当前位置:文档之家› 几何画板中怎样利用椭圆定义构造椭圆

几何画板中怎样利用椭圆定义构造椭圆

几何画板中怎样利用椭圆定义构造椭圆
几何画板中怎样利用椭圆定义构造椭圆

几何画板中怎样利用椭圆定义构造椭圆

椭圆在平面解析几何的教学中是一个重要的内容,利用几何画板软件可以很准确地画出椭圆图形,为教师的教学都带来了方便。椭圆定义:平面内到两个定点的距离之和等于定长2a(a>0)的点的轨迹就是椭圆。那么怎样在几何画板利用椭圆定义构造椭圆呢?(几何画板中文官网)

具体的操作步骤如下:

1.单击“圆工具”,在画板的适当位置任意画一个圆,将圆心的标签改为F1。单击“点工具”,在圆上任意画一点C,同时选中点F1和点C,执行“构造”—“线段”命令,构造出线段F1C。单击“点工具”,在线段F1C任意画一点F2。

构造圆和线段F1C并任取一点F2

2.在圆上任意画一点E,并构造线段EF1和线段EF2。选中线段EF2,执行“构造”—“中点”命令,构造线段EF2的中点F。

构造线段EF1和EF2并构造线段EF2的中点F

3.选中线段EF2和点F,执行“构造”—“垂线”命令,构造出线段EF2的垂直平分线j。同时选中线段EF1和直线j,选择“构造”—“交点”命令,构造线段EF1和直线j的交点G。

构造出线段EF2的垂直平分线j并构造交点G

4.选中点G和点E(把点E称做是点G的相关点,改变G点的位置,点E的位置也跟着改变),选择“构造”—“轨迹”命令,可画出椭圆。拖动点B和点F2可改变椭圆的形状。

选中点G和点E构造轨迹得到椭圆

5.执行“文件”—“保存”命令即可。

以上内容介绍了在几何画板中利用利用椭圆定义构造椭圆的方法,只要掌握椭圆定义就可迅速画出椭圆。

习题课:椭圆第二定义的应用(精)

人教版高二数学上册§8.2 椭圆第二定义的应用(习题课 班级姓名自我学习评价 :优良还需努力 【学习目标】1. 进一步加深对椭圆第二定义及其性质的认识,会熟练运用椭圆的几何性质和第二定义解决有关问题; 2. 通过对椭圆的第二定义的应用,体会和感悟“方程思想”和“数形结合”,“分类讨论”的数学思想方法。 【学习重点】灵活运用椭圆的第二定义及性质解决有关问题。 【学习过程】 一、学习准备(知识准备) 请独立完成下列填空: 1.椭圆的第一定义为:;其中的两点为椭圆的 ;常数等于椭圆的; 2.椭圆第二定义:若平面内的动点M(x,y)到定点F(c,0)的距离和它到定直线 的距离的比是常数,则点M 的轨迹为;定直线叫做,准线与长轴所在直线____,椭圆的准线有条. 常数,()是的离心率。e1时,椭圆趋于;e0时,椭圆趋向于。 3.由椭圆第二定义我们得到了焦半径公式。设为椭圆上任意一点,对于标准方程 的焦半径;;对于标准方程的焦半径; .

椭圆第二定义及其性质在解题中有何价值和作用?你知道吗?通过本节课的学习你就会知道了! ●基础练习:试一试,你能根据已知很快独立完成下列问题吗?有困难的题可与小组同学讨论。 1、椭圆的准线方程是()A.; B.; C.; D. 2 椭圆的一个焦点到相应准线的距离为,离心率为,则短轴长为()A B C. D. 3 设点P为椭圆上一点,P到左准线的距离为10,则P到右准线的距离为() A . 6 ; B .8 ; C.10 ; D.15 4 已知点A(2,y)是椭圆上的点,F是其右焦点,则∣AF∣=; 5.椭圆与椭圆〉0)的形状怎样?它们的离心率有何关系?你 能否快速求出与椭圆有相同的离心率且经过点(,)的椭圆的方程?其方程为 你是用什么方法求解的?。 二、典型例析 【探究一】利用椭圆第二定义解题

几何画板中怎样用椭圆定义构造椭圆

几何画板中怎样用椭圆定义构造椭圆

————————————————————————————————作者:————————————————————————————————日期:

几何画板中怎样利用椭圆定义构造椭圆 椭圆在平面解析几何的教学中是一个重要的内容,利用几何画板软件可以很准确地画出椭圆图形,为教师的教学都带来了方便。椭圆定义:平面内到两个定点的距离之和等于定长2a(a>0)的点的轨迹就是椭圆。那么怎样在几何画板利用椭圆定义构造椭圆呢?(几何画板中文官网) 具体的操作步骤如下: 1.单击“圆工具”,在画板的适当位置任意画一个圆,将圆心的标签改为F1。单击“点工具”,在圆上任意画一点C,同时选中点F1和点C,执行“构造”—“线段”命令,构造出线段F1C。单击“点工具”,在线段F1C任意画一点F2。 构造圆和线段F1C并任取一点F2 2.在圆上任意画一点E,并构造线段EF1和线段EF2。选中线段EF2,执行“构造”—“中点”命令,构造线段EF2的中点F。

构造线段EF1和EF2并构造线段EF2的中点F 3.选中线段EF2和点F,执行“构造”—“垂线”命令,构造出线段EF2的垂直平分线j。同时选中线段EF1和直线j,选择“构造”—“交点”命令,构造线段EF1和直线j的交点G。 构造出线段EF2的垂直平分线j并构造交点G

