当前位置:文档之家› 万有引力推导开普勒三大定律

万有引力推导开普勒三大定律

万有引力推导开普勒三大定律
万有引力推导开普勒三大定律

万有引力推导开普勒定律

牛顿万有引力定律阐明:任意两个粒子由通过连线方向的力相互吸引。该引力的的大小与它们的质量乘积成正比,与它们距离的平方成反比。由于太阳超重于行星,我们可以假设太阳是固定的。

用方程式表示,

是行星的质量、是太阳的质量、是行这里,是太阳作用於行星的万有引力、

向量、是位移的单位向量。星相对于太阳的成正比,和其質量,和其所受的淨力声明:牛顿第二定律物體受力後所产生的加速度

成反比。用方程式表示,。合并这两个方程式,。(1)

,随时间思考位置向量微分一次可得到速度向量,再微分一次则可得到加速度向量:

(2)

在这里,我们用到了单位向量微分方程式:

合并方程式(1) 与(2) ,可以得到向量运动方程式:

取各个分量,我们得到两个常微分方程式,一个是关于径向加速度,另一个是关于切向加速度:

,(3)

。(4)

。由于行星导引开普勒第二定律只需切向加速度方程式。试想行星的角动量的质量是常数,角

动量随时间的导数为。,即使距离与角速度都可能会随时间变化。角动量也是一个运动常数从时间到时间扫过的区域,

。所以,开普勒第二定律是正确的。行星太阳连线扫过的区域面积相依于间隔时间

[编辑开普勒第一定律导引]

。这样,角速度是设定。

随时间微分与随角度微分的关系为

:随时间微分徑向距離

再微分一次:

。.,,代入径向运动方程式(3)

,则可得到一个简单的常係数非齐次线性全微分方程式将此方程式除以来描述行星轨道:

特征方程式为

求解剩馀的常係数齐次线性全微分方程式,

其特解方程式为

都是任意积分常数。综合特征方程式与特解方程式,这里,与

,。代回选择坐标轴,让

,则所描述的是椭圆轨道。所以,开普勒第一定律是正确的。假若开普勒第三定律导引] 编辑[

在建立牛顿万有引力定律的概念与数学架构上,开普勒第三定律是牛顿依据的重要线索之一。假若我们接受牛顿运动定律。试想一个虚拟行星环绕着太阳公转,行星的移动轨道恰巧

。那末,太阳作用于行星的万有引力为。行星移动速呈圆形,轨道半径为

成反比。所以,与半径的平方根。依照开普勒第三定律,这速度度为

。猜想这大概是牛顿发现万有引力定律的思路,虽然我们并不能完全万有引力确定,因为我们无法在他的计算本裡,找到任何关于这方面的证据。

行星环绕太阳(焦点F1 )的椭圆轨道。

;这里,椭圆的面积是与开普勒第一定律阐明,行星环绕太阳的轨道是椭圆形的。分别为椭圆的半長軸与半短軸。在开普勒第二定律导引里,行星-太阳连线扫过区域速度

所以,行星公转周期为

(5)

。.(近拱点,半短軸A 与近拱距与引力中心关于此行星环绕太阳,椭圆的半長軸(远拱点B 之间的距离),远拱距与引力中心之间的距离)的关系分别为

,(6)

。(7)

如果想要知道半長軸与半短軸,必须先求得近拱距与远拱距。依据能量守恒定律,

在近拱点 A 与远拱点B,径向速度都等于零:

所以,

稍为加以编排,可以得到的一元二次方程式:

。其兩個根分别为椭圆轨道的近拱距与远拱距

代入方程式(6) 与(7) ,

代入方程式(5) ,周期的方程式为

。.

常微分 用万有引力定律推导开普勒三定律

万有引力推导开普勒定律 万有引力定律的阐明: 任意两个质点由通过连心线方向上的力相互吸引。该引力大小与它们质量的乘积成正比,与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。 开普勒定律的阐明: ①椭圆定律:所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。 ②面积定律:行星和太阳的连线在相等的时间间隔内扫过相等的面积。 ③所有行星绕太阳一周的恒星时间()的平方与它们轨道长半轴(ai)的立 方成比例,即 一、开普勒第二定律导引: 由于太阳超重于行星,我们可以假设太阳是固定的。用方程式表示为: ; 其中,是太阳作用于行星的万有引力、是行星的质量、是太阳的质量、是行星相对于太阳的位移向量、是的单位向量。 牛顿第二定律声明:物体受力后所产生的加速度,和其所受的浮力成正比, 和其质量成反比。用方程式表示: 。 合并这两个方程式: (1) 思考位置向量,随时间微分一次可得到速度向量,再微分一次则 可得到加速度向量: 在这里,我们用到了单位向量微分方程式:

, 。(2) 合并方程式 (1) 与 (2) ,可以得到向量运动方程式: 取各个分量,我们得到两个常微分方程式,一个是关于径向加速度,另一个是关于切向加速度: ,(3) 。(4) 导引开普勒第二定律只需切向加速度方程式。试想行星的角动量。 由于行星的质量是常数,角动量随时间的导数为: 。 角动量也是一个运动常数,即使距离与角速度都可能会随时间变化。从 时间到时间扫过的区域: 。 行星太阳连线扫过的区域面积相依于间隔时间。 所以,开普勒第二定律是正确的。 二、开普勒第一定律导引: 设定。这样,角速度是: 。 随时间微分与随角度微分的关系为: 。 随时间微分径向距离:

