分原稿

土壤水分综述 摘要 关键词:土壤水分影响因素 1程积民、万惠娥[1]等人通过采用工程与生物措施相结合的方法,对黄土丘陵半干早区柠条灌木林的建设与土壤水分过耗及调控恢复的定位进行试验研究。试验选择出最佳灌草立体配置模式:水平阶整地为柠条-披碱草、柠条-草木樨、柠条-芨芨草类型;水平沟整地为柠条-芨芨草、柠条-草木樨类型;鱼鳞坑整地为柠条-草木樨、柠条-芨芨草、柠条-本氏针茅类型。这种配置模式可以调节和补充土壤水分的不足,促进灌草的生长,控制水土流失,改善生态环境。 2杨建昌、刘立军等人通过大田试验和盆栽试验研究了土壤水分对旱育秧水稻产量形成的影响,旱育秧移栽后有明显的分蘖和生长优势,尤其在节水灌溉或低土壤水分条件下,旱育秧有效穗数多、干物质累积量高、抽穗后的光合势大,较水育秧显著增产。但在土壤水分充足或常规灌溉条件下,旱育秧分蘖成穗率低、有效穗数少,较水育秧增产幅度小。表明旱育秧配合本田期节水灌溉,其增产潜力较大。 3王进鑫、黄宝龙等人采用旱棚人工控水,对侧柏、刺槐不同水量全生长期均衡供水条件下,2-3年生幼树的生长需水规律、蒸腾耗水与土壤水分的关系进行了研究,结果表明,刺槐蒸腾耗水量随土壤供水能力的增大而增加,其中以生长前期和生长盛期耗水为主。侧柏蒸腾耗水量以生长盛期最大,约占年蒸腾量的46.27%,生长后期次之,生长前期较小,并求出了两树种蒸腾耗水的土壤水分应力订正函数及

在非充分供水条件下实际蒸腾耗水的时间-水分函数。 4张爱良、黄桂英等人采用盆栽法,研究了四种不同土壤水分含量条件下小麦旗叶生理特性的变化规律。结果表明,土壤水分含量与小麦经济产量间呈极显著正相关( r = 0.9936 ),提高土壤水分含量能使灌浆中后期小麦旗叶叶绿素含量、可溶性糖含量和硝酸还原酶活性均得到提高。在土壤水分胁迫条件下,旗叶SOD 活性显著降低,质膜透性明显加大,致使植株衰老加速。 5王克勤、王立选用田间7年生和盆栽2年生金矮生苹果,在自然环境条件下进行不同水平土壤水分人为控制。结果表明,林木蒸腾作用与光照强度和土壤水分状况之间存在着密切的联系。林木在苗期时,当土壤水分不足时,应采取措施避免强光照射,以减轻过度蒸腾失水造成的生理伤害,提高成活率和促进苗木生长。 6潘占兵、李生宝等人通过对宁夏盐池干旱退化草场植被恢复与风蚀沙化防治技术示范区内不同种植密度的柠条林土壤水分进行了定位观测,从土壤水分日变化、季节性变化、水分垂直分布等方面进行了分析。结果表明:土壤含水量主要受大气降雨及植物生长节律的影响, 变化较大。 7吴玉光,王美菊等人通过用植物纤维薄膜代替塑料薄膜覆盖农田,研究了植物纤维膜对保持土壤含水量的作用。结果表明,利用植物纤维膜覆盖地面,可以起到保持土壤水分、减少水分蒸发的作用,它可以抑制土壤水分蒸发量的80%- 90%,但从保持土壤水分方面来说,还不能达到覆盖塑料薄膜的水平;从调节土壤空气条件方面看,可以使多余的水分蒸发,提高土壤的通气程度,又比塑料膜具有一定

