当前位置:文档之家› 第四章 表面活性剂

第四章 表面活性剂

第四章 表面活性剂
第四章 表面活性剂

第四章表面活性剂

1. 表面活性剂的定义

2. 表面张力与表面活性剂浓度间存在何种关系?

1.表面活性剂有何结构特点?

2.何谓临界胶束浓度?表面活性剂浓度大小与胶束形状有何关系?

3.表面活性剂的亲水亲油性用何值来描述?通过哪些方法可得出该值?

4.HLB值大小与表面活性剂的适用场合间有何关系?

5.离子型表面活性剂的溶解度与温度之间存在何种关系?

6.如何解释聚乙二醇型非离子型表面活性剂存在浊点?

7.乳状液一般分为哪几种类型?为什么乳状液中需要加入乳化剂?

8.阴离子型表面活性剂表面活性剂有何结构特点?有哪些主要类型?

9.羧酸盐型阴离子表面活性剂可应用于哪些方面?

10.高级醇硫酸酯盐型表面活性剂有何特点?

11.“磺酸盐型阴离子表面活性剂易溶于水,有良好的发泡作用,主要用于生产洗涤剂。”

对吗?

12.AOS的主要成分是什么?

13.简述AOS的特点及应用。

14.阳离子表面活性剂的主要类型有哪两大类?

15.阳离子表面活性剂遇到哪些物质时会失效?

16.简述阳离子表面活性剂的应用领域。

17.简述两性离子表面活性剂的结构特点及性质。

18.分别写出羧基甜菜碱、磺基甜菜碱型表面活性剂的结构通式。

19.简述甜菜碱型表面活性剂的应用领域。

20.咪唑啉型两性离子表面活性剂有何特点?

21.非离子型表面活性剂的亲水、亲油基原料各有哪些物质?

22.非离子型表面活性剂可分为哪几类?

23.我国生产的脂肪醇聚氧乙烯醚(AEO)的主要品种有哪些?

24.商品名为TX-10、OP-10的表面活性剂属于哪类表面活性剂?

25.何谓EO分布指数?

26.说明Span(司盘)与Tween(吐温)系列表面活性剂之间的区别与联系。

27.特殊类型表面活性剂有哪些类型?

28.与普通表面活性剂相比,含氟表面活性剂有哪些突出性能?

29.含氟表面活性剂在工业领域有哪些用途?

30.简述生物表面活性剂的特点及应用范围。

第七章胶粘剂

1.将水基胶、热熔胶、反应性胶和溶剂型胶按目前世界消费量由大到小排序。

2.我国胶粘剂工业品种中,产量居前三位的依次是:;产

值居前三位的依次是:。

3.我国胶粘剂和密封胶使用量居前三位的行业依次是:。

4.简述胶粘剂的组成及各组分的作用。

5.胶粘剂按固化方式分为三类。

6.合成有机物胶粘剂按其主要成分分为三类。

7.胶接接头的四种基本受力类型是。

8.简述对被胶接材料表面进行处理的作用和过程。

9.生产中常用的涂胶方式有哪几种?

10.简述聚醋酸乙烯(PV A C)乳液的优缺点。

11.目前对聚醋酸乙烯(PV A C)乳液的改性产品主要有哪些?

12.简述EV A乳液的主要特性及在胶粘剂方面的应用。

13.简述丙烯酸系聚合物乳液胶粘剂的应用领域。

14.厌氧胶中的聚合物单体一般是。

15.厌氧胶中加入促进剂的作用是什么?通用的促进剂是哪类物质?

16.厌氧胶粘剂不适用于那些物质的胶接?

17.热固性树脂胶粘剂的主要类型有。

18.“万能胶”中作为基料的高分子化合物是。

19.在环氧树脂胶粘剂中加入固化剂的作用是什么?固化剂的加入量如何表示?

20.胺类物质在厌氧胶粘剂中可作为,在环氧树脂胶粘剂中可作为。

21.聚氨酯胶粘剂的主要类型有。

22.目前欧美等国80%~90%的鞋用胶粘剂为,我国90%的鞋用胶粘剂

为。

23.试比较聚氨酯胶粘剂、氯顺丁胶粘剂的性能。

24.常用的橡胶乳液胶粘剂(胶乳胶粘剂)有哪几类?

25.简述热熔胶粘剂的优、缺点。

26.我国压敏胶粘带主要是制品。

27.压敏胶粘剂的压敏性是它的粘附特性的表现,其粘附特性由、、

、四个要素组成;为保证压敏胶带的质量,这四要素之间必须满足的关系是。

28.简述光敏胶的固化机理。

第十章 表面活性剂

第十章表面活性剂习题 (一)名词解释 1.表面活性剂 2.HLB值 3.昙点 4.Krafft点 5.增溶作用 6.Critical Micelle Concentration(CMC) (二)选择题 单项选择题 1. 下列关于表面活性剂说法错误的是( ) A. 一般来说表面活性剂静脉注射的毒性大于口服 B. 表面活性剂与蛋白质可发生相互作用 C. 表面活性剂中,非离子表面活性剂毒性最大 D. 表面活性剂长期应用或高浓度使用于皮肤或黏膜,会出现皮肤或黏膜损伤 E. 表面活性剂的剌激性以阳离子型表面活性剂最大 2. 聚山梨酯类表面活性剂溶血作用的顺序为( ) A. 聚山梨酯20>聚山梨酯60>聚山梨酯40>聚山梨酯8O B. 聚山梨酯80>聚山梨酯60>聚山梨酶40>聚山梨酯20 C. 聚山梨酯80>聚山梨酯40>聚山梨酶60聚山梨酯20 D. 聚山梨酯40>聚山梨酯20>聚山梨酯60聚山梨酯80 E. 聚山梨酯40>聚山梨酯80聚山梨酯60>聚山梨酯20 3. 下列具有起昙现象的表面活性剂是( ) A. 硫酸化物 B. 磺酸化物 C. 脂肪酸山梨坦类 D. 聚山梨酯类 E. 肥皂类 4. 最适合做W/O型乳化剂的HLB值是( ) A. 1-3 B. 3-8 C. 7-15 D. 9-13 E. 0.5-20 5. 下列属于两性离子型表面活性剂是( ) A. 肥皂类 B. 脂肪酸甘油酯 C. 季铵盐类 D. 卵磷脂 E. 吐温类