万有引力定律的发现

万有引力定律的发现 万有引力定律现在大家公认是牛顿发现的,连小学生也知道牛顿在苹果树下休息,看见苹果落地而想到万有引力的故事。但它的发现岂只是看见苹果落地这么简单? 万有引力公式:这个公式与库仑定律有着惊人的相似之处。G为万有引力常量,由英国物理学家卡文迪许首先在实验室测出其大小。在牛顿的时代,一些科学家已经有了万事万物都有引力的想法。而且牛顿和胡克(即发明了显微镜并用显微镜观察到细胞结构的罗伯特虎克)曾经为了万有引力的发现优先权发生过争论,有资料表明,万有引力概念由胡克最先提出,但由于胡克在数学方面的造诣远不如牛顿,不能解释行星的椭圆轨道,而牛顿不仅提出了万有引力和距离的平方成正比,而且圆满的解决了行星的椭圆轨道问题,万有引力的优先发现权自然归属牛顿。 正如牛顿所说他是站在巨人的肩膀上。万有引力发现前的准备开普勒有着不可磨灭的贡献。开普勒是德意志的天文学家,幼年患猩红热导致视力不好,后来有幸结识弟谷,一年后弟谷过世,把他一生的天文观测资料留给了开普勒。在此基础上,开普勒经过20年的计算和整理于1609年发表了行星运动的第一、第二定律。后来又经过十年又发表了行星运动的第三定律。牛顿老年在回忆过去的时候有这样的话: 同年(1666年)我开始把引力与月亮轨道联系起来并找出如何估计一个天体在球体内旋转时用来趋向球面的力的方法。根据开普勒的行星周期与于他们的距离轨道中心的距离的二分之三次方成正比的规律,我得出使行星沿轨道旋转的力必然与他们离旋转中心的距离的平方成反比的结论。从而把使月亮沿轨道旋转所需的力与地球表面的引力相比较发现它 它们符合得很接近。所有这些发生在1665年和1666年两个时疫年内,因为那时正是我创造发明的黄金时期,我对数学和哲学的思考比此后的任何时都候来的多。 此后惠更斯先生发表的关于离心力的思想,我猜想他在我之前就有了,最后在1676和1677之间的冬天我发现了一个命题:利用与距离成反比的离心力行星必然环绕力的中心沿椭圆轨道旋转,这中心在椭圆的下部,从这中心作出的半

万有引力定律公式总结

万有引力公式 线速度 角速度 向心加速度 向心力 两个基本思路 1.万有引力提供向心力:r m r n m ma r T m r m r v m r M G ωππω======22222 2244m 2.忽略地球自转的影响: mg R GM =2 m (2 g R GM =,黄金代换式) 一、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2= ) 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r 。(r m r Mm G 2 2ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T 。(T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度: 已知环绕天体的质量m 、周期T 、轨道半径r 。中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力

r T m r Mm G 2224π= 则2 324GT r M π= ——① 又3 3 4R V M πρρ? == ——② 联立两式得:3 23 3R GT r πρ= 当R=r 时,有2 3GT π ρ= 二、星球表面重力加速度、轨道重力加速度问题 1.在星球表面: 2 R GM mg =(g 为表面重力加速度,R 为星球半径) 2.离地面高h: 2 ) (h R GM g m += '(g '为h 高处的重力加速度) 联立得g'与g 的关系: 2 2 )('h R gR g += 三、卫星绕行的向心加速度、速度、角速度、周期与半径的关系 1.ma r M G =2m ,则2 a r M G =(卫星离地心越远,向心加速度越小) 2.r v m r Mm G 2 2=,则r GM v = (卫星离地心越远,它运行的速度越小) 3.r m r Mm G 22ω=,则3r GM =ω(卫星离的心越远,它运行的角速度越小) 4.r T m r Mm G 22 24π=,则GM T 3 2r 4π= (卫星离的心越远,它运行的周期越大)

万有引力定律例题

1.天体运动的分析方法 2.中心天体质量和密度的估算 (1)已知天体表面的重力加速度g和天体半径R G=mg? (2)已知卫星绕天体做圆周运动的周期T和轨道半径r 1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等 C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误.答案:C 2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空后,先在近地轨道上以线速度v环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v′在火星表面附近环绕飞行.若认为地球和火星都是质

量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g′和g,下列结论正确的是() A.g′∶g=4∶1B.g′∶g=10∶7 C.v′∶v=D.v′∶v= 解析:在天体表面附近,重力与万有引力近似相等,由G=mg,M=ρπR3,解两式得g=GπρR,所以g′∶g=5∶14,A、B项错;探测器在天体表面飞行时,万有引力充当向心力,由G=m,M=ρπR3,解两式得v=2R,所以v′∶v=,C项正确,D 项错. 答案:C 3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G,月球绕地球做圆周运动的半径r1、周期T1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r2、周期T2,不计其他天体的影响,则根据题目条件可以() A.求出“嫦娥三号”探月卫星的质量 B.求出地球与月球之间的万有引力 C.求出地球的密度 D.= 解析:绕地球转动的月球受力为=M′r1得T1==.由于不知道地球半径r,无法求出地球密度,C错误;对“嫦娥三号”而言,=mr2,T2=,已知“嫦娥三号”的周期和半径,可求出月球质量M′,但是所有的卫星在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月卫星质量无法求出,A错误;已