农田土壤环境质量监测技术规范

农田土壤环境质量监测技术规范 范围 本标准规定了农田土壤环境监测的布点采样、分析方法、质控措施、数理统计、成果表达与资料整编等技术内容。 本标准适用于农田土壤环境监测。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 8170—1987 数值修约规则 GB/T 14550—1993 土壤质量六六六和滴滴涕的测定气相色谱法 GB 15618—1995 土壤环境质量标准 GB/T17134,—1997 土壤质量总砷的测定二乙基二硫代氨基甲酸银分光光度法 GB/T 17135—1997 土壤质量总砷的测定硼氢化钾—硝酸银分光光度法 GB/T 17136—1997 土壤质量总汞的测定冷原子吸收分光光度法 GB/T 17137—1997 土壤质量总铬的测定火焰原子吸收分光光度法 GB/T 17138—1997 土壤质量铜、锌的测定火焰原子吸收分光光度法 GB/T 17139—1997 土壤质量镍的测定火焰原子吸收分光光度法 GB/T 17140—1997 土壤质量铅、镉的测定 KI—MIBK萃取火焰原子吸收分光光度法 GB/T 17141—1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法 NY/T 52—1987 土壤水分测定法(原GB 7172—1987) NY/T 53—1987 土壤全氮测定法(半微量开氏法) (原GB 7173—1987) NY/T 85—1988 土壤有机质测定法(原GB 9834—1988) NY/T 88—1988 土壤全磷测定法(原GB 9837—1988) NY/T 148—1990 土壤有效硼测定方法(原GB 12298—1990) NY/T 149,一1990 石灰性土壤有效磷测定方法(原GB 12297一1990) 3 定义 本标准采用下列定义。 3.1 农田土壤 用于种植各种粮食作物、蔬菜、水果、纤维和糖料作物、油料作物及农区森林、花卉、药材、草料等作物的农业用地土壤。 3.2 区域土壤背景点 在调查区域内或附近,相对未受污染,而母质、土壤类型及农作历史与调查区域土壤相似的±壤样点。 3,3 农田土壤监测点 人类活动产生的污染物进入土壤并累积到一定程度引起或怀疑引起土壤环境质量恶化的±壤样点。 3.4 农田土壤剖面样品 按土壤发生学的主要特征,担整个剖面划分成不同的层次,在各层中部位多点取样,等量混均后的A、B、C层或A、C等层的土壤样品。 3.5 农田土壤混合样 在耕作层采样点的周围采集若干点的耕层土壤、经均匀混合后的土壤样品,组成混合样的分点数要在5~20个。 4 农田土壤环境质量监测采样技术 4.1 采样前现场调查与资料收集 4.1.1 区域自然环境特征:水文、气象、地形地貌、植被、自然灾害等。 4.1.2 农业生产土地利用状况:农作物种类、布局、面积、产量、耕作制度等。 4.1.3 区域土壤地力状况:成土母质、土壤类型、层次特点、质地、pH、Eh、代换量、盐基饱和度、±壤肥力等。 4.1.4 土壤环境污染状况:工业污染源种类及分布、污染物种类及排放途径和排放量、农灌水污染状况、大气污染状况、农业固体废弃物投入、农业化学物质投入情况、自然污染源情况等。 4.1.5 土壤生态环境状况:水土流失现状、土壤侵蚀类型、分布面积、侵蚀模数、沼泽化、潜育化、盐渍化、酸化等。 4.1.6 土壤环境背景资料:区域土壤元素背景值、农业土壤元素背景值。 4.1.7 其他相关资料和图件:土地利用总体规划、农业资源调查规划、行政区划图、土壤类型图、土壤环境质量图等。 4.2 监测单元的划分 农田土壤监测单元按土壤接纳污染物的途径划分为基本单元,结合参考土壤举型、农作物种类、耕作制度、商品生产基地、保护区类别、行政区划等要素,由当地农业环境监测部门根据实际情况进行划定。同一单元的差别应尽可能缩小。 4.2.1 大气污染型土壤监测单元

农田水分状况

农田水分状况系指农田地面水、土壤水和地下水的多少及其在时间上的变化。一切农田水利措施,归根结底都是为了调节和控制农田水分状况,以改善土壤中的气、热和养分状况,并给农田小气候以有利的影响,达到促进农业增产的目的。因此,研究农田水分状况对于农田水利的规划、设计及管理工作都有十分重要的意义。 第一节农田水分状况 一、农田水分存在的形式 农田水分存在三种基本形式,即地面水、土壤水和地下水,而土壤水是与作物生长关系最密切的水分存在形式。 土壤水按其形态不同可分为汽态水、吸着水、毛管水和重力水等。 (1)汽态水系存在于土壤空隙中的水汽,有利于微生物的活动,故对植物根系有利。由于数量很少,在计算时常略而不计。 (2)吸着水包括吸湿水和薄膜水两种形式:吸湿水被紧束于土粒表面,不能在重力和毛管力的作用下自由移动;吸湿水达到最大时的土壤含水率称为吸湿系数。薄膜水吸附于吸湿水外部,只能沿土粒表面进行速度极小的移动;薄膜水达到最大时的土壤含水率,称为土壤的最大分子持水率。 (3)毛管水毛管水是在毛管作用下土壤中所能保持的那部分水分,亦即在重力作用下不易排除的水分中超出吸着水的部分。分为上升毛管水及悬着毛管水,上升毛管水系指地下水沿土壤毛细管上升的水分。悬着毛管水系指不受地下水补给时,上层土壤由于毛细管作用所能保持的地面渗入的水分(来自降雨或灌水)。 (4)重力水土壤中超出毛管含水率的水分在重力作用下很容易排出,这种水称为重力水。