6. 表面活性剂的增溶机理,是由于形成了( ) A. 络合物 B. 胶束 C. 复合物 D. 包合物 E. 离子对 7. 月桂醇硫酸钠属于( ) A. 阴离子型表面活性剂 B. 阳离子型表面活性剂 C. 非离子型表面活性剂 D. 两性离子型表面活性剂 E. A、B、C均是 8. 表面活性剂中毒性最小的是( ) A. 阳离子型表面活性剂 B. 阴离子型表面活性剂 C. 氨基酸型两性离子型表面活性剂 D. 非离子型表面活性剂 E. 甜菜碱型两性离子型表面活性剂 9. 常用表面活性剂溶血作用的大小次序是( ) A. 聚氧乙烯烷基醚>聚氧乙烯烷芳基醚>聚氧乙烯脂肪酸酯>聚山梨酯类 B. 聚氧乙烯烷基醚<聚氧乙烯烷芳基醚<聚氧乙烯脂肪酸酯<聚山梨酯类 C. 聚山梨酯类>聚氧乙烯烷芳基醚>聚氧乙烯脂肪酸酯>聚氧乙烯烷基醚 D. 聚氧乙烯烷芳基醚<聚氧乙烯烷基醚<聚山梨酯<聚氧乙烯脂肪酸酯类 E. 聚氧乙烯烷芳基醚<聚山梨酯<聚氧乙烯烷基醚<聚氧乙烯脂肪酸酯类 10. 具有Krafft点的表面活性剂是( ) A. 单硬脂酸甘油酯 B. 司盘 C. 肥皂类 D. 聚氧乙烯脂肪酸酯 E. 吐温 11. O/W型乳化剂的HLB值一般在( ) A.7-9 B.5-20 C.8-16 D.3-8 E.15-18 12. 下列属于阳离子型表面活性剂的为( ) A. 肥皂类

两性表面活性剂

https://www.doczj.com/doc/4812371337.html, 两性表面活性剂是在同一分子中既含有阴离子亲水基又含有阳离子亲水基的表面活性剂。最大特征在于它既能给出质子又能接受质子。在使用过程中具有以下特点:对织物有优异的柔软平滑性和抗静电性;有一定的杀菌性和抑霉性;有良好的乳化性和分散性。两性表面活性剂生产厂家哪家好?淮南华俊新材料科技有限公司来为您解答! 它是一种温和性的表面活性剂。两性表面活性剂分子与单一的阴离子型、阳离子型不同,在分子的一端同时存在有酸性基和碱性基。酸性基大都是羧基、磺酸基或磷酸基,碱性基则为胺基或季铵基,能与阴离子、非离子型表面活性剂混配,能耐酸、碱、盐以及碱土金属盐。 淮南华俊新材料科技有限公司 https://www.doczj.com/doc/4812371337.html,

https://www.doczj.com/doc/4812371337.html, 蛋黄里的卵磷脂是天然的两性表面活性剂。现在常用的人工合成两性表面活性剂,其阴离子部分大多是羧酸基,也有少数是磺酸基。其阳离子部分大多是胺盐或季胺盐。由胺盐构成阳离子部分的叫氨基酸型;由季胺盐构成阳离子部分的叫甜菜碱型。 两性表面活性剂通常具有良好的洗涤、分散、乳化、杀菌、柔软纤维和抗静电等性能,可用作织物整理助剂、染色助剂、钙皂分散剂、干洗表面活性剂和金属缓蚀剂等。但是,这类表面活性剂的价格较贵,实际应用范围较其他类型的表面活性剂小。 淮南华俊新材料科技有限公司是安徽省高新技术企业,目前增设上海、广州两家办事处。是以表面活性剂和聚丙烯酸及丙烯酰胺系列聚合物的研发、生产、销售于一体的企业,产品广泛应用于日化、石油开采、水处理、农药助剂、水性涂料、金属加工液等多个领域。我公司的主要产品有阳离子表面活性剂系列、两性表面活性剂系列、非离子表面活性剂系列、增稠剂系列产品以及其他产品。 淮南华俊新材料科技有限公司 https://www.doczj.com/doc/4812371337.html,

电导法测定水溶性表面活性剂的临界胶束浓度

2020年 6 月 9 日 评定 室温:25 0C 大气压:101kpa 一、实验名称:电导法测定水溶性表面活性剂的临界胶束浓度 二、实验目的 1. 用电导法测定十二烷基磺酸钠的临界胶束浓度; 2. 了解表面活性剂的特性及胶束形成原理; 3. 掌握电导率仪的使用方法; 4. 培养学生对日常生活中表面活性剂物质性能的测定能力; 三、实验原理 能使水的表面张力明显降低的溶质称为表面活性物质,特别是具有明显“两亲”性质的分子,既含有亲油的足够长的(大于10~12个碳原子)烃基,又含有亲水的极性基团(通常是离子化的)。由这一类分子组成的物质称为表面活性剂,如肥皂和各种合成洗涤剂等。 表面活性剂分子都是由极性部分和非极性部分组成的,若按离子的类型分类,可分为三大类: (1) 阴离子型表面活性剂,如羧酸盐[肥皂,C 17H 35COONa], 烷基硫酸盐[十二烷基硫酸钠,CH 3(CH 2)11SO 4Na],烷基磺 酸盐[十二烷基苯磺酸钠,CH 3(CH 2)11C 8H 5SO 3Na]等; (2) 阳离子型表面活性剂,多为胺盐,如十二烷基二甲基叔 胺[RN(CH 3)2HCl]和十二烷基二甲基氯化胺[RN(CH 3)Cl]; (3) 非离子型表面活性基,如聚氧乙烯类 [R -O -(CH 2CH 2O)n H]。 表面活性剂进入水中,在低浓度时呈分子状态,并且 三三两两地把亲油基团靠拢而分散在水中。当溶液浓度加大 到一定程度时,许多表面活性物质的分子立刻结合成很大的 集团,形成“胶束”。以胶束形式存在于水中的表面活性物 质是比较稳定的。表面活性物质在水中形成胶束所需的最低 浓度称为临界胶束浓度(critical micelle concentration ),以CMC 表示。在CMC 点上,由于溶液的结构改变导致其物理及化学性质(如表面张力、电导、渗透压、浊度、光学性质等)同浓度的关系曲线出现明显的转折,如图1和图2所示。这个现象是测定CMC 的实验依据,也是表面活性剂的一个重要特征。 本实验利用电导率仪测定不同浓度的十二烷基磺酸钠水溶液的电导率(也可 图2 十二烷基磺酸钠水溶液电导率与浓度的关系 图1 十二烷基磺酸钠水溶液的物理性质与浓度的关系

第四章液体制剂概论

第四章液体制剂 一、问答题 1、试述液体制剂的特点与其应用的适应性。 2、简述表面活性剂的基本特性和应用范围,并请分别举例说明。 3、试述表面活性剂的临界胶束浓度的定义、测定原理及其在表面活性剂应用中的意义。 4、哪些表面活性剂具有昙点?为什么? 5、药剂学上常用的增加难溶性药物溶解度的方法有哪些?分别举例说明。 6、名词解释:表面活性剂、HLB值、昙点、临界胶团浓度。 7、表面活性剂分子结构有何特点?分哪几类?肥皂、月桂醇硫酸钠、阿洛索OT、新洁尔 灭、卵磷脂、Tween80 、PluronicF-68 分别属于哪一类?应用有何特点? 8、不同用途对表面活性剂的HLB值要求如何?混合表面活性剂的HLB如何计算? 9、不同类别表面活性剂的毒性如何?与其应用有何关系? 10、表面活性剂在药剂中有哪些应用?举例说明。 11.表面活性剂生物学性质是什么? 二、单选题 1、难溶于水的药物配成水溶液时,增大其溶解度的方法是(A) A、加热 B、粉碎成细粉促进其溶解 C、搅拌 D、药物与溶媒所带电荷相同 E、药物与溶媒的性质相似 2、最适于作疏水性药物润湿剂HLB值是(E) A、HLB值在5~20之间 B、HLB值在7~9之间 C、HLB值在8~16之间 D、HLB值在7~13之间 E、HLB值在3~8之间 3、不属于液体药剂者为(D) A、合剂 B、搽剂 C、灌肠剂 D、醑剂 E、注射剂 4、对液体制剂质量要求错误者为(B) A、溶液型药剂应澄明 B、分散媒最好使用有机分散媒 C、有效成分浓度应准确稳定 D、乳浊液型药剂应保证其分散相小而均匀 E、制剂应有一定的防腐能力 5、下列表面活性剂有起昙现象的主要是那一类(E)