4.选中点G和点E(把点E称做是点G的相关点,改变G点的位置,点E的位置也跟着改变),选择“构造”—“轨迹”命令,可画出椭圆。拖动点B和点F2可改变椭圆的形状。 选中点G和点E构造轨迹得到椭圆 5.执行“文件”—“保存”命令即可。 以上内容介绍了在几何画板中利用利用椭圆定义构造椭圆的方法,只要掌握椭圆定义就可迅速画出椭圆。

椭圆的第二定义应用

椭圆的第二定义应用 班级 姓名 基础梳理 1.椭圆第二定义:___________________________距离之比是常数 e c a e M =<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e 是椭圆的离心率。 注意: ①对对应于右焦点,的准线称为右准线,x a y b a b F c 22222100+=>>()() 方程是,对应于左焦点,的准线为左准线x a c F c x a c =-=-212 0() ②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 自测自评 1、椭圆125 92 2=+y x 的准线方程是( ) A 、425± =x B 、516±=y C 、516±=x D 、4 25±=y 2、椭圆的一个焦点到相应的准线的距离为45,离心率为32,则短轴长为( ) A 、2 5 B 、5 C 、52 D 、1 3、设P 为椭圆136 1002 2=+y x 上一点,P 到左准线的距离为10,则P 到右准线的距

离为()

A 、6 B 、 8 C 、 10 D 、15 4、已知P 是椭圆2 100 x + 236y =1上的点,P 到右准线的距离是8.5,则p 到左焦点的距离是______ 5、已知动点M 到定点(3,0)的距离与到定直线x= 253,的距离之比是35,则动点M 的轨迹方程是_________________。 6、.已知P 点在椭圆225x +216y =1上,且P 到椭圆左、右焦点距离的比是1:4,则P 到两准线的距离分别为_________________。 7、求中点在原点、焦点在x 轴上、其长轴端点与最近的焦点相距为1,与相近的一条准线距离是53 的椭圆标准方程。 8、 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 9、已知,,是椭圆的右焦点,点在椭圆上移动,当A F x y M ()-+=231612 122 |MA|+2|MF|取最小值时,求点M 的坐标。

椭圆定义及应用

一、椭圆第一个定义的应用 1.1 椭圆的第一个定义平面内有两个定点F1、F2,和一个定长2a。若动点P到两个定点距离之和等于定长2a,且两个定点距离|F1F2|<2a.则动点轨迹是椭圆。两个定点F1、F2称为椭圆的焦点。 由此定义得出非常重要的等式,其中P为椭圆上一个点。此等式既表明作为椭圆这个点的轨迹的来源,也说明椭圆上每一个具有的共同性质。即椭圆上每一个点到两个焦点距离之和等于定长2a .在有关椭圆的问题中,若题设中含有有关椭圆上一点到两个焦点距离的信息,首先考虑的就是能否用上这个关系式。 1.2 应用举例 例1.已知点 1(3,0) F-,2(3,0) F,有 126 PF PF +=,则P点的轨迹是 . 例2.求证以椭圆 (a>b>0) 上任意一点P的 焦半径为直径画圆,这个圆必与圆相切. 解评:此题若用一般方法解或用椭圆参数方程解答,计算量都很大,解题过程冗长,属于中档题。我们若抓住PF2为一个圆直径,PF1为另一个圆半径的2倍,用公式,很容易得出正确解答。

例3. F 1、F 2是椭圆的两个焦点,P 是椭圆上一点, 求的面积.24 解评:题设中有椭圆上一点到两个焦点间距离的信息,即可试探是否能用 解决 例4.P 是椭圆2 2 145 20 x y + =上位于第一象限内的点, F 1、F 2是椭圆的左、右焦点, 若 则12PF PF -的值为( ) A. D. 3 例5. 在圆C:22(1)25x y ++=内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线线段CQ 的交点为M,求M 点的轨迹方程. 练:一动圆与圆⊙o 1:x 2+y 2+6x+5=0外切,同时与⊙o 2 : x 2+y 2_ 6x _ 91=0 内切, 求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题 《普通数学课程标准》在圆锥曲线这一章较过去增加一种要求:即学生要根据方程的形式和图形特征等进行类比猜想,培养直觉思维与合情推理能力。增加这一要求是很科学的,因为很多圆锥曲线问题用代数法运算非常繁杂,而一旦抓住图形特征后,运用数形结合,则可以简化运算,大幅度提高解题效率,下面以椭圆为例说明。 例:已知椭圆的中心在原点,其左焦点为F (-2,0),左准线l 的方程为x=-22 3 ,PQ 是过F 且与x 轴不垂直的弦,PQ 的中点M 到左准线l 1:求椭圆的方程2:求证: d PQ 为定值 3:在l 上是否存在点R ,使?PQR 为正三角形 若存在,求出点R 的坐标,若不存在,说明理由 1:解析:易得椭圆的方程11 32 2=+y x 2:证明:如图,作PP / ⊥l 与P ,QQ / ⊥l 与Q ,则由椭圆的第二定义,易得 e PP PF =/ ,e QQ QF =/;于是PQ=PF+QF=ePP /+eQQ / =2ed=362=定值 3:解析:此题若从代数角度入手,设直线的方程,联立的方程再用韦达定理,则运算繁杂,很多同学会丧失信心;若能抓住图形特征,运用椭圆的第二定义和正三角形的性质,则可化难为易。假设存在点R ,使?PQR 分线RM 也确定,所以RM 的斜率确定,可以考虑先求RM 即求倾斜角π-/ /MM Q ∠的大小, 而COS / / MM Q ∠=M Q MM //,由第2问的结论可得: COS / / MM Q ∠=M Q MM // = PQ PQ e 2 321= 2 231= e ,//MM Q ∠ 为45○ ,根据对称性,RM 的斜率应为1±,进而可得PQ 的方程及中点M 的坐标,再由点斜式求得RM 的方程,再联立左准线l 的方程x=- 223