在这几种土壤水分形式之间并无严格的分界线,其所占比重视土壤质地、结构、有机质含量和温度等而异。可以假想在地下水面以上有一个很高(无限长)的土柱,如果地下水位长期保持稳定,地表也不发生蒸发入渗,则经过很长的时间以后,地下水面以上将会形成一个稳定的土壤水分分布曲线。这个曲线反映了土壤负压和土壤含水率的关系,亦即是土壤水分特征曲线(见图1-1),这一曲线可通过一定试验设备确定。在土壤吸水和脱水过程中取得的水分特征曲线是不同的,这种现象常称为滞后现象。曲线表示吸力(负压)随着土壤水分的增大而减少的过程。在曲线中并不能反映水分形态的严格的界限。 根据水分对作物的有效性,土壤水也可分为无效水、有效水和过剩水(重力水)。吸着水紧缚于土粒的表面,一般不能为作物所利用。低于土壤吸着水(最大分子持水率)的水分为无效水。当土壤含水率降低至吸湿系数的1.5~2.0倍时,就会使植物发生永久性凋萎现象。这时的含水率称为凋萎系数。不同土质,其永久凋萎点含水率是不相同的。相应的土壤负压变化于7×40×105Pa(105Pa=l巴=0.987大气压)之间,一般取为15×105Pa。凋萎系数不仅决定于土壤性质,而且还与土壤溶液浓度、根毛细胞液的渗透压力、作物种类和生育期有关。重力水在无地下水顶托的情况下,很快排出根系层;在地下水位高的地区,重力水停留在根系层内时,会影响土壤正常的通气状况,这部分水分有时称为过剩水。在重力 水和无效水之间的毛管水,容易为作物吸收利用,属于有效水。一般常将田间持水率作 为重力水和毛管水以及有效水分和过剩水分的分界线。在生产实践中,常将灌水两天后 土壤所能保持的含水率叫做田间持水率。相应的土壤负压约为0.1~0.5×105Pa。由于土 质不同,排水的速度不同,因此排除重力水所需要的时间也不同。灌水两天后的土壤含 水率,并不能完全代表停止重力排水时的含水率。特别是随着土壤水分运动理论的发展 和观测设备精度的提高,人们认识到灌水后相当长时间内土壤含水率在重力作用下是不 断减少的。虽然变化速率较小,但在长时间内仍可达到相当数量。因此,田间持水率并 不是一个稳定的数值,而是一个时间的函数,田间持水率在农田水利实践中无疑是一个 十分重要的指标,但以灌水后某一时间的含水率作为田间持水率,只能是一个相对的概 念。 二、旱作地区农田水分状况 旱作地区的各种形式的水分,并非全部能被作物所直接利用。如地面水和地下水必须适时适量地转化成为作物根系吸水层(可供根系吸水的土层,略大于根系集中层)中的土壤水,才能被作物吸收利用。通常地面不允许积聚水量,以免造成淹涝,危害作物。地下水一般不允许上升至根系吸水层以内,以免造成渍害,因此,地下水只应通过毛细管作用上升至根系吸水层,供作物利用。这样,地下水必须维持在根系吸水层以下一定距离处。 在不同条件下,地面水和地下水补给土壤水的过程是不同的,现分别说明如下: 1)当地下水位埋深较大和土壤上层干燥时,如果降雨(或灌水),地面水逐渐向土中入渗,在入渗过程中,土壤水分的动态约如图l-2所示。从图中可以看出,降雨开始时,水自地面进入表层土壤,使其接近饱和,但其下层土壤含水率仍未增加。此时含水率的分布如曲线l;降雨停止时土壤含水率分布如图中曲线2;雨停后,达到土层田间持水率后的多余水量,则将在重力(主要的)及毛管力的作用下,逐渐向下移动,经过一定时期后,各层土壤含水率分布的变化情况如曲线3;再过一定时期,在土层中水分向下移动趋于缓慢,此时水分分布情况如曲线4;上部各土层中的含水率均接近于田间持水率。

