当前位置:文档之家› 拉深缺陷及解决措施

拉深缺陷及解决措施

拉深缺陷及解决措施
拉深缺陷及解决措施

该缺陷是由于流入凹模的材料在压缩应力作用下失稳引起的。

消除方法

(1)制品形状。

凸模侧壁由于呈锥形或曲面形,所以在拉深时,材料存在无约束部分,即处于悬空状态。由于切向压应力的作用,材料发生纵向弯曲折皱。

为了制造没有折皱的制品,材料在拉伸时,必须防止多余材料的流入。如果拉伸过度,就会发生破裂,如果成形条件苛刻,破裂和折皱会一起发生,在这种情况下,或者分几道工序成形,或者稍微改变制品形状。

①将制品深度降低。

提高压边力,采用拉伸的方法对防止薄壁容器筒体拉深皱纹是有效的。

逐渐提高压边力,虽然可减少薄壁容器拉深折皱,但如果超过极限,r p部会产生缩颈现象。这时,如果制品深度与要求深度有一些差别的话,只须改变压延条件,就可控制在图纸要求的围之。

②将侧壁制成垂直壁。

凸模稍有倾斜而不能消除薄壁容器拉深折皱时,可将制品高度的1/3~1/4改制成垂直壁。垂直壁对防止折皱是有效的。如果制品不允许有垂直壁,可用精整达到图纸要求。

③减少侧壁的倾斜度。

将凸模倾斜度设计成接近于垂直,薄壁容器拉深的折皱就不易产生。

④将角部R增大。

为了消除异形凸形曲面制品角部R处产生折皱,可将角部R增大,其成形条件就会好起来。

(2)冲压条件。

①提高压边力。

为了抑制材料的流入,压边圈板面应认真进行研磨。r d应尽可能小些,试验时,r d可从2t开始试起。而拉伸应在增加压边力后进行,反复几次,直到不产生折皱。

②压边力须均衡。

薄壁容器拉深折皱分布不均时,大都是由缓冲销的长度不一所致。另外,还有接触状态不好,凹模平面的研磨不良、加工油的涂敷不均等,可根据上述情况逐一进行检查。

③检查加工油的种类及涂敷量。

为了提高拉伸力,一般是全面涂上一层薄薄的低粘度加工油,基本上在无润滑状态下进行拉深。

④检查毛坯形状。

试将毛坯尺寸增大进行试验,其结果将作为是否需要加强筋和确定加强筋布置的依据。毛坯形状上带有凸凹也包括在检查之列。

(3)检查模具。

①加强拉伸的结构。

a 检查拉深筋的形状和配置。

b 检查是否要用多段拉深。

c 将压边圈平面作成为反锥度压板。

②增加压边圈刚性。

压边圈刚性不足时,即使增加压边力,也不能防止凸缘折皱和薄壁容器拉深折皱。重新制作比补强较为有利。

③凸模的倾斜度小时,使模具处于全配合状态。

凸模的倾斜度小时,为了消除薄壁容器拉深折皱,大都使模具处于全配合状态。然而,拉深时因发热引起制件侧壁膨胀,结果侧壁粘附于凹模壁上,造成脱模困难。在这种情况下,如果使用水溶性润滑剂积极冷却模具,便可消除上述缺陷。

(4)材料。

①试增加板料厚度。

②使用屈服点低的材料为好。

③改换成延伸率大的材料。

返回

壁破裂

这种缺陷一般出现在方筒角部附近的侧壁,通常,出现在凹模圆角半径(r cd)附近。在模具设计阶段,一般难以预料。破裂形状如图1所示,即倒W字形,在其上方出现与拉深方向呈45°的交叉网格。交叉网格象用划线针划过一样,当寻找壁破裂产生原因时,如不注意,往往不会看漏。它是一种原因比较清楚而又少见的疵病。