《几何画板》圆锥曲线的形成和画法

《几何画板》课件制作 圆锥曲线的形成 选题:圆、椭圆、抛物线、双曲线这四种曲线可以看作不同的平面截圆锥面所得到的截线,故它们统称为圆锥曲线。在中学数学教学中,很难用实物教具演示圆锥曲线的形成过程。在学习之初,学生很难对圆锥曲线的形成有一个直观的认识。现利用几何画板模拟不同的平面截圆锥面的过程,动态演示不同圆锥曲线及截面的形成,为高中数学圆锥曲线的学习作引入。这样设计使学生对抽象的圆锥曲线概念有一个更感性的认识,更便于学生理解圆锥曲线的实际意义。 原理:圆锥面被一平面所截所得的曲线形有:圆、椭圆、抛物线、双曲线。 制作过程:圆锥曲线的构造 1.构造能够控制截面作移动和倾斜变化的示意图 1作小椭圆:利用同心圆法作椭圆,椭圆的长半轴为OA,短半轴为OB; (1)过O作OA的垂线,在垂线的上方任取一点H,作线段HO并隐藏垂线。用线段连接AH,分别在线段 HO和AH上任取点C和点D,连接CD; (2)作截面:以点C为圆心,以小线段r为半径作圆。在上半圆上任取一点E,隐藏小圆。依次选定点E和点C并标记为向量,把点C 按标记向量平移得到点E′,再依次选定点C和点D并标记为向量,把点E和E′按标记向量平移得到点F和F′。同时选定点E、F、F′和E′,用线段相连得截面EFF′E′,并涂上浅黄色,如图 1所示: B r b() a() 圆锥截面的形成 ' <图 1> <图 2> 注意:利用示意图控制截面作移动和倾斜变化: 1)拖动点A或点B,可以改变椭圆的大小; 2)拖动点C或点D,可以使截面EFF′E′上下移动或上下倾斜;

3)拖动点E,可以使截面左右倾斜或翻转。 2.构造圆锥面被截面所截形成圆锥截面曲线的过程 (1)做大椭圆:利用同心圆法作椭圆,椭圆的长半轴O′A′=2|OA|,短半轴O′B′=2|OB|,椭圆中心为O′; (2)作圆截面:依次选定点O和点H并标记为向量,把点O′按标记向量平移两次得点H′,使O′H′=2 |OH|。在椭圆上任取一点P,用线段连接O′P依次选定点P和点H′并标记为向量,把点H′按标记向量平移得点P′,用线段连接PP′和A′H′; 作P′轨迹,同时选定点P和点P′,执行〈作图/轨迹〉选项,求得一个与圆椭圆关于H′对称的椭圆; 作PP′轨迹,再同时选定线段PP′和点P,执行〈作图/轨迹〉选项,作出圆锥面,并用浅颜色表示。 (3)作截面:依次选定点O和C并标记为向量,把点O′按标记向量平移两次得点C′,使O′C′=2|OC|。过点C′作平行于CD的直线a交H′A′于点D′。在直线a上任取一点M,选定点M和C′并标记为向量,把点C′按标记向量平移得点M′。过点M 作EE′平行线d,在d上任取一点N,选定点N和M并标记为向量,使点M按标记向量平移得点N′。依次选定点M和M′并标记为向量,使点N,N′按标记向量平移得点Q和Q′。隐藏直线d,用线段连接N、N′、Q′、Q得截面 NN′Q′Q,并涂上浅黄色。 (4)作圆锥曲线:先求作截面NN′Q′Q与棱H′P的交点G。过点D′作O′A′平行线交O′H′于O″点。分别过点O″和D′作线段O′P和FF′的平行线b和c,并交于点R。作直线RC′,求得RC′与PP′的交点G,即为截面与棱PP′的交点。隐藏除直线a外的所有直线。 (5)求点G的轨迹,同时选定点G和点P,执行〈作图/轨迹〉选项,求得截面与锥面相交的圆锥曲线。根据截面不同位置,点G的轨迹可分别形成椭圆、抛物线、双曲线等,建立动画按钮控制截面的运动,改标签为“圆锥曲线”。 用同样方法,可求得圆锥曲线在水平面上的投影,即过G点作A′O′的垂线与PO′交于点G′,求点G′的轨迹即是。 (6)在控制图上选取四个特殊点,此时所成圆锥曲线为双曲线、抛物线、椭圆、圆。分别构造到这几个点的移动按钮,并改名为“双曲线”、“抛物线”、“椭圆”、“圆”如图2所示: 圆锥曲线的画法 选题:圆锥曲线的画法虽然很多种,但归纳起来有以下五种:

椭圆的第二定义含解析

课题:椭圆的第二定义 【学习目标】 1、掌握椭圆的第二定义; 2、能应用椭圆的第二定义解决相关问题; 一、椭圆中的基本元素 (1).基本量: a 、b 、c 、e 几何意义: a-半长轴、b-半短轴、c-半焦距,e-离心率; 相互关系: a c e b a c =-=,222 (2).基本点:顶点、焦点、中心 (3).基本线: 对称轴 二.椭圆的第二定义的推导 问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a >>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ????==?????? | ,由此得c a =. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-. 设222 a c b -=,就可化成22221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆. 由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a =<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c =.根据椭圆的对称性,相 应于焦点(0)F c '-,的准线方程是2a x c =-,所以椭圆有两条准线.