万有引力定律的发现历程

万有引力定律的发现历程 高一(6)班 在很早以前,人们就在持续地探索天体运动的奥妙。当科学的接力棒传到了牛顿手中时,他站在前人的肩上,发挥他卓越的才能,建立了万有引力定律。 牛顿发现万有引力定律的过程中,其主要的思路与使用的物理学方法大致体现在以下几方面。 一、使用科学想象和推理,论证了行星运行都要受到一个力的作用 牛顿对行星运动的研究工作首先是从研究月球开始的。据说,有一次牛顿正在思考这个问题时,忽然看到一个苹果从树上掉了下来,他吃了一惊,同时便陷入了沉思。当时已知苹果是受重力作用而下落的,牛顿作了合理的设想,设想这种作用力的范围要比通常所想象的还要大得多,比如说,很可能一直延伸到月球那么高,由此外推出:各行星如卫星的运动都要受到同一种力的作用。 二、使用数学方法,推导出行星运行所受到的向心力遵从平方反比定律 牛顿由开普勒第三定律推知向心力平方反比定律。其数学推导为: 设某一行星的质量为m,将行星的运动视为匀速圆周运动。由牛顿第二定律: 运行周期,R—圆周轨道半径。再由开普勒第三定律。 式中μ是一个与行星无关而只与太阳的性质相关的量,称为太阳的高斯常数;m为行星质量。由上式可知:引力与行星的质量成正比。 三、使用归纳概括方法,牛顿总结出了万有引力定律 牛顿由研究月球、地球,以至研究行星、恒星、卫星等推出了一切物体相互间均存有引力的结论。又由牛顿第三定律,得出吸引物体和被吸引物体的区分是相对的,所以引力 牛顿就完成了万有引力的发现工作。 G为引力恒量,m1 m2分别为两个相互吸引的物体的质量,R为物体m2与m1的质心间距离。 四、使用科学观察和科学实验验证万有引力定律理论 牛顿的万有引力定律是经过科学观察和科学实验的检验后才得到普遍承认的,哈雷慧星回归周期的预言被证实以及海王星的发现在天王星发现都证实了万有引力定律的准确性。

万有引力定律的发现与探究过程分析

万有引力定律的发现与探究过程分析 ——兼论如何在教学中展示知识形成过程 北京教育学院吴剑平 引言 物理学的发端始于人类对理解星体运行的追求。三百多年前,万有引力定律的发现堪称人类文明与理性探索进程中最壮丽的诗篇,其所体现出的科学智慧的震撼力,至今仍为世人所叹服。李政道先生在回答是什么使他走上献身物理学研究的道路时曾说过,是物理学中那些具有普适性的物理法则和概念深深打动了他,激发了他深入探究的兴趣。万有引力定律就是这样一条具有简约性和普适性的自然法则,它第一次把看似毫不相关的地上与天上运动统一起来,第一次揭示大自然的对称和谐与物理规律表达简洁而含蓄的内在美,并作为牛顿的“从运动现象研究自然力”的又一个科学思辨范例,而不断为历代科学家所效仿。因此万有引力定律的教学绝不能仅限于具体知识的讲解、记忆与实际的(习题)应用,更应强调人类对天体运动的认识以及建立万有引力定律的探究过程,把教学重点放在“引导学生体会万有引力定律发现过程中的思路和方法”上。然而,除了教材与教参已有的介绍外,我们对物理学史上这段辉煌史实真正了解多少?我们能否把握整个发现过程中的探索脉络,并将从中领悟到的思想精髓介绍给学生?由此看来,要教好新教材中的万有引力定律一章,适当扩展相应的知识背景,了解有关牛顿引力理论的现代评述,就显得十分必要了。 本专题将着重探讨以下几个问题:(1)如何正确评价“地心说”与“日心说”的作用?(2)开普勒是如何导出行星三定律的?(3)牛顿如何从开普勒三定律推导出引力的平方反比定律(圆轨道、椭圆轨道)?(4)牛顿是如何解决引力定律的普适性的? 一、行星视运动及其天文观测常识 讨论开普勒三定律与万有引力定律离不开人类对行星运动的天文观测,这其中涉及我们不十分熟悉的天文知识。 1.天球及其坐标系 研究天体位置和运动而引进的假想圆球。由于天体与观察者距离远大于地球的移动距离,可将其视作散布于以观察者(地球)为中心的一个圆球面上。实际应上是将天体投影到半径任取(可视作无穷大)的天球面上。为定量表示天体投影在天球上位置和运动,需要建立以地球为中心的参考系,常用的坐标系有: (1)赤道坐标系:地球赤道平面延伸后与天球相交的大圆称作天赤道,地轴(自转轴)延伸线与天球相交两点称作北南天极,过天极的大圆称为赤经圈,与天赤道平行小圆称作赤纬圈。 (2)黄道坐标系:以地球绕太阳公转的轨道平面称为黄道面,其与天球相交的大圆称作黄道,地球轨道面的法线与天球交点称为北南黄极,该坐标系同样划分有黄经圈与黄纬圈。 赤道面与黄道面有23027/的交角,两者相交的两点称作春分点与秋分点。如图1所示。 黄极 黄道 图 1