方筒拉深,直边部和角部变形不均匀。随着拉深的进行,板厚只在角部增加。从而,研磨了的压边圈,压边力集中于角部,同时,也促进了加工硬化。

为此,弯曲和变直中所需要的力就增大,拉深载荷集中于角部,这种拉深的行程载荷曲线如图2所示,载荷峰值出现两次。

图1方筒壁破裂

图2方筒拉深时,凸模行

程与拉深载荷的关系

第一峰值与拉深破裂相对应,第二峰值与壁破裂相对应。就平均载荷而言,第一峰值最高。就角部来说,在加工后期由于拉深载荷明显地向角部集中,在第二峰值就往往出现壁破裂。

与碳素钢板(软钢板)相比较,18—8系列不锈钢由于加工硬化严重,容易发生壁破裂。即使拉深象圆筒那样的均匀的产品,往往也会发生壁破裂。

原因及消除方法

(1)制品形状。

①拉深深度过深。

由于该缺陷是在深拉深时产生的,如将拉深深度降低即可解决。但是必须按图纸尺寸要求进行拉深时,用其他方法解决的例子也很多。

② r d、r c过小。

由于该缺陷是在方筒角部半径(r c)过小时发生的,所以就应增大r c。凹模圆角半径(r d)小而进行深拉深时,也有产生壁破裂的危险。如果产生破裂,就要好好研磨(r d),将其加大。

(2)冲压条件。

①压边力过大。

只要不起皱,就可降低压边力。如果起皱是引起破裂的原因,则降低压边力必须慎重。如果在整个凸缘上发生薄薄的折皱,又还在破裂地方发亮,那就可能是由于缓冲销高度没有加工好,模具精度差,压力机精度低,压边圈的平行度不好及发生撞击等局部原因。必须采取相应措施。

是否存在上述因素,可以通过撞击痕迹来加以判断,如果撞击痕迹正常,形状就整齐,如果不整齐,则表明某处一定有问题。

②润滑不良。

加工油的选择非常重要。区别润滑油是否合适的方法,是当将制品从模具取出来时,如果制品温度高到不能用手触摸的程度,就必须重新考虑润滑油的选择和润滑方法。

在拉深过程中,最重要的因素之一是不能将润滑油的油膜破裂。凸模侧壁温度上升而使材料软化,是引起故障的原因。

因此,在进行深拉深时,要尽量减少拉深引起的磨擦,另外,还需要同时考虑积极的冷却方案。

③毛坯形状不当。

根据经验,在试拉深阶段产生壁破裂时,只要改变毛坯形状,就可消除缺陷,这种实例非常多。

拉深方筒时,首先使用方形毛坯进行拉深,r d部位如果产生破裂,就对毛坯四角进行切角。

在此阶段,如果发生倒W字形破裂和网格疵病,则表示四角的切角量过大。切角的形状,如拉深时凸缘四角产生凹口,只要切角量适当减小一些,就可消除,同时还

可制止破裂。

④定位不良。

切角量即使合适,但如毛坯定位不正确,就会象切角过大那样,仍要产生破裂。另外,当批量生产时,使用三点定位装置时,定位全凭操作者的手感,这时往往会产生壁破裂。

⑤缓冲销接触不良。

只要将缓冲销的长度作适当调整,缺陷即可消除。

(3)模具问题。

①模具表面粗糙和接触不良。

在研磨凹模面提高表面光洁度的同时,还要达到不形成集中载荷的配合状态。

②模具的平行度、垂直度误差。

进行深拉深时,由于模具的高度增加,所以凸模或凹模的垂直度、平行度就差,当接近下死点时,由于配合和间隙方面的变化,就成为破裂的原因。因此,模具制作完毕之后,必须检查其平行度和垂直度。

③拉深筋的位置和形状不好。

削弱方筒拉深时角部的拉深筋的作用。

(4)材料

①拉伸强度不够。

②晶粒过大,容易产生壁部裂纹,故应减小材料之晶粒。

③变形极限不足,因此要换成r值大的材料。

④增加板材厚度,进行试拉深。

返回

纵向破裂

沿拉深方向的破裂,称之为“纵向破裂”,由于破裂的原因不同,所以消除方法也不同。

(1)由材料引起纵裂的实例。

使用不锈薄钢板(SUS304)在拉深极限附近进行深拉深时,r p,r d部都不破裂,而在侧壁产生纵向破裂,最典型的例子就象图1所示,破裂成象一个剥开了皮的香蕉。

图1纵向破裂

这种裂纹的特征是纵向开裂,是从模具取出制品的最后时刻瞬时裂开。其原因尚未定论,但可能是下述原因引起的。

①深容器拉深时,由于在圆周方向受强大的压缩应力的作用,因此,部有拉伸残余应力存在,将拉深后的容器从凹模取出时,该残余应力就急骤起作用,并以容器四周的缺口为起点产生破裂。