可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义. 【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。 中心到准线的距离:d=c a 2 焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2c a 2 三.第二定义的应用 1、求下列椭圆的焦点坐标和准线 (1)136 1002 2=+y x (2)8222=+y x 2、椭圆 136 1002 2=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( ) .12 C 3、若椭圆的两个焦点把两准线间的距离三等分,则:离心率e=______; 4、离心率e= 2 2,且两准线间的距离为4的椭圆的标准方程为________________________; 5、若椭圆的短轴长为2,长轴是短轴的2倍,则:中心到准线的距离为____________; 6、求中心在原点,一条准线方程是x=3,离心率为 3 5 的椭圆标准方程.

如何用几何画板画椭圆

如何用几何画板画椭圆 一、定义法(到两定点的距离和等于定长) 选取“线段”工具,在绘图板中作一线段AB(线段AB的长度为椭圆的长轴长2a)。用“点”工具在线段上任取一点C,按住shift键先后选中A,C点,选择“变换”→“标记向量"A→C"”。 再用“点”工具再用点工具任取一点D,选中点D,选择“变换”→“平移”,选中“按标记的向量”,然后确定,会得到点D'。按住shift键,先后选中点D和D',选择“作图”→“以圆心和圆周上的点画圆”,选中点D',按Ctrl+H键将其隐藏。 按住shift键,先后选中B,C点,选择“变换”→“标记向量"B→C"”。用点工具另作一点E,使其与D点的距离小于线段AB的长(线段DE的长为2c),选中点E,选择“变换”→“平移”,选中“按标记的向量”,然后确定,会得到点E'。按住shift键,先后选中点E和E',选择“作图”→“以圆心和圆周上的点画圆”,选中点E',按Ctrl+H键将其隐藏。 按住shift键,选中两个圆的圆周,选择“作图”→“交点”(或按Ctrl+I键),作出交点F和G。 以下可以分两个方向进行: 1.按住shift键,先后选中点F和点C,选择“作图”→“轨迹”,作出椭圆的上半部分;同理先后选中点G和点C,作出椭圆的下半部分(如图1)。 2.按住shift键,先后选中点F,选择“显示”→“追踪点”,同样选中点G和点C,选择“显示”→“追踪点”。 按住shift键,先后选中点C和线段AB,选择“编辑”→“操作类按钮”→“动画”,弹出“匹配路径”对话框,选择“双向”、“沿着线段j”、“慢慢地”,按“动画”按钮完成设置。这时,绘图板上会出现一个“动画”按钮,双击“动画”按钮,就会自动画出椭圆。完成,存盘退出。 二、准线法(到定点的距离与到定直线的距离之比为常数e) 打开一个新的绘图板,选择“图表”→“建立坐标轴”。 用“线段”工具作线段CD,在线段CD上任取一点E。同时选中点C和点E,选择“度量”→“距离”,量出CE的长。同样量出CD的长。 按住shift键,选中量出的CE和CD的距离,按鼠标右键弹出对话框,选择“度量”→“计算”。在打开的计算器中选择“数值”→“距离(C到E)”。选择“/”→“距离(C到D)”→“确定”。在绘图板上就会出现CE和CD的比值。用“文本工具”双击该值,弹出“度量值格式”对话框,选择“T文本格式”。将“距离(C到E)/距离(C到D)”改成“e”,确定,完成改变。选中点B,按Ctrl+H键隐藏,在X轴上取点F(F为椭圆的一个焦点)。作线段GH,在其上取点I。用上面的方法量出GI的距离,并将其距离名称改为c。选中c和e的值,打开计算器,将c除以e的值求出,并将其名改为a。 选中a的计算值,选择“图表”→“绘制度量值”,弹出“绘制度量值”对话框。选择“H 在横(x)轴”,确定,作出垂直于x轴的一条直线。选中c的度量值,选择“变换”→“标记距离”,选中F点,选择“变换”→“平移”,弹出“平移”对话框,选择“按标记的距离”,确定,作出点F平移后的点F'。 先后选中点F和点F',选择“作图”→“以圆心和圆周上的点画圆”。选中该圆周和上面作出的垂直于x轴的直线,按Ctrl+I绘出交点J和K。选中点J和点K,选择“显示”→“追踪点”。选中点I和线段GH,选择“编辑”→“操作类按钮”→“动画”,弹出“匹配路径”对话框,选择“双向”、“沿着线段n”、“慢慢地”,按“动画”按钮完

《几何画板》圆锥曲线的形成和画法

《几何画板》课件制作 ——圆锥曲线的形成和画法 作者:马现岭 摘要 《几何画板》是一个适用于几何(平面几何,解析几何,射影几何,立体几何)、部分物理、天文教学的专业学科优秀平台软件,它能辅助教师在教学中使用现代化教育技术并进行教学试验,也可以帮助学生在实际操作中把握学科的内在实质,培养其观察能力,问题解决能力,并发展思维能力。它代表了当代专业工具平台类教学软件的发展方向。 在对《几何画板》进行系统的学习之后,我利用有关知识制作了两大类综合的数学课件。主要包括:用动态效果展示圆锥曲线及截面的形成和圆锥曲线的画法。这两类课件在教学上都有很重要的应用。最新的《普通中学数学课程标准》中强调“教师应向学生展示平面截圆锥得到的椭圆的过程,使学生加深对圆锥曲线的理解,有条件的学校应充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线。”这表明圆锥曲线的教学在以往的教学过程中存在着很大的困难,由于以往教育技术的落后,无法生动直观的进行讲解。现在有了这个课件,我们就能达到既生动又直观的教学效果。第二类利用《几何画板》实现了轨迹、函数图像的变换以及图像变换的动态演示,并由此法制作了几个有关函数图像变换的课件。第二类课件系统介绍了圆锥曲线的画法,为在教学中提高学生学习兴趣,开展对圆锥曲线的研究,提供了良好的方法和方便的途径。 全文由三部分组成: 第一部分:《几何画板》课件制作的选题原则。 第二部分:详细介绍了我所选择制作的数学课件及其制作过程。 第三部分:学习及应用《几何画板》的体会。 关键词:几何画板、标记向量、椭圆、圆锥曲线、圆锥截面、轨迹。