实验十四 电导法测定水溶性表面活性剂的临界胶束浓度

实验十四电导法测定水溶性表面活性剂的临界胶束浓度 专业:11化学姓名:赖煊荣座号:32 同组人:黄音彬时间:2014.4.15 Ⅰ、目的要求 1.用电导法测定十二烷基硫酸钠的临界胶束浓度 2.了解表面活性剂的特性及胶束形成原理 3.掌握电导仪的使用方法 Ⅱ、基本原理 本实验利用电导仪测定不同浓度的十二烷基硫酸钠水溶液的电导值(或摩尔电导率),并作电导值(或摩尔电导率)与浓度的关系图,从图中的转折点即可求得临界胶束浓度。 Ⅲ、仪器试剂 电导仪、电导电极、恒温水浴、容量瓶(1000 ml)、烧杯(100ml、250ml)、氯化钾(分析纯)、十二烷基硫酸钠(分析纯)、电导水 Ⅳ、实验步骤 1.用电导水或重蒸馏水准确配制0.01 mol〃dm-3的KCl标准溶液。 2.配制0.02 mol〃dm-3表面活性剂(十二烷基硫酸钠)溶液,再配成下表中一系列浓度溶液。 3.调节恒温水浴温度至25℃或其它合适温度。 4.用0.01 mol〃dm-3KCl标准溶液标定电导池常数。 5.吸取10ml的0.02 mol〃dm-3十二烷基硫酸钠溶液于100ml烧杯中,依次移入恒温后的电导水2ml、3ml、5ml、5ml、5ml、5ml、10ml、10ml、10ml、20ml,搅拌,分别测其电导率。 每个溶液的电导读数三次,取平均值。电导仪的使用方法(参见前,略)。 6.列表记录各溶液对应的电导,并换算成电导率或摩尔电导率。 Ⅴ、数据处理 1、实验数据记录 表1 实验室条件的记录表 项目实验开始时实验结束时 温度/℃24.5 25.5 压力/hp 1021.5 1021.3 湿度/% 50 47.8 表2 实验数据记录T=30℃

第四章 表面活性剂

第四章表面活性剂 1. 表面活性剂的定义 2. 表面张力与表面活性剂浓度间存在何种关系? 1.表面活性剂有何结构特点? 2.何谓临界胶束浓度?表面活性剂浓度大小与胶束形状有何关系? 3.表面活性剂的亲水亲油性用何值来描述?通过哪些方法可得出该值? 4.HLB值大小与表面活性剂的适用场合间有何关系? 5.离子型表面活性剂的溶解度与温度之间存在何种关系? 6.如何解释聚乙二醇型非离子型表面活性剂存在浊点? 7.乳状液一般分为哪几种类型?为什么乳状液中需要加入乳化剂? 8.阴离子型表面活性剂表面活性剂有何结构特点?有哪些主要类型? 9.羧酸盐型阴离子表面活性剂可应用于哪些方面? 10.高级醇硫酸酯盐型表面活性剂有何特点? 11.“磺酸盐型阴离子表面活性剂易溶于水,有良好的发泡作用,主要用于生产洗涤剂。” 对吗? 12.AOS的主要成分是什么? 13.简述AOS的特点及应用。 14.阳离子表面活性剂的主要类型有哪两大类? 15.阳离子表面活性剂遇到哪些物质时会失效? 16.简述阳离子表面活性剂的应用领域。 17.简述两性离子表面活性剂的结构特点及性质。 18.分别写出羧基甜菜碱、磺基甜菜碱型表面活性剂的结构通式。 19.简述甜菜碱型表面活性剂的应用领域。 20.咪唑啉型两性离子表面活性剂有何特点? 21.非离子型表面活性剂的亲水、亲油基原料各有哪些物质? 22.非离子型表面活性剂可分为哪几类? 23.我国生产的脂肪醇聚氧乙烯醚(AEO)的主要品种有哪些? 24.商品名为TX-10、OP-10的表面活性剂属于哪类表面活性剂? 25.何谓EO分布指数? 26.说明Span(司盘)与Tween(吐温)系列表面活性剂之间的区别与联系。 27.特殊类型表面活性剂有哪些类型? 28.与普通表面活性剂相比,含氟表面活性剂有哪些突出性能? 29.含氟表面活性剂在工业领域有哪些用途? 30.简述生物表面活性剂的特点及应用范围。 第七章胶粘剂 1.将水基胶、热熔胶、反应性胶和溶剂型胶按目前世界消费量由大到小排序。 2.我国胶粘剂工业品种中,产量居前三位的依次是:;产 值居前三位的依次是:。 3.我国胶粘剂和密封胶使用量居前三位的行业依次是:。 4.简述胶粘剂的组成及各组分的作用。 5.胶粘剂按固化方式分为三类。 6.合成有机物胶粘剂按其主要成分分为三类。 7.胶接接头的四种基本受力类型是。 8.简述对被胶接材料表面进行处理的作用和过程。