②凸缘部位的压缩变形,使容器侧壁形成时,由于瞬时压曲,侧壁部产生折弯或弯曲,从而产生破裂和纵向裂纹。

消除方法

根据经验,可改变r p,r d的大小;对模具进行充分研磨;增减缓冲销压力;改变润滑油等。当经过各种实验,都无法控制时,更换材料,将板厚增加0.1mm,这时破裂就完全消除了。

(2)胀形过多而产生破裂。

进行方筒深拉深时,会产生回弹凹陷,其措施是,用稍微加大尺寸的凸模再进行胀形,即可消除回弹凹陷。但是如果胀形过多,由于角部产生加工硬化,产生纵向裂纹。

目前,为了防止纵向裂纹的危险,采用精整的办法。即:将制品做成与凸模完全相同的形状,精整时在凸缘上安装拉深筋,完全防止材料流入,这不是一种一般的再拉深的办法。

(3)由于混入异物而引起断裂。

若没有察觉凹模上粘有异物而进行拉深时,异物就以此为起点,可能沿拉伸方向撕裂制品。这种原因产生的裂纹,开初小,逐渐增大撕裂围。

返回

自然时效破裂

加工硬化性能强的SUS301等材料,当经过剧烈的成形加工后,一直放置不用,由于残余应力的作用,往往会发生纵向裂纹。但含镍量多的奥氏体不锈钢板,即SUS304以上的材料,即使进行剧裂的冲压加工,也不会产生自然时效裂纹。

另外,使用黄铜等铜合金板,经剧烈成形加工后一直放置,也往往会产生纵向裂纹。其原因与残余应力及周围某些气氛有关。图1是其示意图。

图1自然时效裂纹

消除方法

最主要是尽量减少残余应力。成形后立即进行退火处理能防止裂纹产生。

为了尽量减少残余应力,操作时必须注意以下几点:

①使凹模圆角半径(r d)尽量小。

②用多次拉深增加拉深深度时,尽可能要余留下凸缘部分。

③设计拉深工艺时,要避免不合理的工艺。

④压边圈应经常研磨,以增加压边力,防止折皱发生。

返回

侧壁端面裂纹

如图1所示,从制品端面开裂的现象称为侧壁端面裂纹,与延伸凸缘侧裂纹为同一现象。

图1侧壁端面裂纹

消除方法

(1)制品形状。

①避免开式拉深。

拉深时应有一定的形状精度。开式拉深时,由于制品的形状,端部会产生裂纹,因此,要象图2那样,必须同时使端部也有一点拉深侧壁。但是,r p尺寸应做大10~15mm,否则制品就有变形的可能。

②凹模圆角半径(r d)过小

由于必须拉伸成形,因此r d小些较为有利,但超过其极限,就会发生破裂,因而应通过试验选择适当的r d。如果选择的r d比图纸尺寸大,就需增加一道精整工序。

图2拉深件端面制止裂纹产生

(2)冲压条件。

①压边力过大。

将压边力稍作减少后进行拉伸,然后检查制品形状变化情况和有无破裂。

②毛坯形状不适宜。

为了避免开式拉伸,当进行带有辅助侧壁的拉深时,应将毛坯形状控制在最小尺寸围之。另外,开式拉伸时,如端面毛刺过大,容易破裂,所以应防止毛刺的出现。

③凹模面润滑不良。

制品如产生刮伤,则是由于润滑不好所致,所以应检查润滑质量和用量。

(3)模具问题。

①拉深筋的位置和形状不好。

开式拉深时,如果拉深筋末端与制品末端一致,则造成材料的流动阻力不均匀,材料流入模腔的量不一致,而容易破裂,所以要改变拉深筋的位置,使其能慢慢把拉深筋引起的凸峰压平,从而减弱拉深筋末端的拉伸力。