引言 The Geometer’s Sketchpad 是美国优秀的教育软件。由美国Nicholas Jackiw 和Scott Steketee程序实现,Steven Rasmussen领导的Key Curriculum出版社出版。它的中文名是《几何画板─21世纪的动态几何》,以下简称《几何画板》。它小巧玲珑,操作简单,是数学学习的有力助手。它可以说是我们的数学实验室,因为它能够有效地使数形结合,使我们在数学学习中既理解了数学结论,又得到了数学经验。 众所周知数学是训练逻辑思维的,尤其几何。通过教师的辅导,我们在自己的记忆中形成—套逻辑思维体系。那么怎样才能使我们更好地理解几何知识、掌握逻辑思维方法呢?一个方法是多看、多想,增加我们的学习经验,另一个方法就是寻找良好的辅助工具,帮助我们在动态的几何之中,去观察,探索。《几何画板》就是一个适用于几何(平面几何,解析几何,射影几何,立体几何)、部分物理、天文教学的专业学科优秀平台软件,它能辅助教师在教学中使用现代化教育技术并进行教学试验,也可以帮助学生在实际操作中把握学科的内在实质,培养其观察能力,问题解决能力,并发展思维能力。它代表了当代专业工具平台类教学软件的发展方向。 在对《几何画板》进行系统的学习之后,我利用有关知识制作了两大类综合的数学课件,主要包括:用动态效果展示圆锥曲线的形成和圆锥曲线的画法。 这两类课件在教学上都有很重要的应用。这里我所选择的《几何画板》版本为4.04版,目前最高的版本为5.0英文版,此外还有3.03版、4.03版和4.06版. 下面我就课件的选题、制作及使用《几何画板》的感受几方面来展开我的论文。 第一部分几何画板的选题原则

椭圆第二定义应用及经典例题解析

高考数学-椭圆第二定义应用 一、随圆的第二定义(比值定义): 若),e e d MF 为常数10(,<<=则M 的轨迹是以F 为焦点,L 为准线的椭圆。 注:①其中F 为定点,F (C ,0),d 为M 到定直线L :c a x 2=的距离 ②F 与L 是对应的,即:左焦点对应左准线,右焦点对应右准线。 二、第二定义的应用 [例1]已知112 16,)3,2(2 2=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。 分析:此题主要在于MF 2的转化,由第二定义:2 1==e d MF ,可得出d MF =2,即为M 到L (右准线)的距离。再求最小值可较快的求出。 解:作图,过M 作l MN ⊥于N , L 为右准线:8=x , 由第二定义,知: 2 1==e d MF , MN d MF ==∴2 ,2MN MA MF MA +=+Θ 要使MF MA 2+为最小值, 即:MF MA +为“最小”, 由图知:当A 、M 、N 共线,

即:l AM ⊥时,MF MA 2+为最小; 且最小值为A 到L 的距离=10, 此时,可设)3,(0x M ,代入椭圆方程中, 解得:320=x 故当)3,32(M 时, MF MA 2+为的最小值为10 [评注]: (1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。 (2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。 [例2]:设),(00y x P 为椭圆)0(,12222>>=+b a b y a x 的一点,离心率为e ,P 到左焦点F 1和右焦点F 2的距离分别为r 1,r 2 求证:0201,ex a r ex a r -=+= 证明:作图, 由第二定义:e c a x PF =+ 201 即:a ex c a x e c a x e PF r +=+=+?==02 02011)( 又a PF PF 221=+ 0012)(22ex a ex a a r a r -=+-=-=∴ 注:①上述结论01ex a r +=,02ex a r -=称为椭圆中的焦半径公式 ②a x a ex a r PF ≤≤-+==0011由 得出 c a a e a r c a ea a r -=-?+≥+=+≤)(11且 即c a PF c a +≤≤-1 当)a , (,P c a PF 01--=为时

几何画板在圆锥曲线中的应用举例

几何画板在《圆锥曲线》中的应用举例 高二数学组刘中维 在《圆锥曲线方程》这一章中,一些曲线的图像、性质都比较抽象,学生难以理解和接受,如双曲线的渐进线、圆锥曲线的离心率与开都的关系、一些数形结合的题目等,只凭学生的想象力是很难理解掌握有关图像的性质和图像之间的相互关系的,若我们只借助尺规作图的方法画图,一般难以达到满意的效果,还容易把图像画错。但若我们能利用《几何画板》精确的画图功能、动画功能加以演示,将能引起学生的学习兴趣,帮助学生的理解,提高学生对平面图形的想象思维能力,起到事半功倍的作用。下面举几个用几何画板解决圆锥曲线问题的例子。 一、在“几何画板”中作直线与圆锥曲线的交点 在“几何画板”中可以直接作出直线与直线的交点,直线与圆的交点以及圆与圆的交点.但不能直接作出直线与圆锥曲线的交点.本文介绍直线与圆锥曲线的交点制作、制作原理,该制作过程适合三种圆锥曲线.首先是三个工具的制作:工具一已知直线AP,A在圆锥曲线上,求作直线AP与圆锥曲线的另一个交点B.(以椭圆为例) 、、、,作DE与PA交于点L,作AF 作图过程在椭圆上任取4个点C D E F 与CD交于点M,作LM与EF的交点N,作NC与直线PA的交点B,则点就是直线PA与椭圆的交点(如图1). 图1 图2 制作成工具(命名为工具一)就可以直接使用,先决条件是圆锥曲线、点A、点P,不需要其它的,适合椭圆、双曲线、抛物线.