表面活性剂

第三章表面活性剂 一.概念题 1.表面活性剂:具有很强的表面活性,使液体表面张力显著下降的物质。 2.CMC:表面活性分子缔合形成胶束的最低浓度即为临界胶束浓度。 3.昙点:当温度升至某一温度是,氢键断裂溶液出现浑浊,此时的温度称为浊点或昙点。 4.Krafft点:当温度升至某点,其溶解度急剧升高,该温度称为Krafft点。 5.正吸附:表面活性剂在溶液表面层的浓度远远大于其在内部的浓度,称为分子吸附或是正吸附。 6.HLB:表面活性剂分子中亲水和亲油基团对油或水的综合亲和力称为亲水亲油平衡值。 7.起泡剂:在溶液中可降低液体的界面张力而使泡沫稳定的表面活性剂。 8.增溶剂:能够增加难溶于水的物质的溶解度而产生增溶作用的表面活性剂。二.单选题 1.具有起浊现象的物质B A.甜菜碱 B.普郎尼克 C.吐温 D.司盘 2.不属于非离子表面活性剂A A.月桂酸 B.司盘 C.吐温 D.普郎尼克 3.表面活性剂浓度稍大于CMC时,胶束形成什么形状A A.球形 B.正方 C.条形 D.束状 4.作为增溶剂的HLB值C A. 3~6 B 8~18 C 13~18 D.7~9 5.将吐温80(HLB=15)和司盘80(HLB=4.3)二比一混合后溶液的HLB 值A A.11.4 B.5.6 . C.9.6 D.12.6 6.以下表面活性剂毒性最弱的是D A.卵磷脂 B.硬脂酸 C.洁儿灭 D.普郎尼克 7.表面活性剂的溶血性最强的是A A.月桂酸 B.聚山梨酯 C.卵磷脂 D.洁儿灭 8.具有临界胶团浓度的是C A.浓度的一个特性 B.胶体溶液的一个特性 C.表面活性剂的一个特性 D.高分子溶液的一个特性 9.表面活性剂的结构特点B A.高分子物质 B.亲水基亲油基组成 C.具有羟基和羧基 D.具有羟基和氨基 10.不属于表面活性剂的应用D A.增溶剂 B.去污剂 C.乳化剂 D.混悬剂 11.表面活性剂的刺激性最强的是A A.洁儿灭 B.油酸 C.氨基酸 D.普郎尼克 12.作为去污剂的表面活性剂的HLB值A A.13~16 B.13~18 C.7~9 D.8~18 13.影响胶束增容量不可以D A添加无机物B添加.增溶剂增加 C.提高温度 D.加水

表面活性剂驱在改善低渗油藏开发中的作用

表面活性剂驱在改善低渗油藏开发中的作用X 陈 勇 (长江大学工程技术学院) 摘 要:针对低渗透油藏在开发过程中所遇到的注水压力过高、注入水沿裂缝突进等问题,应用表面活性剂驱通过降低油水界面张力、增加毛管数,以达到提高驱油效率的目的。 关键词:低渗透油藏;表面活性剂驱;驱油效率 中图分类号:T E357.46 文献标识码:A 文章编号:1006—7981(2011)05—0118—01 低渗透油藏普遍存在着孔喉细小、渗流阻力大,只有较大的驱替压力液体才能流动。为提高注水开发效果而增加注入压力,但注水压力高,易造成微裂缝开启,注入水沿裂缝突进,造成驱油效率低,波及体积小,且套损严重。 之所以会产生上述的情况,是因为在低渗透油层中,低渗透油层渗流时表面分子力、毛管力等对渗流起到实质性的影响。低渗透油层的显著特征是低渗、低孔隙度、微观孔隙结构影响增强。这样,孔道细小,孔喉作用增强,微观孔隙结构影响增强,高比表面这些特点就直接对流体产生明显影响,而且渗透率较低,这种影响愈强,使得渗流过程出现了较达西渗流更复杂的、更强烈的一些作用力。由于高比表面,细孔道,表面分子力作用更为强烈,造成了“流动渗透率”的影响程度和影响速度域的加大,甚至微毛细孔道内液体的滞留、孔道结构复杂程度的增强使得孔喉控制作用加大,于是出现了渗透能力随压力梯度改变的非线性流动。低渗透油层液体非达西型渗流特征反映了渗流过程中强烈的固液表面分子力的影响。 1 表面活性剂驱应用于低渗透油藏开发的优势以及国内外研究趋势 通过上述分析,可以看出,由于表面活性剂溶液可降低油水界面张力,减小亲油油层的毛细管阻力、能增加毛管数及提高驱油效率性能。因此,表面活性剂降压增注技术研究可以有效地提高低渗透油藏的开发效率。 从国外文献看:有关表面活性剂降压增注技术研究方面国外已在一些油田开展了先导性研究及矿场试验,并取得了成功经验。《用于提高注入井吸水性、油层采收率的水溶性高洗油效率表面活性剂复合物》[1]一文主要选择了用于不同地质条件下表面活性剂复合物,这些复合物溶于水中可使油水界面张力降到10-2-10-3mN/m,具有很强的增溶性。在鞑靼石油公司进行了6口注入井的现场试验,试验温度20~40℃、90~100℃,注入水为矿化水(由淡水至170g/L)。化学剂用量28.8~54m3(分散剂在近井地带的波及半径为4~12m)。处理之后注入井的吸水性平均提高1.4倍。吸水指数在指示曲线上平均增加到2倍。在压降曲线上平均增加到1.5倍。有效期可达4~18个月(平均12个月)。在塔林石油管理局处理了5口井,砂岩层射开厚度为14.9~31.7m,注水井在加压注水时吸水量为200~700m3,而在试验初期为70~100m3。为了恢复其吸水性注了3.4~6.6t被稀释成95~150m3水溶液的表面活性剂复合物。处理后所有井吸水性平均提高到1.5倍,有效期平均为一年左右。《马格纳斯油田注水井表面活性剂驱油增产经验》[2]一文介绍了BP公司曾在马格纳斯油田实施了注水井表面活性剂增注先导性试验方案,其机理是通过注表面活性剂,降低残余油饱和度,改善井眼附近水相对渗透率,从而提高注入能力。BP公司最初在实验室内对多种表面活性剂体系进行了筛选,选出两种表面活性剂体系:一种是用于低温试验的聚链烷碳酸盐与烷基酚烷氧基甲醇和C4、C5脂肪族甲醇混合物;另一种是用于高温试验的烷基芳香族烷环基硫酸盐。这些表面活性剂浓度较低(1.4%)。在室内温度下用旋滴界面张力仪测量油水界面张力,其结果是从25左右降至约10-3m N/ m,这样低的界面张力值能使毛管力圈闭的残余油量大大降低。同时,高温岩心驱替试验结果表明,在注入表面活性剂溶液注入不到1个孔隙体积时,残余油饱和度就开始降低,直到注入2.5个孔隙体积停止。随着残余油的大幅度降低,渗透率有很大改善,几乎恢复到绝对渗透率值,渗透率提高了5~6倍。最后在室内研究基础上,BP公司在一口卫星井开展了先导性试验。从注表面活性剂期间的野外监测以及试验数据的解释结果显示:注水井注入表面活性剂后注入能力得到明显改善。 国内有关表面活性剂研究方面的大多是用于提高采收率方法研究。表面活性剂是提高采收率幅度较大、适用较广、具有发展潜力的一种化学驱油剂。室内岩心驱油效率试验结果表明:碱/表面活性剂驱不但能较大幅度地提高采收率,而且可以增大油藏中的渗滤速度,降低注入压力,从而减小渗透率较低油藏的高压注水难度,节省开采费用。在长庆油田表面活性剂降压增注试验中,通过研究找到了一种以石油磺酸盐和非离子表面活性剂按一定比例组成的表面活性剂复配体系,在长庆油田所提供的油水条 118内蒙古石油化工 2011年第5期