②凹模面加工不良。

在试模阶段,由于凹模面的光洁度不好,引伸力不均匀而产生缺陷。如果发现毛坯面有擦伤,就用砂轮磨光划伤部位,以消除撞击印痕。

(4)材料。

①由于凸缘延展性不足而引起缺陷,就需要换成r值大的材料。

②稍微增加板材厚度。

返回

直边壁破裂

拉深方筒时,直边壁中央附近,大围产生拉深破裂。见图1。

图1直边壁破裂

(1)制品形状。

①拉深深度过大。

如果用降低拉深深度来防止破裂的话,首先要检查其他方面原因,当消除了其他方面的因素仍不能制止破裂时,最后采用降低拉深深度,增加一道精整拉深工序的方法。

②凹模圆角半径(r d)过小。

方筒拉深时,防止直边部侧壁发生回弹凹陷的措施,一般用拉深筋拉伸的方法,但该方法有发生拉深筋伤痕的缺陷。

因此,当不使用拉深筋拉深时,作为拉伸成形的措施是让间隙比板厚稍小一点,同时,在r d过小的状态下选择拉深方法。如果超过拉伸极限发生裂纹,可将r d稍微加大后进行试拉深。

(2)冲压条件。

①压边力过大。

凸缘面全部发亮,说明压边力太大,可将压边力减少到既允许材料流入而又不起皱的程度。

②凹模面润滑不良。

要使材料容易流入,就要检查润滑油的种类及用量。

(3)模具问题。

①凹模面加工与配合不好。

在制品产生破裂的同时,凸缘面上又有擦伤,就要用砂轮很好地磨光,达到材料流入容易的条件。

②间隙太小。

制品的侧壁发亮而破裂时,是由于侧壁减薄量太大,因此需调整间隙。

③拉深筋的位置和形状不良。

由于拉深筋力量过大而产生破裂的情况很多,所以要降低拉深筋的力量。

④模具精度不良。

模具精度不良,有模芯偏移;凸模和凹模的平行度、垂直度不好等原因。如果对模具事先检查,在试拉深时就不会发生问题。

⑤压边圈刚性不足。

压边圈刚性不足时,会只在几个缓冲销部位受到剧烈拉伸而产生破裂。

⑥压力机精度不良。

当压力机的精度不好时,就会产生与模具精度不好一样的缺陷,在试拉深前,要使机床保持在高精度状态下,并且必须进行试拉深。

(4)材料。

①当缺陷是由于材料拉伸强度不够及晶粒过大而产生时,就需要改变材料。

②当由于板材厚度不够而产生缺陷时,需要增加板材厚度。

返回

侧壁纵向裂纹

如图1所示,如果加工初期受到压缩变形,加工后期受到拉伸变形,可能产生纵裂纹。

(1)制品形状。

①拉深深度过大。

胀形超过极限而引起纵向裂纹;另外,在精整时,纵向或横向胀形若超过极限,也会引起破裂。总之,破裂的直接原因,与胀形超限是一致的。

因此,超过变形极限而产生破裂,从形式上讲,就是拉深深度过深,如果降低拉深深度,成形条件就会变好。

图1侧壁纵向裂纹

②凹模圆角半径(r d)过小。

由于是胀形变形,如果超过材料所具有的变形极限,就会产生破裂。因此,合理的r d 既能防止凸缘部裂纹的产生,又能补充材料。作为改善材料流入条件的方法之一,是增大凹模圆角半径(r d)。