制作原理 任意圆锥曲线的内接六边形的三组对边的交点P 、Q 、R 共线(以 椭圆为例,如图2).(帕斯卡定理) 工具二 过圆锥曲线外一点作两条切线. 作图过程 2.1 若P 为椭圆外任意一点,以 1F 为圆心,2a 为半径作辅助圆,以P 为圆心,2PF 为半径作圆与辅助圆交于点Q R 、,分别取2QF 、2RF 的中点 A B 、,则PA PB 、为所求的切线,1QF 与PA 的交点、1RF 与PB 的交点为对应切点(如图4). 作图过程2.2 若P 为双曲线外任意一点,以 1F 为圆心,2a 为半径作辅助圆,以P 为圆心,2PF 为半径作圆与辅助圆交于点Q R 、,分别取2QF 、2RF 的中点 A B 、,PA PB 、为所求的切线. 1QF 与PA 的交点、1RF 与PB 的交点为对应切点(如图5). 作图过程2.3 若P 为抛物线外任意一点,以P 为圆心,PF 为半径作圆与准线交于点Q R 、,分别取QF RF 、的中点A B 、,PA PB 、为所求的切线.过点Q 作准线的垂线与PA 的交点、过点R 作准线的垂线与PB 的交点为对应切点(如图6). 把过圆锥曲线外一点作两条切线的过程制作成工具,需要说明的是要分成两个工具:(1)对于椭圆双曲线,工具先决条件是两个焦点 1F 、2F 、长度2a 的线段、点P ;(2)对于抛物线,工具的先决条件是焦点 1F ,准线,点P ;为了叙述 方便,统一称之为工具二. 图4 图5 图6

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题 《普通数学课程标准》在圆锥曲线这一章较过去增加一种要求:即学生要根据方程的形式和图形特征等进行类比猜想,培养直觉思维与合情推理能力。增加这一要求是很科学的,因为很多圆锥曲线问题用代数法运算非常繁杂,而一旦抓住图形特征后,运用数形结合,则可以简化运算,大幅度提高解题效率,下面以椭圆为例说明。 例:已知椭圆的中心在原点,其左焦点为F (-2,0),左准线l 的方程为x =-22 3 ,PQ 是过F 且与x 轴不垂直的弦,PQ 的中点M 到左准线l 1:求椭圆的方程2:求证: d PQ 为定值 3:在l 上是否存在点R ,使?PQR 为正三角形 若存在,求出点R 的坐标,若不存在,说明理由 1:解析:易得椭圆的方程 11 32 2=+y x 2:证明:如图,作PP /⊥l 与P ,QQ /⊥l 与Q ,则由椭圆的第二定义,易得 e PP PF =/,e QQ QF =/ ;于是PQ=PF+QF=ePP /+eQQ / =2ed=362=定值 3:解析:此题若从代数角度入手,设直线的方程,联立的方程再用韦达定理,则运算繁杂,很多同学会丧失信心;若能抓住图形特征,运用椭圆的第二定义和正三角形的性质,则可化难为易。假设存在点R ,使?PQR 为正三角形,且椭圆固定,则PQ 确定,于是PQ 的垂直平分线RM 也确定,所以RM 的斜率确定,可以考虑先求RM 即求倾斜角π-/ /MM Q ∠的大小, 而COS / / MM Q ∠=M Q MM // ,由第2问的结论可得: COS //MM Q ∠= M Q MM / / =PQ PQ e 321= 2 2 31= e ,//MM Q ∠为45○ ,根据对称性,RM 的斜率应为1±,进而可得PQ 的方程及中点M 的坐标,再由点斜式求得RM 的方程,再联立左准线l 的方程x =- 223变题:已知椭圆)0(122 22>>=+b a b y a x ,PQ 是过 F 且与x 轴不垂直的弦,若在其左准线l 上存在点 R 使?PQR 为正三角形,求椭圆的离心率的范围。 解析:同上,由椭圆的第二定义和正三角形的性质, RM 3

几何画板中椭圆的几种构造方法

几何画板中椭圆的几种构造方法 温州中学 陈晓龙 在教学中本人发现利用几何画板可以有很多方法来构造椭圆的图象,于是把几种画法整理如下: 椭圆的第一定义:平面内到两个定点F 1,F 2的距离之和为定值2a (2a >|F 1F 2|)的点的轨迹。 椭圆的构造方法一: (1)以O 为圆心,2a 为半径作圆,在圆上任取一点P ,在圆内任取一点A ; (2)连接PO 、PA ,作PA 的中垂线与PO 交于点M ,连接MA ; (3)将点M 定义为“追踪点”,选中点 P ,让点P 在圆上任意转动可得到点M 的轨 迹为以O ,A 为焦点长轴长为2a 的椭圆 。 理由:图中的MP=MA ,所以OM+MA=OM+MP=OP=圆的半径,符合椭圆的第一定义。 椭圆的第二定义:设动点M (x , y )与定点F (c , 0)的距离和它到定直线l : x = c a 2 的距离的比是常数a c (a >c >0),则点M 的轨迹是椭圆。点F 是椭圆的一个焦点,直线l 是椭圆中对应于焦点F 的准线。常数e =a c (0