土壤地带性分布规律

中国土壤水平地带性分布规律 1土壤地带性(soil zonality)分布规律 1.1 我国土壤水平地带性(soil horizontal zonality) 我国土壤的水平地带分布是由湿润海洋性逐步向干旱内陆性两个带谱演化而成的。我国东南沿海属湿润海洋性地带谱,又称土壤的纬度地带性(见表4),其水平地带的分布大致是,随热量的递减由南向北分布着砖红壤(图1)、赤红壤(图2)、红壤(图3)、黄壤(图4)、黄棕壤(图5)、黄褐土、棕壤(图6)、暗棕壤(图7)及棕色针叶林土(图8)。 表4 中国湿润海洋性地带谱 另一水平地带谱是干旱内陆性谱 另一水平地带谱是干旱内陆性谱(又称土壤经度地带性)。其排列顺序是从湿润温带森林下的暗棕壤开始,向西到松嫩平原大面积分布的黑土,再向西到大兴安岭一带的灰色森林土(图9),再依次向西分布的土壤类型为黑钙土(图10)、栗钙土(图11)、棕钙土、灰棕漠土(图12)。 中国土壤水平地带谱示意图

这个问题在广泛啦,真不好回答,5是南方人,就只能说南方的主要作物吧: 1、水稻:南方:早稻2—4月播种,中稻5—6月播种,晚稻7月播种,收获期分别为:7—8月,9-10月,11月; 2、玉米:播种期2—4月、7-9月,收获期6—8月、10-11月。 3番茄:秋季:9-10月播种,收获期12-4月,11-12月播种,3—5月收获,3-4月播种,6-8月收获,5—6月播种,8—9月收获。 7小麦在中国黑龙江、内蒙古和西北种植春小麦,于春天3~4月播种,7~8月成熟,生育期短,约100天左右;在辽东、华北、新疆南部、陕西、长江流域各省及华南一带栽种冬小麦,秋季8~12月播种,翌年5~7月成熟,生育期长达300天左右。 所以说水坝是利一方害一方的东西 枯水期蓄水是为了保证水坝附近的农业生产,这样其实是会影响到下游的生产的,所以这种蓄水水库要在农业区的末端建设,使它危害的下游没有农业区,全是工业区或入海口,这样收益较大损害减到最小

我国土壤污染现状及原因

中国土壤污染现状 摘要:土壤是生物和人类赖以生存和生活的重要环境。随着工业化的发展、城市化进程的深入,我国土壤环境污染不断加剧。土壤环境质量变化较大,土壤环境污染物种类和数量的不断增加,发生的地域和规模在逐渐扩大,危害也进一步深入。本文从土壤的污染种类出发,通过有机污染物、重金属、放射性元素和病原微生物四个方面阐述了我国土壤污染的现状。 关键词:土壤污染类型;有机;重金属;病原微生物;污染特点 1.1 土壤污染的类型 土壤污染物的种类繁多,按污染物的性质一般可分为 4 类,即有机污染物、重金属、放射性元素和病原微生物。 1.1.1 有机污染 土壤的有机污染作为影响土壤环境的主要污染物已成为国际上关注的热点.有毒、有害的有机化合物在环境中不断积累.到一定时问或在一定条件下有可能给整个生态系统带来灾难性的后果,即所谓的“化学定时炸弹”【1】。目前我国土壤的有机污染十分严重.且对农产品和人体健康的影响已开始显现。如我国从1959年起在长江中下游地区用五氯酚钠防治血吸虫病.其中的杂质二噁英已造成区域性二噁英类污染.洞庭湖、潘阳湖底泥中的二噁英含量很高。有机氯农药已禁用了近20年,土壤中的残留量已大大降低,但检出率仍很高。广州蔬菜土壤中六六六的检出率为99%,滴滴涕检出率为100%。太湖流域农田土壤中六六六、滴滴涕检出率仍达100%,一些地区最高残留量仍在1mg/kg以上。 1.1.2 重金属污染 随着工业、城市污染的加剧和农用化学物质种类、数量的增加,土壤重金属污染日益严重,污染程度在加剧,面积在逐年扩大。重金属污染物在土壤中移动性差、滞留时间长、不能被微生物降解并可经水、植物等介质最终影响人类健康。 据我国农业部进行的全国污灌区调查,在约140万hm2的污水灌区中,遭受重金属污染的土地面积占污水灌区面积的64.8%,其中轻度污染的占46.7%,中度污染的占9.7%,严重污染的占8.4%。我国每年因重金属污染而减产粮食1000多万t,被重金属污染的粮食每年多达1200万t,合计经济损失至少200亿元。从目前开展重金属污染调查情况来看,我国