增大r d虽然防止了破裂产生,但这时的r d比图纸尺寸大,为使r d达到图纸要求,应增加一道精整工序。

(2)冲压条件。

①压边力过大。

调整拉深力最基本的方法是调整压边力。如果产生破裂,并且凸缘部位发亮,则是因为压边力过大。因此,当有破裂危险时,可稍微降低压边力来观察制品的变化。

②凹模面润滑不足。

随着压边力的增加,润滑油油膜强度也应相应提高,使其尽量减少摩擦。

③毛坯形状不良。

如果毛坯越大,成形条件就会越来越坏。因此,需将毛坯减小到最小限度。即可接近下死点时,毛坯要越过拉深筋,然后进行试拉深。

(3)模具问题。

①拉深筋的形状和位置不对。

使用拉深筋虽然可以防止凸缘产生折皱,但其副作用是阻碍了材料的流入,因此,如果产生破裂的原因是材料流入阻力太大,那末,为了材料容易流入,就需要与毛坯形状一起综合分析拉深筋的位置和形状。

②加工不良。

如果模面加工不良,往往不能提高压边力。因此,需要用砂轮磨光。

(4)材料。

如果超过变形极限,就需要换成更高级的材料,另外,还要增加板材厚度。

返回

凸模肩部相应部位裂纹

由于材料的强度不够,当拉深载荷达到材料破断载荷时就会发生此缺陷。

缺陷部位产生于凸模肩R相应的部位(r p处),即比冲撞痕线更接近r p的部分。破裂部分的冲撞痕线,因与其他部位不同,可以对下面几种情况进行观察检查:或者被延展;或者在凸缘的上下面有发亮的部分;或者产生折皱。另外,在侧壁上有时也有发亮的部分。

初期横向破裂,呈舌状。如图1。

图1r p部破裂

原因及消除方法

(1)制品形状。

①拉深深度过大。

目前,圆筒、方筒深拉深的极限是在设计阶段确定的。从而,在极限附近进行拉深时,要用表面光洁、平整的材料,综合模具配合和研磨,加工润滑油,缓冲压力,压力机精度等现场条件,进行试验拉深。

②凸模半径(r p)过小。

a 将r p修正到适当值。

b 图纸上的r p过小时,首先按适当值进行拉深,然后再增加一道工序,成形所需尺寸。

③凹模尺寸(r d)过小。

a 将r d修正到适当值。

b 图纸上的r d过小时,首先用适当r d值进行拉深,然后再增加一道工序,成形到所需尺寸。

④方筒的角部半径(r c)过小。

a 将拉深深度减小;

b 多增加一道拉深工序;

c 换成更高级的材料;

d 将板料厚度增加。

(2)冲压条件。

①压边力过大。

压边力过大时,在凸缘面上不会发生起皱。防皱压板面粗糙度,模具配合,间隙,r p,r d,加工油的种类和涂敷条件,缓冲销造成的压边力分布等,都影响防皱压力。如果有关拉深的上述这些条件都合适的话,压边力就会下降,在起皱之前,不会发生破裂。

压边力过大时,由于凸缘面会全面发亮,所以很容易判断。

②润滑不良。

拉深加工与润滑有极为密切的关系,特别是包含有减薄拉深加工时,必须控制制品温度的升高。如果是条件好的拉深加工,润滑油的选择不成什么问题;条件不好的拉深加工,如果润滑油选择不当,就会引起破裂。

③毛坯形状不良。

在试拉深阶段,决定毛坯形状是重要的工作之一。

必须将毛坯形状限制在最小尺寸。当用方形毛坯进行圆筒拉深时,极限拉深率为0.58左右。另外,如果拉深率过于严苛,r p部位的伤痕会产生破裂,如进行切角,就可防止破裂。

拉深方筒时可先用方坯进行,这样可以制造出漂亮的制品,但是如果达到拉深极限,在r cp附近就会产生破裂。如果已经破裂,可将毛坯的四角切去一部分。但如果切多了的话,就会产生凸缘起皱,成为产生壁裂纹的原因。

④毛坯定位不好。

即使毛坯形状良好,但如果调整位置不好,或者放置方位不对,这时,凸模与毛坯产生错位,也会产生破裂或起皱。

另外,用500吨油压机,对较大尺寸的拉深件成形时(材料是SUS304),使用粘度低的油就可进行深拉深。当使用粘度高的油进行深拉深时,拉深到高度的1/4,r p部位就会破裂。