第四章表面活性剂-4-1

12.表面活性剂定义与基本结构 溶液表面张力特点 水溶液表面张力受到溶质的性质和浓度的影响,通过大量的研究人们发现,一般水溶液表面张力随浓度变化可分为三类。 第一类曲线A :溶液表面张力随浓度增加而缓慢上升,大致成直线关系。多数无机盐。如NaCl 、Na 2SO 4、NH 4Cl 、KNO 3等水溶液及蔗糖、甘露醇等多羟基有机物的水溶液 第二类曲线B :溶液表面张力随浓度增加而逐渐降低。一般为低分子量的极性有机物。如醇、醛、酸、酯、胺及其簿生物属于此类。Traube (特劳贝)规则 一般用溶液浓度趋于零时的负微商-(dγ/dc)c→0表示溶质降低表面张力的能力。 对于同系物,随分子此值随分子中碳链每增加一个CH 2表面张力,此值大约增大三倍。 2 2.表面活性剂定义与基本结构 ●第三类曲线C ,溶液表面张力在浓度很低时急剧下降,很快降到最低点,此后溶液表面张力随浓度变化很小。达到最低点的浓度一般在1%以下。Traube 规则对这一类体系一般也适用。属于这一类的主要是由长度大于8个碳原子的碳链和足够强大的亲水基团构成的极性有机化合物,如高碳的羧酸盐、硫酸盐、烷基苯磺酸盐和季铵盐等。●表面活性剂定义 表面活性剂是一种能加入少量就能大大降低溶剂(一般为水)表面张力(或液液界面张力),改变体系的表面状态从而产生润湿和反润湿、乳化和破乳、分散和凝聚、起泡和消泡以及增溶等一系列作用的化学药品。表面活性剂这种特殊作用,称为表面活性。 3 ●表面活性剂结构 ●表面活性剂是由性质截然不同的两部分组成,具有不对称的分子结构。一部分是疏水(hydrophobic group)或亲油(lipophilic)的非极性基团,另一部分是亲水的极性基团(hydrophilic group) 2.表面活性剂定义与基本结构 4 阴离子型表面活性剂(1)羧酸盐(R —COOMe) 肥皂——脂肪酸盐(钠盐最多),是一种古老的表面活性剂。现在大量应用于日常生活和生产中。洗涤用的钠皂为硬质肥皂,钾皂为软质肥皂。碳链长的肥皂,在温度较高时才能显著降低表面张力,例如硬脂酸肥皂的最适宜温度为70~80℃,而椰子油肥皂最好在常温下。松香皂具有较好的水溶性的抗硬水能力,润湿能力也较低好 挥发性胺(如吗啉、氨等)的脂肪酸盐常用于上光剂配方中,当胺盐水解生成自由胺挥发后,在表面涂层上留下抗水性物质。 5 阴离子型表面活性剂(2)磺酸盐(R —SO 3Na) 烷基苯磺酸盐,其中R 为C 12-C 14,凡以12主为洗衣粉(合成洗涤剂)中的有效活性物质,在硬水中不会产生沉淀,能耐一定的酸和碱,表面活性也好。但烷基苯磺酸钠不能将洗掉的污垢保持在洗涤液中,因此还需加入羧甲基纤维素、甲基纤维素等保护胶体,以防污垢再附着。 三乙醇胺盐常用于液体洗涤剂和化妆品中,另一些胺盐则由于油溶性而用于“干洗”过程中。 烷基萘磺酸盐主要是二丁基萘磺酸盐和二异丙基萘磺酸盐,是纺织、印染和农药等工业中有名的润湿剂,俗称拉开粉。 6 阴离子型表面活性剂(2)磺酸盐(R —SO 3Na) 渗透剂OT (Aerosol OT )是磺化琥珀酸双酯型表面活性剂和商品名称,渗透剂OT 是其中最著名的,它具有两个支链疏水基。 胰加漂T (Igepon t )是油酰氯和N -甲基牛胆酸反应制得的产物,其分子式为

电导法测定水溶性表面活性剂的临界胶束浓度

实验十七电导法测定水溶性表面活性剂的临界胶束浓度 一、目的要求 1.用电导法测定十二烷基硫酸钠的临界胶束浓度 2.了解表面活性剂的特性及胶束形成原理 3.掌握电导仪的使用方法 二、基本原理 表面活性物质在水中形成胶束所需的最低浓度称为临界胶束浓度,以CMC表示。在CMC点上,由于溶液的结构改变导致其物理及化学性质(如表面张力、电导、渗透压、浊度、光学性质等)同浓度的关系曲线出现 明显的转折,如图1所示。这个现象是测 定CMC的实验依据,也是表面活性剂的 一个重要特征。 表面活性剂成为溶液中的稳定分子可 能采取的两种途径:1、是把亲水基留在 水中,亲油基伸向油相或空气;2、是让 表面活性剂的亲油基团相互靠在一起,以 减少亲油基与水的接触面积。前者就是表 面活性剂分子吸附在界面上,其结果是降低界面张力,形成定向排列的单分子膜,后者就形成了胶束。由于胶束的亲水基方向朝外,与水分子相互吸引,使表面活性剂能稳定地溶于水中。 在溶液中对电导有贡献的主要是带长链烷基的表面活性剂离子和相应的反离子,而胶束的贡献则极为微小。从离子贡献大小来考虑,反离子大于表面活性剂离子。当溶液浓度达CMC时,由于表面活性剂离子缔合成胶束,反离子固定于胶束的表面,它们对电导的贡献明显下降,同时由于胶束的电荷被反离子部分中和,这种电荷量小,体积大的胶束对电导的贡献非常小,所以电导急剧下降。 对于离子型表面活性剂溶液,当溶液浓度很稀时,电导的变化规律也和强电解质一样;但当溶液浓度达到临界胶束浓度时,随着胶束的生成,电导率发生改变,摩尔电导急剧下降,

这就是电导法测定CMC的依据。 本实验利用电导仪测定不同浓度的十二烷基硫酸钠水溶液的电导值(或摩尔电导率),并作电导值(或摩尔电导率)与浓度的关系图,从图中的转折点即可求得临界胶束浓度。 三、实验步骤 1.调节恒温水浴温度至25℃ 2.吸取10ml的0.02 mol〃dm-3十二烷基硫酸钠溶液于100ml烧杯中,依次移入恒温后的电导水2ml、3ml、5ml、5ml、5ml、5ml、10ml、10ml、10ml、20ml,搅拌,分别测其电导率。 每个溶液的电导读数三次,取平均值。 3.列表记录各溶液对应的电导,并换算成电导率或摩尔电导率。 四、数据记录与处理 表一:环境条件 表二:实验数据记录 T=25℃ 由上表作出电导值(或摩尔电导率)与浓度的关系图如下:

表面活性剂的安全性和温和性

表面活性剂的安全性和温和性

表面活性剂的安全性和温和性 方云夏咏梅 (无锡轻工大学化工系,无锡市,214036) 摘要表面活性剂在与人体接触体系中的应用越来越广泛,因此对表面活性剂的安全性和温和性提出了越来越高的要求。本文介绍表面活性剂的安全性和 温和 性,相应的评价方法以及表面活性剂的结构与安全性温和性的关系。 关键词表面活性剂安全性温和性温和型表面活性剂 表面活性剂在与人体接触的体系如药物、食品、化妆品及个人卫生用品中的应用越来越广泛,随着人类生活水平的提高,人们对各类与人体接触配方中表面活性剂的毒副作用投入越来越多的关注。针对不同用途,对表面活性剂关注的重点主要集中在对粘膜的刺激性、对皮肤的致敏性、毒性、遗传性、致癌性、致畸性和溶血性、消化吸收性、生物降解性等方面。例如对化妆品而言,以前选取配料的原则以装扮靓丽为主,选择表面活性剂只是考虑如何达到最佳的第一功效或主功效,如净洗、发泡、乳化、分散等;其次才考虑到发挥其第二功效或辅助功效,很少或根本没有考虑到表面活性剂对皮肤、毛发等自然状态的影响。现在对表面活性剂的选取原则则逐渐趋向于在首先满足保护皮肤、毛发的正常、健康状态,对人体产生尽可能少的毒副作用的前提条件下,才考虑如何发挥表面活性剂的最佳主功效和辅助功效。这种发展趋势使得表面活性剂原料供应商、配方师和生产厂商都面临着一种挑战,即如何重新认识和评价表面活性剂的安全性及温和性,向消费者提供最安全、最温和又最有效的制品。因此,重新评价原有表面活性剂品种和新型表面活性剂的安全性和温和性是十分必要的。 1 表面活性剂的安全性 表面活性剂及其代谢产物在机体内引起的生物学变化,亦即对机体可能造成的毒副作用包括急性毒性、亚急性毒性、慢性毒性、对生育繁殖的影响、胚胎毒性、致畸性、致突变性、致癌性、致敏性、溶血性等等。表面活性剂与人体不同部分以不同方式接触,对上述毒副作用会提出不同的要求。

驱油用表面活性剂技术

HX系列驱油用表面活性剂 研发报告

前言 随着世界能源的紧缺,石油的充分采出和合理利用已成为各国极大重视的问题,由于常规的一次和二次采油(POR和SOR)总采油率不是很高,一般质量分数仅能达到20%~40%,最高达到50%,至少还有50%~80%的原油未能采出。因此在能源日趋紧张的情况下,提高采油率已成为石油开采研究的重大课题,三次采油则是一种特别有效的提高采油率的方法。 三次采油的方法很多,概括起来主要有四大类:一是热力驱,包括蒸气驱,火烧油层等;二是混相驱,包括CO2混相,烃混相及其他惰性气体混相驱;三是化学驱,包括聚合物驱,表面活性剂驱,碱水驱等;四是微生物采油,包括生物聚合物,微生物表面活性驱。目前,三次采油研究尤其以表面活性剂和微生物采油得到人们的普遍重视,而表面活性剂驱则显示出明显的优越性。 目前三次采油研究中所用表面活性剂的种类以阴离子型最多,其次是非离子型和两性离子型,应用最少的是阳离子型。 三次采油中阴离子表面活性剂,其分子结构中离子性亲水基为阴离子,这类阴离子亲水基组成的盐有磺酸盐、羧酸盐、硫酸(酯)盐和磷酸(酯)盐。阴离子表面活性剂可用于各种表面活性剂驱中,其中应用磺酸盐型最多,而在磺酸盐型阴离子表面活性剂中,以石油磺酸盐型最为普遍。石油磺酸盐成本较低,界面活性高,耐温性能好,但抗盐

能力差,临界胶束浓度(CMC)较高,在地层中的吸附、滞流和与多价离子的作用,导致了在驱油过程中的损耗。 非离子表面活性剂,其亲水基为非离子性基团。由于非离子性基团的亲水性要比离子性基团差得多,因此非离子性表面活性剂要保持较强的乳化作用,其分子结构中一般含有多个非离子性亲水基,形成含许多醚键、酯键、酰胺键或羟基或者它们相互两两组合或多种组合的结构。此类表面活性剂的优点是抗盐能力强,耐多价阳离子的性能好,CMC低。但在地层中稳定性差,吸附量比阴离子表面活性剂高,而且不耐高温,价格高。 两性表面活性剂,这类表面活性剂分子中既有阴离子亲水基又有阳离子亲水基而呈现两性。由于该种表面活性剂对金属离子有螯合作用,因而大多数都可用于高矿化度,较高温度的油层驱油,但同样有价格高的缺点。 因此,一种合适的表面活性剂体系,不仅能产生很好的协同效应而降低体系的界面张力,而且还能够降低表面活性剂的用量,甚至驱油液表面活性剂的总浓度也有可能降低,同时表面活性剂的其他性能如耐盐能力,耐温性能或吸附损耗减少等得到强化。 基于以上原因,为最大限度的满足驱油体系要求,提高采收率和降低采收成本,我公司根据油田三采科研专家攻关思路联合部分科研院校研制出了一种新型的表面活性剂驱油体系,即HX系列新型非离子-阴离子型表面活性剂体系。这类表面活性剂有两种不同的亲水基

表面活性剂

一、物理化学性质 (一)表面活性 液体表面上的分子并不像其内部分子一样完全被其他的分子所包围,因此溶液内部的分子对表面分子施加一个向液体内部的净作用力,这种力使表面有收缩的趋势,即表面张力。 表面活性剂在较低浓度时,溶液表面形成单分子层,可降低溶液的表面张力。 表面活性剂的表面活性除与浓度有关外,其分子结构、碳链的长短、不饱和程度及亲水亲油平衡值等均可影响其表面活性的大小。 (二)表面活性剂胶束 1.临界胶束浓度(critical micell concentration,CMC): 胶束(micelles):当表面活性剂的正吸附达饱和后,继续加入表面活性剂,其分子则转入溶液中,因其亲油基团的存在,水分子与表面活性剂分子相互间的排斥力大于吸引力,导致表面活性剂分子自身依赖范德华力相互聚集,形成亲油基团向内,亲水基团向外、在水中稳定分散、大小在胶体粒子范围的缔合体,称为胶团或胶束(micelles)。 表面活性剂分子缔合形成胶束的最低浓度即为临界胶束浓度(critical micell concentration, CMC)。 离子型表面活性剂的缔合数10~100;非离子型表面活性剂缔合数一般较大。 具有相同亲水基的同系列表面活性剂,若亲油基团越大,则CMC越小。 在CMC时,溶液的表面张力基本上到达最低值。 在CMC达到一定范围内,单位体积内胶束数量和表面活性剂的总浓度几乎成正比。 不同表面活性剂有其自己的临界胶束浓度,除与结构和组成有关外,还可随外部条件变化而不同,如温度、溶液的pH及电解质等均影响CMC的大小。 常用表面活性剂的临界胶束浓度