在直线上取一点P ; (2)以F 为圆心以FP 为半径作圆,度量FP 的长度,取参数e=0.8(可改为其他小于1的正数),计算FP/e ; (3)过P 点作直线L 的垂线,交L 于M 点,以M 为圆心,以FP/e 为半径做圆,交垂线于N 点,过N 作L 的平行线,交圆F 于A ,B 两点; (4)追踪A ,B 两点,让P 在直线PF 上任意移动可得椭圆方程。 理由:不管P 点在何位置,总可以保证A ,B 点到F 点距离与他们到直线L 的距离之比为0.8,所以构造方法二依据的是椭圆的第二定义。 椭圆的构造方法三: 1.以坐标原点O 为圆心,分别以a 、b(a>b>0)为半径画两个圆; 2.在大圆上取一点A ,连接OA 与小圆交于点B ; 3.过点A 作AN 垂直于Ox 轴,垂足为N ;作 BM 垂直于AN ,垂足为M ; 4.分别选中点M 和点A ,用“作图”菜单中的“轨迹”功能,画出椭圆。 理由:|ON |=a cos φ, |NM |=b sin φ, 根据椭圆的参数方程知,

几何画板绘制椭圆

绘制椭圆 【活动目标】 1. 熟练操作“构造”菜单; 2. 学会使用垂线交点轨迹制作椭圆。 【活动描述】 几何画板中绘制椭圆的方法有多种,本活动主要介绍使用垂线交点轨迹绘制椭圆。通过构造以OA和OB为半径的两个圆、构造垂线、绘制椭圆来完成整个椭圆的绘制。 任务1 构造以OA和OB为半径的两个圆 1. 单击“绘图”→“定义坐标系”,如图1所示; 图 1 2. 在横轴上绘制点A和点B,以坐标原点为圆心O,选择“圆”工具分别以OA和OB为半径构造大小两个圆,如图2所示。

图 2 任务2 构造垂线 1. 选择“点”工具绘制大圆上的点C,选择“线段直尺”工具作线段OC; 选中线段OC和小圆,构造交点D,如图3所示; 图 3 2. 选中点D和横轴,单击“构造”→“平行线”,如图4所示;选中点C 和横轴,单击“构造”→“垂线”,如图5所示;最后,选中平行线和垂线,构 造交点E,如图6所示。

图 4图 5 图 6 任务3 绘制椭圆 1. 同时选中点C和点E,单击“构造”→“轨迹”,结果如图7所示; 图 7

2. 单击“绘图”→“隐藏坐标系”,选取除椭圆以外的线和点,单击“显示”→“隐藏对象”,如图8所示。 图 8 3. 椭圆绘制完成后,左右拖动点B及点A可以改变椭圆的大小和形状。

【活动拓展】 活动使用中垂线交点轨迹绘制椭圆 【活动目标】 1. 熟练操作“构造”菜单; 2. 学会使用中垂线交点轨迹制作椭圆。 【活动描述】 前面介绍了使用垂线交点轨迹绘制椭圆,本次活动使用中垂线交点轨迹绘制椭圆。通过构造以点A为圆心的圆、构造线段CD的中垂线、绘制出直线AD于线段CD中垂线的交点E点,以E点、D点构造椭圆来完成整个椭圆的绘制。 任务1 绘制圆 使用“圆”工具绘制圆,圆心标记为A,圆周上的标记为B,如图1所示。 图 1 任务2 绘制中垂线与直线AD的交点E 1. 选取“线段直尺”工具,把光标移到圆内,单击一下,松开左键,把光标移到圆周上,单击一下,则得线段CD,如图2所示;

椭圆的第二定义(比值定义)的应用(精)

椭圆的第二定义(比值定义)的应用 陈文 教学目标:1椭圆的比值定义,准线的定义 2、使学生理解椭圆的比值定义,并掌握基本应用方法 3、对学生进行对应统一的教育 教学重点:椭圆的比值定义的应用 教学难点:随圆的准线方程的应用 教学方法:学导式 教学过程: 一、复习 前节我们学习了随圆的第二定义(比值定义): 若则M的轨迹是以F为焦点,L为准线的椭圆。

注:①其中F为定点,F(C,0),d为M到定直线L:的距离 ②F与L是对应的,即:左焦点对应左准线,右焦点对应右准线。 二、第二定义的应用 [例1]已知的右焦点,点M为椭圆的动点,求的最小值,并求出此时点M的坐标。 分析:此题主要在于的转化,由第二定义: ,可得出,即为M到L(右准线)的距离。再求最小值可较快的求出。

解:如图所示,过M作于N,L为右准线:,由第二定义,知:, 要使为最小值,即:为“最小”,由图知: 当A、M、N共线,即:时,为最小;且最小值为A到L的距离=10,此时,可设,代入椭圆方程中,解得: 故:当时,为的最小值为10

[评注]:(1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。 (2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。 [例2]:设为椭圆的一点,离心率为e,P到左焦点F1和右焦点F2的距离分别为r1,r2 求证: 证明如图,由第二定义: 即:

又 注:①上述结论,称为椭圆中的焦半径公式 ②得出 即 当 当

[练习](1)过的左焦点F作倾斜角为300 的直线交椭 圆于A、B两点,则弦AB的长为 2 分析: 只需求(用联立方程后,韦达定理的方法可解)(学生完成) (2)的左、右焦点,P为椭圆上的一点,若则P到左准线的距离为 24 分析:由焦半径公式,设得