高中物理公式大全全集万有引力

五、万有引力 1、开普勒三定律: ⑴开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上 ⑵开普勒第二定律(面积定律):太阳和行星的连线在相等的时间内扫过相等的面积 ⑶开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 对T 1、T 2表示两个行星的公转周期,R 1、R 2表示两行星椭圆轨道的半长轴,则周期定律可表示为32 312221R R T T = 或k T R =3 3,比值k 是与行星无关而只与太阳有关的恒量 【注意】:⑴开普勒定律不仅适用于行星,也适用于卫星,只不过此时k T R =33 ‘ ,比值k ’ 是 由行星的质量所决定的另一恒量。 ⑵行星的轨道都跟圆近似,因此计算时可以认为行星是做匀速圆周运动 ⑶开普勒定律是总结行星运动的观察结果而总结归纳出来的规律,它们每一条都 是经验定律,都是从观察行星运动所取得的资料中总结出来的。 例题:飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R 0,求飞船由A 点到B 点所需要的时间。 解析:依开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时,其半长轴的三次方跟周期平方和比值,飞船椭圆轨道的半长轴为 2 R R +,设飞船沿椭圆轨道运动的周期一、知识网络 二、 画龙点睛 概念

万有引力定律的建立过程及意义

万有引力定律的建立过程及意义 万有引力定律的发现,是17世纪自然科学最伟大的成果之一。苹果的落地引起了牛顿科学的遐想,在通过大量数学计算后推导出了著名万有引力定律。 然而万有引力定律的确立,却并非牛顿一个人的功劳。在牛顿研究万有引力之前,已有不少人从事这个问题的研究,如第谷、开普勒。此外和牛顿同时代的科学家,如胡克、哈雷、惠更斯、伦恩等,对万有引力定律的建立也有贡献。正如牛顿本人所说:“我之所以有这样的成就,因为我是站在巨人们的肩膀上的。” 丹麦天文学家第谷花费多年时间进行观测行星,编制了篇幅庞大、高度精确的星表。而后德国数学家、天文学家、物理学家开普勒对第谷的星表进行整理研究,最终提出了行星运动三定律。这些对于牛顿提出万有引力定律具有至关重要的作用。此外,惠更斯的向心力公式,胡克、哈雷、伦恩重力问题的研究都给予了牛顿不少启发。 1665-1666年,因为瘟疫流行,牛顿从剑桥大学回到家乡。而看到苹果偶然落地引发了牛顿思考引力问题。之后1684年,牛顿做了《论运动》的演讲,明确叙述了向心力定律,证明了椭圆轨道运动的平方反比关系。此后不久,又在一篇关于物体在均匀介质中的运动的论文中定义了质量概念,并探讨了引力与质量的关系。这些将牛顿引向了万有引力定律的发现。 牛顿设想了从高山上平抛一个铅球的理想实验,他认为当发射速度足够大时,铅球将可能绕地球运动而不再落回地面,指出月球也可以由于重力或者其他力的作用使其偏离直线形成围绕地球的运转。牛顿通过一个靠近地面的“小月球”的运动的思想实验,论证了“使月球保持在它轨道上的力就是我们通常称的为‘重力’的那个力。” 接着,牛顿根据向心力公式和开普勒三定律推导了平方反比关系。牛顿证明,由面积速度定律可以得出物体受中心力的作用,由轨道定律可以得出物体这个中心力是吸引力,由周期定律可以得出这个吸引力与半径的平方成反比。并且通过同磁力的类比,得出“这些指向物体的力应与这些物体的性

万有引力定律的发现过程

万有引力定律的发现过程 自哥白尼建立日心说到开普勒提出行星运动三定律,行星运动的基本规律已被发现,给进一步从动力学方面考察行星的运动提供了条件.到17世纪后半期,已有一些学者,其中包括著名物理学家胡克。认为天体之间存在着相互作用的引力,行星的运动是由太阳对它们的引力引起的。胡克等人甚至推测到太阳对行星的引力的大小跟行星与太阳之间的距离的平方成反比、但是他们都不能证明行星所做的椭圆运动是平方反比律的.对引力大小的数量级也一无所知。1684年,这个问题在英国皇家学会争论颇为激烈,天文学家哈雷和数学家雷恩都不能解决这个疑难,胡克虽然声称他已得解,却拿不出一个公式.同年8月,哈雷带着这个问题来请教牛顿,才知道牛倾已经解决了这个问题。在哈雷的敦促下,牛顿于1684年12月写出了了《论运动》一文,阐明了他在地面物体动力学和天体力学方面获得的成就。1687年,他又发表了著名的《自然哲学的数学原理》,全面地总结了他的研究成果,他所发现的万有引力定律,也在这部著作中得到了系统而深刻的论证.这些论证对于在物理理论中已经确立的定律,新的假说、实验观测和理论推导之间的相互作用,提供了一个极好的范例.研究牛顿留给人们的文献可以看到,他发现万有引力定律的思路大体如下: (1)牛顿首先证明了,一个运动物体,如果受到一个指向固定中心的净力作用,不论这个力的性质和大小如何,它的运动一定服从开普勒第二定律(即等面积定律);反过来,行星运动都服从开普勒第二定律,它们就都受到一个向心力时作用. (2)牛顿又证明,一个沿椭圆轨道运动的物体,如果受到指向椭圆焦点的向心力,这个力一定跟物体与焦点的距离的平方成反比. (3)牛顿认为,行星所受的向心力来源于太阳的引力;卫星所受的向心力来源于行星的引力而地球吸引月球的引力,跟地球吸引树上的苹果和任何一个抛出的物体时显示出来的重力,是同一种力.这就是说,天体的运动跟地面上物体的运动,有着共同的规律,地球重力,也是随着与地心距离的增大按平方反比律而减弱的,牛顿通过计算证明,由于月球与地球的距离是地球半径的60倍,月球轨道运动的向心加速度应该等于地面上重力加速度的1/3600。这就是著名的月地检验,它跟实际测量的结果符合得相当好. (4)牛顿根据他自己提出的作用和反作用定律,推论引力作用是相互的地球作用在质量是m的物体上的引力大小恰好等于质量为m的物体作用在地球的引力. (5)在一定的地点,石块所受的重力随石块的质量m而增加,即F与m成正比,.另一方面,如果行星的质量M改变,石块所受的重力也必将随之而改变.也就是说,如果石块与地球的距离R不变,不只有F与m成正比,而且有F与M成正比.