土壤水分研究背景

土壤水分研究背景 在黄土高原地区,影响土壤水分性质的主要因素是土壤质地。由于黄土的风成特点,其颗粒组成具有明显的区域分异特征,从而使土壤水分的物理特性与土壤水分状况呈现出明显的地域分异特征,形成特有的土壤水分背景。 据杨文治等研究,黄土高原的土壤入渗性能与土壤质地具有相关性,且其入渗性能呈现出北高南低的规律变化;土壤持水性能自东南向西北随质地变粗而逐渐下降,蒸发性能则逐渐增强,土壤稳定湿度也相应降低[26]。 黄土高原的土壤水循环过程是比较单纯的降水入渗和水分上行蒸发(蒸腾)过程。黄土高原的地下水埋藏很深,降水通常被全部蓄存于土体之中,形成土壤水,并通过这种土壤深层储水来调节植物的生理需水过程,称为土壤水库效应。但这种土壤水库效应在黄土高原并非处处相同,而是受到降水状况和土壤特性的制约而呈现出明显的区域分异特征。南部和东南部的土壤深层储水对植物需水具有较强的调节能力,西部、北部的土壤水库则易满易漏,对植物的调节能力显著降低。 另外,黄土高原的地形多变,导水性能好,土壤水分受坡向、能量收支等的影响,在不同的地形部位土壤水分储量的差异十分明显,通常饰顶、坡上部的水分条件较差,坡脚、沟底较好。 黄土高原的代表性土壤一黄绵土,由于质地均一,毛管孔隙发达,低吸力水分含量高,因而具有极强的蒸发能力,水分的上移蒸发活跃。因而土壤的稳定湿度水平很低,并且尽管土壤水库对植物需水起着调节作用,但土壤深层储水经常处于亏缺状态,对植物的生理需水调节作用有限。

由于植物及地面的蒸散作用,使土壤水分不断地向大气逸散,同时每年又有一定的降水补充到土体内,引起土壤水分在剖面上的动态变化,主要表现为土壤剖面上的垂直分布特征、土壤剖面水分分布的季节变化和年变化。韩仕峰研究了黄土区裸地土壤剖面的水分分布特征,将其分为速变层、活跃层、次活跃层和相对稳定层四个层次[31];对于林地下的土壤水分分布,考虑到林草的作用,王孟本等将其分为活跃层、次活跃层和相对稳定层[32];李凯荣、刘增文等则根据植物对水分的利用情况,将林地土壤水分的分布分为微弱利用层、利用层、补充调节层和微弱调节层[33~34]。土壤水分的季节动态,在降雨量大或分布不均的年份中差异明显,而在降雨量少且分布均匀的年份,由于水分的收支基本平衡,导致土壤水分的季节变化不大,干湿季难以划分。土壤水分的年际变化,则主要取决于当年降雨量的多寡,基本上与年雨量的变化一致。国外的研究也得出了类似的结论。

我国土壤污染现状

我国土壤污染现状 摘要:土壤污染已成为世界性问题,笔者收集了我国大量相关资料,并进行了数理统计分析,得出了我国土壤污染总体形势也相当严峻的结论。土壤污染对我国社会经济发展,生态环境,食品安全和农业可持续发展构成严重威胁,并危害人体健康。我国土壤污染危害巨大,污染程度在加剧,但污染防治基础相当薄弱。本文旨在通过对我国土壤污染现状的分析,揭示土壤污染防治的必要性,提出加强土壤污染防治,切实保护土壤资源及加强土壤保护等方面的建议。 关键词:土壤污染;污染现状;重金属; 污水灌溉 ; 固体废弃物; 有机农药 1 引言 目前大陆受重金属污染的耕地面积近2000万公顷。约占耕地总面积的1/5。受矿区污染土地达200万公顷,石油污染土地约500万公顷,固体废弃物堆放污染约5万公顷,“工业三废”污染耕地近1000万公顷,污水灌溉的农田面积达330多万公顷。土壤污染使全国农业粮食减产已超过1300万吨,因农药和有机物污染,放射性污染,病原菌污染等其他类型的污染所导致的经济损失难以估计。由于污染,土壤的营养功能,净化功能,缓冲功能和有机体的支持功能正在丧失。土壤是生态环境系统的有机组成部分,是人类生存与发展最重要和最基本的综合性自然资源。我们不能坐以待毙,要加强研究,采取措施,切实阻止土壤污染继续扩大的趋势,清除被称为“化学定时炸弹”的土壤污染。 2 我国土壤污染现状 2.1 土壤重金属污染现状 随着工业,城市污染的加剧和农用化学物质种类,数量的增加,我国土壤重金属污染日益严重。污染程度在加剧,面积逐年扩大。根据农业部环保监测系统对全国24个省市,320个严重污染区约548万公顷土壤调查发现,大田类农产品污染超标面积占污染区农田面积的20%,其中重金属污染占80%,对全国粮食调查发现,重金属Pb,Cd,Hg,As超标率占10%。重金属污染物在土壤中移动性差,滞留时间长,大多数微生物不能使之降解。并可经水,植物等介质最终危害人类健康。 2.1.1 随着大气沉降进入土壤的重金属