2.胶束的结构 在一定浓度范围的表面活性剂溶液中,胶束呈球形结构,其碳氢链无序缠绕构成内核,具非极性液态性质。碳氢链上一些与亲水基相邻的次甲基形成整齐排列的栅状层。亲水基则分布在胶束表面,由于亲水基与水分子的相互作用,水分子可深入到栅状层内。 对于离子型表面活性剂,则有反离子吸附在胶束表面。 从球形结构到层状结构,表面活性剂的碳氢链从紊乱分布转变成规整排列,完成了从液态向液晶态的转变,表现出明显的光学各向异性性质,在层状结构中,表面活性剂分子的排列已接近于双分子层结构。 在高浓度的表面活性剂水溶液中,如有少量的非极性溶剂存在,则可能形成反向胶束,即亲水基团向内,亲油基团朝向非极性液体。 油溶性表面活性剂如钙肥皂、丁二酸二辛基磺酸钠和司盘类表面活性剂在非极性溶剂中也可形成类似反向胶束。 3.临界胶束浓度的测定

表面活性剂驱油机理

1. 表面活性剂驱油机理在驱替方程中如何表征 在注入水中添加表面活性物质可改善常规注水的采收率,其主要机理如下: (1)向水中加入表面活性剂可以明显地降低油水接触面上的表面张力,油滴更容易变形,结果降低了将其排出孔隙喉道必需的功,同时也增加了原油在地层中的流速。 (2)使选择性润湿接触角变小,使岩石颗粒表面水润湿性加强,即使岩石更加亲水。 (3)表面活性剂水溶液能够清洗掉以薄膜形式覆盖在岩石表面的原油,使得这些油膜破裂并被冲洗出来。表面活性剂可以吸附在油水界面上,取代原油在岩石上形成牢固吸附层的那部分活性原油组份,使原油不易束缚在岩石上。 (4)表面活性剂使地层孔隙毛管中的弯液面发生变形,加强毛管力作用,增强了水利用毛管渗吸进入饱和有原油的孔隙介质的深度以及渗吸的速度。 (5)在表面活性剂作用下原油在水中弥散作用加强,不但使油滴逐渐变小,而且增强了这种原油分散体的稳定性,从而使油滴重新合并以及在岩石表面上粘附机率大大减少,导致相渗曲线右移现象,即向水润湿方面移动,表明残余油饱和度下降。 (6)表面活性剂能吸附到结构性原油的某些组份上,并减弱它们之间相互作用,使原油粘度下降。 综上所述,表面活性剂主要作用在油水界面处及岩石表面处,即在油水界面处降低界面张力,改变岩石表面的润湿性。二者的共同作用提高采收率。以一单元体表征表面活性剂水溶液的流动过程。 考虑一单元体,如图所示,宽为b ,高为H ,表面活性剂水溶液流速为v w ,含水饱和度为S w ,表面活性剂浓度为C 。则 d t 时间内流入单元体中的表面活性剂量为:w v bHCdt d t 时间内流出单元体的表面活性剂量为:()d d d w w v C v bHC t bH x t x ?+? d t 时间内单元体水中表面活性剂增量为:()d d w S C bH x t x φ?? d t 时间内单元体中表面活性剂吸附量为:d d A bH x t x ?? 其中,A 为单元体中表面活性剂量。 根据物质平衡条件:流入量?流出量=水中表面活性剂增量+吸附量。其中,水中表面活性剂增量为单元体中水中的表面活性剂的量,作用在油水界面处;吸附量为吸附在岩石表面及结构性原油的某些组分上。二者共同构成了表面活性剂在单元体中的滞留量。根据此物质平衡条件,可得方程: ()()d [d d d ]d d d d w w w w v C S C A v bHC t v bHC t bH x t bH x t bH x t x x x φ???-+=+??? 化简得: d w v bHC t d x t

表面活性剂

第三章表面活性剂 表面活性剂在药物制剂的制备中被广泛应用,其结构特征是具有亲水性与亲脂性两种基团,其作用是能显著降低分散系的表面(界面)张力,因此可用作乳化剂、助悬剂、增溶剂、促吸收剂、润湿剂、起泡剂与消泡剂、去污剂等,是药用乳剂、悬浊剂、脂质体等的重要辅料。本章重点讨论表面活性剂的基本性质(如CMC值、HLB值、Krafft点与昙点等)与测定方法等。 第一节表面活性剂分类 一、表面活性剂(surfactant):具有很强表面活性,加入少量就能使液体表面张力显著下降的物质。 1.①纯液体在一定温度有一定的表面张力,是液体的物理常数。 ②当在水中加入无机盐或糖类物质时,则水的表面张力略有升高; ③当在水中加入低级脂肪醇、脂肪酸时,则水的表面张力下降,称此类物质为水的表面活性物质。 ④当在水中加入油酸钠、十二烷基硫酸钠(高级脂肪酸)时,则水的表面张力能够显著的降低,称此类物质为该溶剂的表面活性剂(surfactant)。 2.表面活性剂分子的结构特征:是由具有极性的亲水基和非极性的亲油基组成,而且两部分分处两端。因此,表面活性剂具有既亲水又亲油的两亲性质,但具有两亲性的分子不一定都是表面活性剂。 3.表面活性剂的吸附性:表面活性剂由于其特殊结构可以在两相界面发生定向排列,来改变两相界面性质。从而起到润湿、乳化、增溶、絮凝、反絮凝、起泡、消泡的作用。 (1)在溶液中的正吸附:表面活性剂在溶液表面层聚集的现象为正吸附,正吸附改变了溶液表面的性质。最外层疏水,表现低表面张力,产生较好的润湿性、乳化性、增溶性、起泡性。 (2)在固体表面的吸附:表面活性剂溶液与固体接触时,表面活性剂分子可能在固体表面发生吸附,使固体表面性质发生改变,易于润湿。 二、表面活性剂的类型 1.表面活性剂分类方法有多种,根据来源可分为天然表面活性剂与合成表面活性剂; 2.根据溶解性质可分为水溶性表面活性剂与油溶性表面活性剂; 3.根据极性基团的解离性质分为离子型表面活性剂与非离子型表面活性剂两大类;再根据离子型表面活性剂所带电荷,又分为阳离子、阴离子、两性离子表面活性剂。每类中又可根据亲水或亲油基团分为不同的种类。 4.高分子表面活性剂:较强的表面活性的水溶性高分子。如海藻酸钠、羧甲基纤维素钠、甲基纤维素、聚乙烯醇、聚维酮等,但与低分子表面活性剂相比,高分子表面活性剂降低表面张力的能力较小,增溶力、渗透力弱,乳化能力较强,常用做保护胶体。 常用的表面活性剂分类如下: (一)阴离子表面活性剂:起表面活性作用部位是阴离子,带有负电荷。 1.高级脂肪酸盐(肥皂类):易被酸破坏,碱金属皂还可被钙、镁盐等破坏,电解质可使之盐析,只用作外用制剂 通式:RCOO-M+, 如硬脂酸钠、钙、镁等。根据M的不同可分为碱金属皂(可溶性皂,O/W型乳化剂);碱土金属皂(不溶性皂,W/O);有机胺皂(脂肪酸+有机胺-硬脂酸三乙醇O/W软膏乳化剂)