从开普勒定律到万有引力定律

从开普勒定律到牛顿万有引力定律 [摘要]:在高中阶段甚至大学的普通物理中,从开普勒三定律到万有引力定律的推导都是在简化之后的圆轨道上进行的。本文从椭圆轨道出发,推导出了万有引力定律。 [关键词]:万有引力定律、开普勒定律、行星运动、椭圆轨道、极坐标 [正文] 高中阶段,由于缺少数学知识,从开普勒定律到万有引力的推导只能在简化之后的圆轨道上进行。甚至大学阶段,普通物理的教材中,也采用了这个方法。本文力图从原始的椭圆轨道入手,导出万有引力定律。当然,这个过程不可能不涉及高等数学的知识。首先我们做一个准备工作,然后再集中考虑推导的过程。如果“准备”中的知识已完全清楚,则可以直接考虑定律的推导了。 第一部分 准备 一、极坐标中的椭圆方程 椭圆定义为到定点的距离与到定直线的距离之比为常数e 的点的集合。 如图1所示,在极坐标中,Ox 为极轴l 是垂直于极轴的定直线,它与O 点的距离为p 。由椭圆的定义可知: e r p r =+θ cos 整理可得: θ cos 1e pe r -= (1) 二、极坐标中的位置矢量 x O θ 图1 l r

极坐标中,r 表示从原点到曲线上一点的距离,如果我们以原点O 为参考,则r 实际上只表示出了位置矢量的大小。为了明确其方向,我们沿着r 所在的直线做出单位矢量i 作为径向单位向量。另外,将i 旋转2 π 得到j 作为横向单位向量。显然物体的位置矢量可表示为: ri =r (2) 上式中等号右边的r 表示的是位矢的大小,i 表示的位矢的方向。但是应当注意的是,不管是r 还是i ,都不一定是常量。这和直角坐标系中的单位向量是常量是有区别的。 另外,r 和i 都是θ的函数,在运动学中θ又是时间t 的函数。所以,r 和i 都是时间t 的函数,所以我们也可以说位置矢量r 是时间的函数。 在这里,我们必须清楚的是,极坐标中的矢量表示和用极坐标表示函数关系并不完全是一回事。若用极坐标表示数量关系,我们只需要用标量式()θr r =即可,在表示矢量时,我们不得不在这个基础上加上了单位向量i 。 三、极坐标中的速度和加速度 下面我们先求单位向量对时间的导数。 在图3中,以Ox 方向为x 轴,O 为原点,垂直Ox 向上为y 轴建立直角坐标系,用ξ、 η表示沿x 轴、y 轴的单位向量,则i 、j 可分别表示为: θηθξsin cos +=i x 图3 r i j θd θ O Δi θd x O θ 图2 r i j

(完整版)万有引力与航天重点知识、公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二.两种学说 1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律 1.开普勒定律: 第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆 的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫 过相同的面积。 第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公 转周期T 的二次方的比值都相等。 表达式为:)4(2 23 π GM K K T R == k 只与中心天体质量有关的 定值与行星无关 2.牛顿万有引力定律 1687年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式: r F Mm G 2 =万 ⑶.适用条件: a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时,r 为两球心间的距离) b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c. 认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附 近的物体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在 空间的性质无关,与周期及有无其它物体无关. (5)引力常数G :