不锈钢与软钢板相比较,容易受到速度的影响,但如进行充分的冷却和润滑,在实际操作中,其他方面的问题比速度问题更重要。

当进行高速冲裁时,即使使用一般间隙,切口的全部剪切面都是非常理想的。

⑤模具安装不良。

该缺陷是由模具安装不良,上下模不对中所造成的。近来,几乎所有的模具都备有导向装置,由于模具不对中产生的故障已很少见。

⑥缓冲销的长短不齐。

缓冲销在使用过程中,由于出现压弯,冲击伤痕等,往往变得长短不一,拉深过程中,缓冲销长的部分,由于受到集中载荷而破裂。为了对缓冲销的长短不一进行检查,在模具调整阶段,用手来回摇销,长销由于集中承受压边圈的重量,而变得很重,这是很容易理解的。

⑦缓冲垫凹凸不平。

当压力机缓冲垫的销子位置出现凹陷,或者废料从销孔落到缓冲垫上,就无法控制缓冲压力。压力机如有活动工作台,由于能进行简单的清扫或检修,所以这样的事故是不会发生的,但如果是固定工作台,长期不检修,一旦使用,往往会发生事故。

⑧缓冲销配备不良。

缓冲销原则上应装配在凸模的周围,然而,必须有适当的间隔。如果压边圈很薄,缓冲销配置不当时,产品的凸缘,在某个缓冲销部位受到强烈拉力而使其断裂。这时,凸缘的末端形状,就会象舌状样局部延伸,这是很简单明白的道理。

另外,缓冲销配置与凸模周边形状不一致,凸缘面会起皱,也往往会成为破裂的原因。归根到底,当压边圈很薄,销子的位置就有明显的影响,因此,使压边圈具有充分的强度,是最基本的问题。

⑨起皱引起破裂。

a 坯料尺寸大于压边圈。

当坯料尺寸比压边圈大时,拉深开始之后,坯料外露部分就产生起皱,它同“拉深筋”的功能一样,继续拉深会使其破裂,在试拉深阶段,为了确定“拉深筋”的位置,有时故意使毛坯露在压边圈外。

一般来说,即使是大坯料局部胀形,其原则仍是毛坯用压边圈压住后再进行加压。

b 压边力小。

当压边力小时,毛坯表面就会起皱,该折皱通过凹模圆角半径(r d)时,往往会破裂。因此,这种场合,折皱和破裂就混为一体。

当用加工硬化程度高的不锈钢板进行方筒深拉深时,如图1所示的角部凸缘部位,有一光亮部分,在靠近r d处产生折皱。

该折皱就是产生破裂的原因,r d部分如果破裂,首先要提高压边力,消除折皱,这是头等重要的事情。决不要增大r d或者降低压边力。

光亮部分是由于坯料厚度增加,承受集中载荷所致,因此,在提高压边力的同时,把模具间的接触点到刮目相看平,消除材料增厚的部分;如呈分布载荷,则可消除凸缘面起皱,而使材料的流入变得容易。