我国土壤污染现状与防控策略

我国土壤污染现状与防控策略 土壤污染问题是亟需解决的重大环境问题。我国土壤环境状况总体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿业废弃地土壤环境问题突出。土壤污染成因复杂,危害严重,同时土壤环境监督管理体系不健全,土壤环境保护面临诸多挑战。下一步,应从完善土壤污染防治政策法规标准、切实加强土壤污染物来源控制、严格管控受污染土壤的环境风险、开展土壤污染治理与修复试点示范、强化土壤污染防治科技支撑能力建设、建立土壤污染防治投入机制6个方面进一步加强土壤污染防治工作。 我国土壤环境状况总体不容乐观 土壤污染现状

根据国务院决定,2005年4月至2013年12月,环境保护部会同国土资源部开展了首次全国土壤污染状况调查。调查范围为中华人民共和国境内(未含香港特别行政区、澳门特别行政区和台湾地区)的陆地国土,调查点位覆盖全部耕地,部分林地、草地、未利用地和建设用地,实际调查面积约630万平方公里。调查采用统一的方法、标准,基本掌握了全国土壤环境质量的总体状况。 (1)全国土壤环境状况总体不容乐观。 全国土壤总的点位超标率为16.1%,其中轻微、轻度、中度和重度污染点位比例分别为11.2%、2.3%、1.5%和1.1%。污染类型以无机型为主,有机型次之,复合型污染比重较小,无机污染物超标点位数占全部超标点位的82.8%。从污染分布情况看,南方土壤污染重于北方;长江三角洲、珠江三角洲、东北老工业基地等部分区域土壤污染问题较为突出,西南、中南地区土壤重金属超标范围较大;镉、汞、砷、铅4种无机污染物含量分布呈现从西北到东南、从东北到西南方向逐渐升高的态势。镉、汞、砷、铜、铅、铬、锌、镍8种无机污染物点位超标率分别为7.0%、1.6%、2.7%、2.1%、1.5%、1.1%、0.9%、4.8%。六六六、滴滴涕、多环芳烃3类有机污染物点位超标率分别为0.5%、1.9%、1.4%。 (2)耕地土壤环境质量堪忧。 耕地土壤点位超标率为19.4%,其中轻微、轻度、中度和重度污染点位比例分别为13.7%、2.8%、1.8%和1.1%,主要污染物为镉、镍、铜、

土壤含水量及 求 农田作物需水量

土壤含水量及农田作物需水量 一、土壤含水量的计算 1.土壤重量含水量(重量百分数) 指一定重量的土壤中水分重量占干土重的百分数。干土指在105℃ 下烘干的土壤(干土≠风干土),通常要求烘干时间达8小时以上,准 确则要求烘至衡重。它是普遍应用的一种表示方法,也是经典方法。 一般情况下,如果文献中未做任何说明,则均表示“重量含水量”。如 烘干法测定的结果,其含水量的重量百分数(水重%)可由下式求得: 例1:测得湿土重为95克,烘干后重79克,求重量含水量。 %3.20%10079 7995%=?-=水重 2.土壤容积含水量(水容积百分数) 指一定土壤水的容积占土壤容积的百分数。它可以表明土壤水充满 土壤孔隙的程度及土壤中水、气的比率。常温下如土壤的密度为1 克/ 厘米3,因此土壤容积含水量或水容积百分数(水容积%)可由下式求 得: 土壤容重 自然状态下,单位体积内干土重,单:g/cm 3。容重是土壤的一个 十分重要的基本参数,在土壤工作中用途较广,以下举例说明。 (1)判断土壤的松紧程度 容重可用来表示土壤的松紧程度,疏 蓊或有团粒结构的土壤容重小,紧实板结的土壤则容重大,如下表。 容重(g/cm 3) 松紧程度 孔隙度 (%) < 1.00 最松 > 60 1.00~1.14 松 60~56 1.14~1.26 适合 56~52 1.26~1.30 稍紧 52~50 > 1.30 紧 < 50