万有引力定律的发现

万有引力定律的发现 万有引力定律发现是人类认识史上最重大的事件之一。在这一发现过程中,牛顿对引力平方反比定律的发现,即所谓“开普勒命题”的证明,起到了关键性作用,它标志着牛顿成熟地掌握了动力学原理是发现万有引力定律的必要前提。牛顿在惠更斯1673年发表离心力定律之前,结合开普勒周期定律,得到了圆轨道上的平方反比关系;胡克与牛顿在1679年底至1680年初之间的通信,诱发了牛顿首次理解开普勒面积定律的物理意义,并应用几何图形法来解决开普勒命题。也就是说,牛顿是在1680年才发现我们现在所理解意义上的引力平方反比定律。 一、圆轨道上平方反比关系的发现 牛顿对动力学的研究是从研究圆周运动问题开始的;牛顿借助于他有关碰撞问题的研究成果,卓有成效地从动力学角度来量化处理圆周运动中力与“运动的改变”之间的关系,并利用等价性将直线运动的分析结论推广到圆周运动和椭圆运动,为其有关力学的进一步研究打下了坚实的基础。同时期的惠更斯也注意到圆周运动问题,并从运动学角度对它进行了较为深入的研究;就离心力定律的发现而言,惠更斯走在牛顿的前面。 牛顿是在 1665或 1666年写的“仿羊皮手稿”(the Velluo Manuscript )中提出“(l/2)R 公式”:“一个在直线上从静止开始运动的物体,其所受的力等于作用在沿半径为R 的圆周、以速度V 运动的同等物体的力;则在圆周上运动的物体通过距离R 的时间内,直线上运动的物体将行进(1/2)R 距离。”根据牛顿的手稿,我们可以得到 上述公式的推论过程:首先,牛顿给出直线运动、圆周运动状态的初 始条件,即同等的时间、物体和力;其次,牛顿依据已认识到的两种 运动(量)之间的等价性,推论出:直线上从静止开始运动的物体, 在时间R/V 内获得的运动量为mV 、末速度为 V ;最后,牛顿/得到直 线上由静止开始运动的物体,在时间R/V 内经过的距离为:[(1/2) V ]·(R/V )=(1/2)R 。 “(1/2)R 公式”的提出,表明牛顿承袭伽利略等人所坚持的、 力与距离之间存在对应关系的传统,并试图用精确的数值关系来表征 这种对应关系。其另一点是,牛顿合理地将伽利略重力作用下的t 2定 律推广到任意定常力作用的情形。这两点,是牛顿发现圆轨道上平方 反比关系的必要条件。牛顿写于1669年前的《论圆周运动》(On Circular Motion )手稿,使上述的两点得以具体实现。他在此引入又 一种全新的处理圆周运动的方法——“偏离量方法”(the Derivative Method ),即:“物体在由A 到D 作圆周运动的过程中,退离中心的 意向力大小是这样的:即在物体通过AD (假定它很小)的时间内,该力将使物体偏离圆周一段距离 DB (见图1)……现在,如果这个意向力象重力一样地在一条直线上作用,它将使物体通过的距离与时间的平方成比例”。 这样,牛顿在意向力和距离之间建立了对应关系,并通过推广伽利略重力作用下的t 2定律,确定了距离与时间平方之间的比例关系。这一比例关系在《原理》中“上升”为第一卷第一节的“引理X ”,它构成了牛顿应用“线性动力学比”方法证明开普勒命题的数学前提。可以认为,牛顿至此才找到处理圆周运动问题的数值计算方法。牛顿在该手稿的第一部分,应用相似三角形的比例关系和近似的方法,得出下述重要的结论:意向力在周期T 内使物体偏离的距离DB =2π2R 。在这之后;牛顿给出了物体受“由于地球的周日运动产生

万有引力定律公式总结

万有引力定律知识点 班级: 姓名: 一、三种模型 1、匀速圆周运动模型:无论自然天体还是人造天体都可以看成质点,围绕中心天体做匀速圆周运动。 2、双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。 3、“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。 二、两种学说 1、地心说:代表人物是古希腊科学托勒密 2、日心说:代表人物是波兰天文学家哥白尼 三、两个定律 第一定律(椭圆定律):所有行星绕太阳的运动轨道都是椭圆,太阳位于椭圆的每一个焦点上。 第二定律(面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。 第三定律(周期定律):所有行星绕太阳运动的椭圆轨道半长轴R 的三次方跟公转周期T 的二次方的比值都相等。 (表达式 ) 四、基础公式 线速度:v ==== 角速度:== == 向心力:F=m =m(2r=m(2 )2r= m(2)2r=m =m 向心加速度:a= = (2r= (2)2r= (2 )2r== 五、两个基本思路 1.万有引力提供向心力:ma r T m r m r v m r M G ====22 2224m πω 2.忽略地球自转的影响: mg R GM =2m (2g R GM =,黄金代换式) 六、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2=)一般用于地球 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r (r m r Mm G 22ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T (T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度:

万有引力定律的推导及完美之处

万有引力定律的推导及完美之处 现在由开普勒第一定律来求行星所受的力的量值。既然轨道为椭圆,我们就可把轨道方程写为 1cos P r e θ=+ 或1cos e P P μθ=+ 把这关系式1cos e P P μθ=+代入比耐公式 2222()d F h d m μμμθ+=- ,就得到 222222 22()d mh h m F mh d P P r μμμμθ=-+=-=- 这表明行星所受力是引力,且与距离平方成反比。 乍一看来,似乎不需要开普勒第三定律就已经能推出胡克的万有引力公式。其实不然,我们并不能把 22h m F P r =-化成22k m F r =-,因为式22h m F P r =-中的h 和P 对每一个行星来讲都具有不同的数值(2r h θ=,1r μ=,P 为椭圆曲线正焦弦长度的一半),而式中的2k 是一个与行星无关的常数。 开普勒第一定律:行星绕太阳作椭圆运行,太阳位于椭圆的一个焦点上。 开普勒第二定律:行星和太阳之间的连线,在相等的时间内所扫过的面积相等。 开普勒第三定律:行星公转的周期的平方和轨道半长轴的立方成正比。 为了能把22h m F P r =-化为 22k m F r =-,就得利用开普勒第三定律,由行星公转的周期得 22324T P a h π= 虽然h 和P 都是和行星有关的常数,但根据开普勒第三定律中2 3T a 是与行星无关的常数,可以得到2P h (或2 h P )是一个与行星无关的常数(即跟行星质量无关,而是由太阳决定了行 星轨道的性质)。因而可以令22h k P =,我们就可以把22h m F P r =-化为 22k m F r =-, 即 2222h m k m F P r r =-=-