几何画板在代数及解析几何中的应用案例

几何画板在代数及解析几何中的应用案例

几何画板在代数及解析几何中的应用案例 《几何画板》是从国外引进的教育软件,目前已成为制作中学数学课件的主要创作平台之一,因为其学习入门容易并且操作简单,而且有着强大的图形、图象和动画功能,能在“形”与“数”之间自由转换,能方便地建立“可见形式”与“抽象形式”之间的关系,增大了数学被直接感知的可能,从而为改善数学的教学方式提供了极大的便利,本文我将结合具体教学案例重点介绍几何画板在高中数学代数、解析几何两方面的应用。 一、几何画板在代数中的应用。 几何画板在代数中的应用,主要通过《必修一》第二章《基本初等函数》来予以演示。 (一)、对数函数教学实例 本节课,新课标要求我们先通过描点法探究 和 两个函数,再探究“对于选取不同的底数a ,在同一个直角坐标系中作出相应的函数图像,观察图像,发现它们的共同特征”。如果我们采取过去“一黑到底”的教学模式,估计一节课的时间就只能够画图了,而且还不能清晰的展示出对数函数的特征。或许老师索性不探究,直接给出对数的相应的性质,但这样就丧失了新课改的精神,使学生失去了学习的主动性和探究问题的能力。 我们利用描点法画出 和 的函数图像(图表1) (图表 1) 图表2:改变 中a 的值,让学生观察当a 值改变时,图像的变化情况,并提出相关问题,让学生带着问题思考。 1、当01时函数的单调性相同吗 2、不管a 取何值,图像是否经过同一点 3、在a 的值不断增大的过程中,函数图像是如何变化的呢 带着问题,学生观看图表2的演示,从图像的变化痕迹中整体把握对数函数的相关性质。 2log y x =12 log y x =2log y x =12 log y x =x y a log =

几何画板画椭圆的几种方法介绍.

<<几何画板>>画椭圆的几种方法介绍 随着课改的发展,数学问题“视觉化”显得越来越重要(“视觉化”直观,学生更容易接受,课程改革也是朝这个发展方向),《几何画板》以其学习入门容易和操作简单的优点及其强大的图形和图象功能、方便的动画功能被许多数学教师看好,并已成为制作中学数学课件的主要创作平台之一。下面介绍几种椭圆画法: 一、到两定点的距离和等于定长 具,在绘图板中作一线段AB(线段AB的长度为椭圆的长轴长2a)。用“点”工具在线段上任取一点C,先后选中A,C点,选择“变换”->“标记向量"A->C"”(下图)。再用“线段”工具作线段DE(线段DE的长为 2c),选中点D,选择“变换”->“平移”,显示按标记的向量“从A到C”,点击“平移”,会得到点D'。 先后选中点D和D',选择“作图”->“以圆心和圆周上的点画圆”,选中点D',先后选中B,C点,选择“变换”->“标记向量"B->C"”。 同样的把点E,按向量BC平移,得到点E'。以E为圆心过E'作圆 选中两个圆的圆周,选择“作图”->“交点”,作出交点F和G。 让点C在线段AB上移动(选中点C,点击“编辑”下的“操作类按钮”中的“动画”可以生成动画),交点F、G的轨迹就是我们要作的椭圆(最后可以把无用的点、线隐藏)。

二、同心圆法(教材例5) 选择“图表”->“定义坐标系”,用“圆”工具作两圆心为原点的同心圆(外圆半径长就是最终椭圆的长半轴长a,内圆半径长就是最终椭圆的短半轴长b),光标放原点处,击左键拖动光标,松开左键就得到所需圆。 在外圆圆周上任取一点E(可以选中圆,点击“作图”下的“对象上的点”; 或者选取“点”工具,然后把光 (选中点A(原点)和点E,点 击“作图”下的“线段、射线或 直线”),再作AE与小圆的交点 (选中线段AE和内圆圆周,可 用快捷键Ctrl+I作出交点)F。 选中点E和纵轴,选择“作 图”->“平行线”,作出一直线, 再同时选中点F和横轴,选择 “作图”->“平行线”,作出另 一直线。

椭圆的第二定义应用

班级 姓名 基础梳理 1.椭圆第二定义:___________________________距离之比是常数 e c a e M = <<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e 是椭圆的离心率。 注意:①对对应于右焦点,的准线称为右准线,x a y b a b F c 22222100+=>>()() 方程是,对应于左焦点,的准线为左准线x a c F c x a c =-=-212 0() ②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 自测自评 1、椭圆125 92 2=+y x 的准线方程是( ) A 、425± =x B 、516±=y C 、516±=x D 、4 25±=y 2、椭圆的一个焦点到相应的准线的距离为45,离心率为32,则短轴长为( ) A 、2 5 B 、5 C 、52 D 、1 3、设P 为椭圆136 1002 2=+y x 上一点,P 到左准线的距离为10,则P 到右准线的距离为( ) A 、6 B 、 8 C 、 10 D 、15 4、已知P 是椭圆2 100x + 236 y =1上的点,P 到右准线的距离是,则p 到左焦点的距离是______ 5、已知动点M 到定点(3,0)的距离与到定直线x= 253 ,的距离之比是35,则动

点M 的轨迹方程是_________________。 6、.已知P 点在椭圆225x +2 16 y =1上,且P 到椭圆左、右焦点距离的比是1:4,则P 到两准线的距离分别为_________________。 7、求中点在原点、焦点在x 轴上、其长轴端点与最近的焦点相距为1,与相近的一条准线距离是53 的椭圆标准方程。 8、?一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 9、已知,,是椭圆的右焦点,点在椭圆上移动,当A F x y M ()-+=231612 122 |MA|+2|MF|取最小值时,求点M 的坐标。 10、已知A,B 是椭圆19252222=+a y a x 上的两点,2F 是右焦点,若a BF AF 5 822=+,AB 的中点P 到左准线的距离为23,求椭圆的方程。

相关主题
文本预览
相关文档 最新文档