(2)计算土壤重量 每公顷或每亩耕层土壤有多重,可用土壤的 平均容重来计算,同样一定面积土壤(地)上的挖土或盆裁填土量, 也要利用容重来计算。 例1:一个直径为40cm ,高为50cm 的盆,如果按1.15g/cm 3容重 计算,问需装多少(干)土? 解:(40/2)2 ? 3.14 ? 50 ? 1.15 = 72220克 = 72公斤 如一亩地面积(6.67?106cm 2)的耕层厚度为20cm ,容重为 1.15g/cm 3,其总重量为: 6.67 ? 106 ? 20 ? 1.15 = 1.5 ? 108(g) = 150(t) = 150000kg = 30 万 斤土 (3)计算土壤各组分的数量 根据土壤容重,可以计算单位面积 土壤的水分、有机质含量、养分和盐分含量等,作为灌溉排水、养分 和盐分平衡计算和施肥的依据。 如上例中的土壤耕层,现有土壤含水量为5%,要求灌水后达到 25%,则每亩的灌水定额为: 6.67 ? 106 ? 20 ? 1.15 ? (25% - 15%) = 30(m 3) 又如上例,土壤耕层的全N 含量为0.1%,则土壤耕层(0~20cm ) 含N 素总量为: 6.67 ? 106 ? 20 ? 1.15 ? 0.1% = 150t ? 0.1% = 150kg 例2:如某土壤水含量(水重%)为20.3%,土壤容重为1.20(克/ 厘米3),求土壤容积百分数(水容%) 水容% = 20.3% ? 1.2 = 24.4% 又如某土壤容重为1.20,该土的总孔隙度为%10065.220.11???? ??- = 55%,则其土壤容积饱和含水量为55%,饱和重量含水量为37.7%,空气所 占的容积为55% - 24.4% = 30.6% 3.土壤水贮量(农田贮水深) 以水层厚度(水毫米)表示。指一定厚度土层内土壤水的总贮量相当 多少水层厚度(毫米)。它便于与气象资料-降水量、蒸发量及作物耗 水量等进行比较。土壤水贮深(水毫米)可同下式求得:

研究我国土壤污染情况的报告

研究我国土壤污染情况的报告 摘要:我国土壤污染总体形势严峻,部分地区土壤污染严重,由土壤污染引发的农产品质量安全问题和群体性事件逐年增多。针对我国土壤污染的现状、危害、原因,提出了解决我国土壤污染的治理措施,以为改良我国土壤污染现状给予理论支持。 关键词:土壤污染危害现状治理措施 1.土壤污染的概念 土壤是指陆地表面具有肥力、能够生长植物的疏松表层,其厚度一般在2 m左右。土壤不但为植物生长提供机械支撑能力,并能为植物生长发育提供所需要的水、肥、气、热等肥力要素。由于人口急剧增长,工业迅猛发展,固体废物不断向土壤表面堆放和倾倒,有害废水不断向土壤中渗透,大气中的有害气体及飘尘也不断随雨水降落在土壤中,导致了土壤污染。凡是妨碍土壤正常功能,降低作物产量和质量,还通过粮食、蔬菜,水果等间接影响人体健康的物质,都叫做土壤污染物。 2.我国土壤污染现状及危害 2.1我国土壤污染现状 目前,我国土地污染的总体形势严峻,部分地区土地污染严重,在重污染企业或工业密集区、工矿开采区及周边地区、城市和城郊地区出现了土地重污染区和高风险区。土地污染类型多样,呈现出新老污染物并存、无机有机复合污染的局面。土地污染途径多,原因复杂,控制难度大。土地环境监督管理体系不健全,土地污染防治投入不足,全社会防治意识不强。由土地污染引发的农产品质量安全问题和群体性事件逐年增多,成为影响群众身体健康和社会稳定的重要因素。 2.2我国土壤污染的危害 在我国,土地污染直接间接地导致了一系列的后果。土地污染导致严重的直接经济损失。初步统计,我国受污染的耕地约有1 000万公顷,有机污染物污染农田达3 600万公顷,主要农产品的农药残留超标率高达16%~20%;污水灌溉污染耕地216.7万公顷,固体废弃物堆存占地和毁田13.3万公顷。每年因土地污染减产粮食超过1 000万吨,造成各种经济损失约200亿元。土地污染危害人体健康。土地污染会使污染物在植物体内积累,并通过食物链富集到人体和动物体中,危害人体健康,引发癌症和其他疾病。土地污染导致生物产品品质不断下降。因农田施用化肥,大多数城市近郊土地都受到不同程度的污染,许多地方粮食、蔬菜、水果等食物中镉、砷、铬、铅等重金属含量超标或接近临界值。每年转化成为污染物而进入环境的氮素达1 000万吨,农产品中的硝酸盐和亚硝酸盐污染严重。农膜污染土地面积超过780万公顷,残存的农膜对土地毛细管水起阻流作用,恶化土地物理性状,影响土地通气透水,影响农作物产量和农产品品质。土地污染导致其他环境问题。土地污染导致其他环境问题。土地受到污染后,含重金属浓度较高的污染土容易在风力和水力作用下分别进入到大气和水体中,导致大气污染、地表水污染、地下水污染和生态系统退化等其他次生生态环境问题。 3.造成我国土壤污染的原因 3.1来自工矿业废水的灌溉