2、万有引力定律是怎样发现

课后练习 F G 1 2 1. 对于质量为ml m2的两物体间的万有引力的表达式二冇,下列说法正确的是() A. 公式中G为引力常量,它是由实验测得的,而不是人为规定的 B. 当r趋于零时,万有引力趋于无穷大 C. ml与m2受到的引力总是大小相等,与ml m2是否相等无关 D. ml与m2受到的引力总是大小相等、方向相反,是一对平衡力 2. 两艘质量各为1X107 kg的轮船相距100m时,它们之间的万有引力相当 于() A. —个人的重力量级 B. 一个鸡蛋的重力量级 C. 一个西瓜的重力量级 D. 一头牛的重力量级 3. 一半径为R,质量为M的均匀球体,其球心O与另一质量为m的质点E距 离为I,如图所示,若切除以OA的中点为球心、质量为m、 以R为直径的球体C,求剩余部分对质点E的万有引力?思路 点拨:利用割补法求万有引力。把从均匀球体上挖去的部分 补上,然后首先计算完整球体所受万有引力,再计算补上部分所受万有引力,贝U 两者之差即为所求球体剩余部分所受到的万有引力

4. 甲、乙两个质点间的万有引力大小为 F,若甲物体的质量不变,乙物体的 质量变为原来的2倍,同时,它们之间的距离变为原来的1/2,则甲、乙两物体的万有引力大小将变为() A. F B . F/2 C. 8F D. 4F 5. 设想把质量为m的物体放到地球的中心,地球的质量为M半径为R(把地球看成质量分布均匀的球体),则物体与地球间的万有引力是()Mm 十宀, A. GR2 B.无穷大 C.零 D.无法确定 6. 应用万有引力定律解释以下现象: (1)既然地球吸引苹果,苹果也吸引地球,为什么我们只看到苹果落向地球,而没有看到地球向苹果运动? (2)既然任何物体之间都有引力作用,为什么我们没有看见地面上的两个 物体在引力的作用下互相靠拢?

万有引力定律是怎样发现

万有引力定律是怎样发现的 物理组景海霞 学法分析: 沿着牛顿的足迹,带领学生在现有知识状态下,重新“发现”万有引力定律,在“发现”万有引力的过程中充分体现学生学习的主体性。教师仅仅是引导而已,通过学生自己发现万有引力定律及引力常量的测量,增强学生的自信心。只要学好现在的知识,大胆猜想,敢于质疑,敢于发现,就可能有所成功,从而使学生养成良好的科学价值观。 教学目标: 知识与技能: ⒈了解万有引力定律得出的思路和过程。 ⒉理解万有引力定律的含义并会推导。 ⒊知道任何物体间都存在着万有引力,且遵循相同的规律。 过程与方法: 1.了解并体会科学研究对人们认识自然的重要性 2.理解万有引力定律的含义并会推导万有引力定律 情感态度与价值观: 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性,连续性及艰巨性 教学重点: 1.万有引力定律的推导

2.万有引力定律的内容及表达公式 教学难点: ⒈对万有引力定律的理解; ①用数学公式描述万有引力定律; ②计算万有引力时物体间距离的含义; ⒉对万有引力的理解: ①地面物体受到的重力与天体间的引力性质相同; ②一般物体间的引力很小,学生缺乏感性认识; 教学方法: ⒈对万有引力定律的推导-采用分析推理、归纳总结的方法。 ⒉对疑难问题的处理-采用讲授法、例证法。 3.支架探究教法 教学过程: 一:锚式问题 想一想: 苹果树上的苹果为什么会落到地面上来?如果把苹果树挪到月球上,苹果还会落回地球吗?行星为何饶着太阳运动而不脱离行星,速度为何距太阳近就快,远就慢?离太阳越远的行星,为何运行周期越远? 牛顿认为它们的根本原因是地球对苹果有吸引力,太阳对行星也具有巨大无比的吸引力。 二、自主探究:

由万有引力定律推导开普列三定律

由万有引力定律推导开普列三定律 ——————《牛顿定律及万有引力》1,牛顿定律定义 牛顿运动定律包含以下三个定律: 牛顿第一运动定律: 孤立质点保持静止或做匀速直线运动;用公式表示为: , 式中为合力,为速度,为时间。 牛顿第二运动定律: 动量为的质点,在外力的作用下,其动量随时间的变化率同该质点所受的外力成正比,并与外力的方向相同;用公式表达为:。根据动量的定义, 。

若质点的质量不随时间变化(即),则质点运动的加速度的大小同作用在该质点上的外力的大小成正比,加速度的方向和外力的方向相同;用公式表达为: 。 牛顿第三运动定律: 相互作用的两个质点之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上; 用公式表达为:(式中表示质点受到的质点的作用力,表示质受到的质点的反作用力)。 开普列定律定义 开普勒在《宇宙谐和论》上的原始表述:绕以太阳为焦点的椭圆轨道运行的所有行星,其各自椭圆轨道半长轴的立方与周期的平方之比是一个常量。 常见表述:

绕同一中心天体的所有行星的轨道的半长轴的三次方( )跟它的公转周期的二次方( )的比值都相等,即,(其中M 为中心天体质量,k 为开普勒常数,这是一个只与被绕星体有关的常量[2] ,G 为引力常量,其2006年国际推荐数值为 )不确定度为。 2,推导过程 万有引力定律是用开普勒第三定律导出的,因此不能再用万有引力定律来推导开普勒第三定律,循环论证是不严谨的。开普勒第三定律是开普勒根据第谷的观测数据来计算出来的,没有见过推导,推导过程只能是与万有引力定律的联系,不能叫推导。 所以由万有引力定律推导开普勒第三定律 推导过程是逆历史发展顺序的。 首先由万有引力=向心力 r m Mm 2r 2 2??? ??=T G π 瞬间得出