表面活性剂列表

表面活性剂在快速诊断试纸条中的应用 表面活性剂列表 BIODOT 表面活性剂套装 N:非离子表面活性剂A:阴离子表面活性剂C::阳离子表面活性剂M:两性表面活性剂 编号商品名种类HLB值分子量作用 S1 NINATE 411 A 385 溶剂相容性,良好的增溶剂和乳化剂。 S2 Pluronic F68 N >24 8400 卓越的增溶剂和去污剂;可能具有非溶血性。 S3 Zony FSN 100 N 低浓度时是卓越的润湿剂,可溶于30%酒精和碱液。 S4 Aerosol OT100% A 445 在溶剂/TMB 系统中具有功效,优良的润湿剂和乳化剂,具有优良的防雾、典型的释放和分散性质。 S5 GEROPON T-77 A 425 具有良好的润湿和扩散性质。 S6 BIO-TERGE AS-40 A 315 温和,溶剂相溶性。 S7 STANDAPOL ES-1 A 345 强阴离子表面活性剂。结构中含有两部分月桂醇硫酸五钠盐。 S8 苯甲胺氯(C8-C18)C 混合物抗菌,溶剂相容性。 S9 Tetronic 1307 M >24 18600 非溶血性,溶剂相容性,抗静电,优良的消泡剂和分散剂。 S10 Surfynol 465 N 13 混合物非溶血性,优良的润湿剂和消泡剂。 S11 Surfynol 485 N 17 混合物非溶血性,酶相容性,优良的润湿剂和消泡剂。 S12 IGEPAL CA210 N 4.6 272 溶剂相容性,优良的乳化剂。 S13 TRITON X-45 N 10.4 426 溶剂相容性,优良的乳化剂和分散剂。 S14 TRITON X-100 N 13.5 625 乳化剂、润湿剂和分散剂,非常好的酶相容性。 S15 TRITON X-305 N 17.3 1526 非溶血性,水溶性很好,优良的润湿剂和乳化剂。 S16 SILWET L7600 N 13-17 4000 非溶血性,含硅成分,具水溶性和防雾性。 S17 OHODASURF ON-870 N 15.4 1148 乳化剂,增溶剂和分散剂。 S18 Creamophpr EL N 12-14 非溶血性,溶剂相容性,乳化剂和增溶剂。 S19 TWEEN 20 N 16.7 1228 非溶血性,水溶性极佳,增溶剂和乳化剂。 S20 TWEEN 80 N 15 1310 非溶血性,水溶性极佳,增溶剂和乳化剂。 S21 BRIJ 35 N 16.9 1200 优良的乳化剂。 S22 CHEMAL LA9 N 13.3 583 蛋白增溶剂。 S23 Pluronic L64 N 12-18 2900 非溶血性,溶剂相容性,优越的润湿剂,优良的乳化剂。 S24 SURFANTTANT 10G N 12.4 混合物非溶血性,酶形容性佳,低起泡性,优良的润湿剂。 S25 SPAN 60 N 4.7 431 油溶性,溶剂相容性,水不溶性。 目前免疫层析产品的市场正在快速增长,而表面活性剂在免疫层析快诊试纸条中起着不可忽视的重要作用。表面活性剂的物理、化学性质对试纸条产品的亲水性、跑板速度、灵敏度、特异性、均一性和稳定性等性质有着影响。而快诊试纸条中其他成分会相互作用,从而影响表面活性剂对产品性能的作用。本文主要概述表面活性剂的基本概念,重点介绍常见的五种表面活性剂在样品垫、金标垫和硝酸纤维素膜上的应用,对于试纸条中经常出现的问题加以分析和讨论,并给出可能的解决方案。 1. 表面活性剂概述 表面活性剂(surfactant 或amphiphiles)是一种主要的精细化学品,具有优良的润湿、 乳化、去污、分散及渗透等特性。其应用范围涵盖甚广,在纺织、造纸工业中常用作蒸煮剂、 施胶剂、柔软剂和消泡剂等;在医药行业用作消毒杀菌剂、药物增溶剂、助悬剂等;在食品 行业用作清洗剂、乳化剂、分散剂和稳定剂等。此外在皮革、金属加工、石油开采、橡胶、

电导法测定水溶性表面活性剂

电导法测定水溶性表面活性剂的临界胶束浓度 姓名 学号: 班 指导老师: 一、目的要求 1、了解表面活性剂的特性及胶束形成原理; 2、掌握电导率仪的使用方法; 3、用电导法测定十二烷基硫酸钠的临界胶束浓度; 二、基本原理 表面活性剂是一类具有“两亲”性质的分子组成的物质,其分子由极性和非极性两部分组成。按离子的类型可分为阴离子型表面活性剂、阳离子型表面活性剂和非离子型表面活性剂三大类;当表面活性剂溶于水中后,不但定向地吸附在水溶液表面,而且达到一定浓度时还会在溶液中发生定向排列而形成胶束。随着表面活性剂在溶液中浓度的增长,球形胶束还可能转变成棒形胶束,以至层状胶束。 表面活性物质在水中形成胶束所需的最低浓度称为临界胶束浓度,以CMC 表示。在CMC 点上,由于溶液的结构改变导致其物理及化学性质与浓度的关系曲线出现明显转折,如下图所示 。 十二烷基硫酸钠水溶液的物理性质和浓度关系 三、仪器和试剂 DDS-6700型电导率仪、容量瓶(100ml )、DJS-1A 型铂黒电极、氯化钾(分析纯) 、

十二烷基硫酸钠(分析纯)、容量瓶(1000ml)、恒温水浴、试管(大) 四、实验步骤 1、用电导水或重蒸馏水准确配置0.01mol/L的KCI标准溶液。 2、取十二烷基硫酸钠在80 ℃烘干3h,用电导水或重蒸馏水分别准确配置0.002,0.004,0.006,0.007,0.008,0.009,0.010,0.012,0.014,0.016,0.018,0.0 20mol/L的十二烷基硫酸钠溶液各100ml。 3、开通电导率仪和恒温水浴的电源预热20min。调节恒温水浴温度至25℃或其他合适的温度。 4、用蒸馏水洗净试管和电极。在恒温下用0.01mol/L KCl标准溶液标定电极的电导池常数。 5、用电导率仪从稀到浓分别测定上述各溶液的电导率。用后一个溶液荡洗存放过前一个溶液的电导电极和容器3次以上,各溶液测定前必须恒温10min,每个溶液的电导率读数3次,取平均值。 6、列表记录各溶液对应的电导率或摩尔电导率。 7、实验结束后用蒸馏水洗净试管和电极,并且测量所用水的电导率。 五、数据处理 原始数据T=25℃ 浓度/(mol/L) G1/ms G2/ms G3/ms G平均/ms 0.002 0.31 0.30 0.30 0.303 0.004 0.40 0.40 0.40 0.4 0.006 0.52 0.52 0.52 0.52 0.007 0.58 0.57 0.57 0.573 0.008 0.58 0.59 0.59 0.587 0.009 0.62 0.62 0.61 0.617 0.010 0.65 0.65 0.64 0.657 0.012 0.71 0.72 0.71 0.713 0.014 0.78 0.77 0.76 0.77 0.016 0.84 0.82 0.82 0.827

相关主题
文本预览
相关文档 最新文档