我国土壤污染现状调查报告分析

我国土壤污染现状调查报告分析 今天,是第45个世界地球日,一份《全国土壤污染状况调查公报》却让我们对赖以生存的地球担忧起来:我国耕地土壤点位污染物超标率为19.4%,镉、镍、铜、砷、汞、铅、滴滴涕(双对氯苯基三氯乙烷)和多环芳烃成为罪魁祸首。作为百姓“米袋子”、“菜篮子”的耕地土壤正在受到越来越多的污染,甚至威胁到我们每天食用的蔬菜、水果、粮食这些“舌尖上的安全”。或许这些污染并不像烟囱中冒的黑烟、河流里淌的污水那么直观,但它们的确就在我们身边—— 我们的土壤现状 上周,环境保护部和国土资源部联合发布《全国土壤污染状况调查公报》。调查结果显示,全国土壤环境状况总体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿业废弃地土壤环境问题突出。全国土壤总的点位超标率为16.1%,其中轻微、轻度、中度和重度污染点位比例分别为 11.2%、2.3%、1.5%和1.1%。南方土壤污染重于北方,长三角、珠三角、东北老工业基地等部分区域土壤污染问题较为突出,西南、中南地区土壤重金属超标范围较大。 从土地利用类型来看,耕地、林地、草地土壤点位超标率分别为19.4%、10%、10.4%。从污染类型看,以无机型为主,超标点位数占全部超标点位的82.8%,有机型次之,复合型污染比重较小。从污染物超标情况看,镉、汞、砷、铜、铅、铬、锌、镍8种无机污染物点位超标率分别为7%、1.6%、2.7%、2.1%、1.5%、1.1%、0.9%、4.8%;六六六(六氯环己烷)、滴滴涕、多环芳烃3类有机污染物点位超标率分别为0.5%、1.9%、1.4%。 据了解,这是首次进行的全国性土壤污染普查,环保部自2005年4月至2013年12月开展了历时8年的调查。 以下几组数据特别值得关注:在调查的690家重污染企业用地及周边土壤点位中,超标点位占36.3%,主要涉及黑色金属、有色金属、皮革制品、造纸、石油煤炭、化工医药、化纤橡塑、矿物制品、金属制品、电力等行业。调查的工业废弃地中超标点位占34.9%,工业园区中超标点位占29.4%。 在调查的188处固体废物处理处置场地中,超标点位占21.3%,以无机污染为主,垃圾焚烧和填埋场有机污染严重。 调查的采油区中超标点位占23.6%,矿区中超标点位占33.4%,55个污水灌溉区中有39个存在土壤污染,267条干线公路两侧的1578个土壤点位中超标点位占20.3%。 此外,重金属镉污染加重,全国土地镉含量增幅最多超过50%。据调查结果显示,镉、汞、砷、铜、铅、铬、锌、镍这8种重金属为主的无机物的超标点位,占了全部超标点位的82.8%,其中又以镉污染占大头,达到7%。镉的含

相关主题
文本预览
相关文档 最新文档