(完整word版)高中物理万有引力定律知识点总结和典型例题精选

万有引力定律 人造地球卫星 『夯实基础知识』 1.开普勒行星运动三定律简介(轨道、面积、比值) 丹麦天文学家 第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上; 第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等; 第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即k T r =23 开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。 2.万有引力定律及其应用 (1) 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。 2r Mm G F =(1687年) 2211/1067.6kg m N G ??=-叫做引力常量,它在数值上等于两个质量都是1kg 的物体相距1m 时的相互 作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。 万有引力常量的测定——卡文迪许扭秤 实验原理是力矩平衡。 实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助于平面境将微小的运动效果放大)。 万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体m ,有2E E R m m G mg =(式中R E 为地球半径或物体到地球球心间的距离),可得到G gR m E E 2 =。 (2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离. 当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F 近为无穷大。 (3) 地球自转对地表物体重力的影响。 体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,

高中物理万有引力定律公式

高中物理万有引力定律公式 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半 径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期: V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注: (1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周 期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周 期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。 (1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引 力大小跟它们的质量的乘积成正比,跟它们的距离的平方成反比。 (2)适用条件:

①严格地说,万有引力定律只适用于质点间的相互作用; ②两个质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r是两个球体球心间的距离; ③一个均匀球体与球外一个质点的万有引力也适用,其中r为球心到质点间的距离; ④两个物体间的距离远远大于物体本身的大小时,公式也近似适用,其中r为两物体质心间的距离。 (3)注意:公式中F是两物体间的引力,F与两物体质量乘积成 正比,与两物体间的距离的平方成反比,不要理解成F与两物体质 量成正比,与距离成反比。 (4)对万有引力定律的理解: ②万有引力的相互性:两个物体相互作用的引力是一对作用力和反作用力。它们大小相等,方向相反,分别作用在两个物体上。 ③万有引力的客观性:通常情况下,万有引力非常小,它的存在可由卡文迪许扭秤来观察,只有在质量巨大的天体间,它的作用才 有宏观物理意义。 ④万有引力的特殊性:两个物体间的万有引力,只与它们本身的质量有关,与它们之间的距离有关,和所在空间的性质无关,和周 围有无其他物体的存在无关。

万有引力定律是怎样发现的

第五章第二节万有引力定律是怎样发现的 一、课标要求 通过史实,了解万有引力定律的发现过程;知道万有引力定律;认识发现万有引力定律的重要意义。 二、教材分析 本节教材首先介绍了近代科学家对行星运动本质的认识和发展,以及他们在研究引力问题上遇到的困难。其次介绍了牛顿对三大困难的解决方法,即微积分思想、质点模型、合理简化等科学方法。最后阐述了万有引力定律的内容及意义。 三、学情分析 本节内容接受起来较为容易,采取教师、学生共同参与的教学方法,以训练学生思维为主线,通过启发式的设问,培养学生分析问题的能力。让学生应用已有知识进行归纳总结,培养学生对知识的归纳总结和迁移能力。 四、教学目标 (一)知识与技能 1、了解得出万有引力定律的思路和过程 2、理解万有引力定律的含义并掌握用万有引力定律计算引力的方法 3、了解引力常量G的内涵 (二)过程与方法 1、了解并体会科学方法对人们认识自然的重要作用 2、认识卡文迪许实验的重要性,了解放大法这一重要科学方法 (三)情感态度与价值观 培养学生尊重知识、尊重历史、尊重科学的精神;培养学生不畏艰难险阻永攀科学高峰的精神. 五、教学重点 (一)万有引力定律的发现过程中所涉及到的科学思想 (二)万有引力定律的内容和表达式 六、教学难点 对万有引力定律的理解

七、教学过程 导入新课 “嫦娥奔月”到“阿波罗”飞船登月.为什么飞船能够登上月球;为什么飞船能绕地球旋转? 小组交流讨论(预习案部分) 预习梳理 一、万有引力定律的发现过程 1、近代物理学家对行星运动本质的认识和发展: 英国的吉尔伯特:行星是依靠太阳发出的磁力维持着绕日运动 开普勒:意识到太阳有一种力支配着行星的运动 法国笛卡儿:认为空间充满着一种看不见的流质,形成许多大小、速度、密度不同的漩涡从而带动着行星转动 法国布里奥:首先提出平方反比假设。认为每个行星受太阳发出的力支配,力的大小跟行星与太阳的距离的平方成反比。 17世纪中叶后:引力思想已逐渐被人们所接受,甚至有了引力与距离的平方成正比的猜想。其中英国物理学家胡克、雷恩、哈雷都对此做出了贡献。 2、站在巨人肩上的牛顿: (1)牛顿之前或与牛顿同时代的科学家为什么不能把引力问题彻底解决呢? (2)牛顿是如何解决的? 二、万有引力定律 1、内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比. 2、表达式:122 m m F G r 其中m 1、m 2分别表示两个物体的质量,r 为它们之间的距离. 3、引力常量G =6.67×10-11 N ·m 2/kg 2 (1) G 值是英国物理学家卡文迪许在牛顿发现万有引力定律100多年后,在1789年在实验室利用扭称装置测量的 (2)物理意义:引力常量在数值上等于两个质量都是1 kg 的质点相距1 m 时的

相关主题
文本预览
相关文档 最新文档