c 凹模半径(r d)过大。

r d过大时,就会在r d部分产生加工硬化后的折皱,它又作为拉深筋的功能使拉深件产生破裂。从而,在进行深拉深时,r d要尽可能小,这样易于拉深。

d压边圈侧壁间隙过大(图2)。

例如圆筒凸缘压紧拉深或方筒局部凸缘压紧拉深时,凸模与压边圈侧壁的间隙,必须比凹模圆角半径(r d)小。

如果间隙过大,拉深时材料不能贴紧r d,而是要向上鼓起,从而产生折皱,折皱进入间隙后压成一定形状,并成为产生破裂的原因。

因此,加工时压边圈侧壁要有一个合理的间隙,筒形件凸缘压紧部分和方筒角部凸缘压紧部分,间隙必须设计成小于r d。

图2凸模与压边圈的间隙超过r d而产生破裂

⑩压力机精度不良。

压力机精度不良,对于浅拉深影响不大。当使用曲柄压力机进行深拉深时,如果精度不良,就要受到明显的影响而产生破裂。所以,保证机床精度,是拉深加工之基础。

(3)模具关系。

①凹模表面粗糙。

进行深拉深时,凹模与压边圈的两面研磨不充分,特别是拉深不锈钢板与铝板时,更易产生拉深伤痕。因此,凹模必须进行0.4S以下的镜面加工,这样可以完全消

除撞击伤痕。

当进行面压高的深拉深时,即使消除碰撞也往往会产生破裂,为了使表面更光滑,可用“刮刀”消除碰撞,防止油膜破碎。

②消除压边圈碰撞。

在拉深过程中,为了不产生集中载荷,应根据板厚变化改变模面接触状态,使模面间隙呈均布载荷。

拉深时,如不消除压边圈的碰撞,也会形成集中载荷而产生破裂。

③拉延筋的位置和形状不良。

由于拉延筋胀力过大而引起破裂时,可以用改变拉延筋形状,判断拉延筋的位置与材料的流入过程,即通过综合判断的办法确定拉延筋与毛坯形状的关系。

④间隙过小。

拉深件角部靠近r d部分的侧壁,有亮点并产生破裂时,这是间隙过小引起的。因此,只要修正间隙,消除亮点,即可防止破裂。

另外,不是全部角部,而只是某个角部发亮并产生破裂时,其原因是导向装置不好或者只是某角部的尺寸精度差;另外,是由于凸、凹模与压边圈之间的垂直度差,在拉深过程中间隙产生变化,引起破裂等等。找出原因,消除光亮部位,就可防止破裂。

但下述情况例外:对四方形器皿进行浅拉深时,角部凸模的圆角半径(r cp)和拐角圆角半径r过小时,r cp处肯定会破裂。为了防止破裂,最好将凸模圆角半径r cp增大到适当值,但这样一来,制品的商品价值就会下降。为此,只要增加一道变薄拉深,既能达到制品尺寸要求,又能防止r cp部的破裂。

⑤凸模与压边圈的间隙过大。

在深拉深过程中,当凸模与压边圈的间隙过大时,压边圈产生水平移动;r d较小时,与图2的情况一样,材料不紧贴于r d部,而是进入凸模与压边圈之间形成折皱,此时如果凸凹模之间的间隙控制不好,就会产生破裂。

为了使压边圈准确地上下移动,通常是使压边圈在凸模上滑动,或者采用压边圈在上模的导向板上导向的方法。

⑥由于热胶着而产生破裂。

如果模具制造不当,在拉深过程中就会产生热胶着,材料在拉深时也往往会破裂。另外,在试拉深时,用不经表面硬化处理的模具拉深,也往往会发生上述情况。在拉深件和模具之间使用聚乙烯薄膜和聚氯乙烯薄膜能防止破裂和拉深伤痕的发生,也可以用热处理和表面硬化处理的办法解决。

⑦压边圈刚性不好。

当压边圈刚性不好时,材料只在缓冲销部位受到强烈拉力,而压边圈板面的其他部位产生挠曲,由此造成起皱并成为破裂的原因。如果缓冲销压力降低,凸缘面就会全部起皱,由于起皱是破裂的直接原因,所以只好重新制造一个刚性好的压边圈。

(4)材料。

①拉深性能不好。

当拉深条件恶劣,又不允许增加工序时,就要提高材料的性能。

a 试换成CCV值小,r值大的材料。

b 研制深拉深性能好的材料。

②板材厚度不够。

增加板材厚度再进行试拉深。

③板厚误差大。

测量板厚,如果板厚误差大,可换成误差小的材料进行试拉深。

④研讨时效问题。

试拉深用板材,要首先确定板材的压延日期,由于时效也会引起破裂。当确认板材压延后存放时间已久,就要换成没有时效危险的材料,以确定时效是否对材质有影响。

返回

凹模肩部相应部位裂纹

如图1所示,这种破裂现象产生于非常靠近r d的部位。

(1)凹模圆角半径r d过小。

由于这种缺陷产生于r d过小的场合,因此需将r d增大到适当值。如果r d是图纸要求的尺寸,可以首先用标准的r d值进行拉深,然后再增加一道整形工序。

图1r d部破裂

(2)由起皱引起破裂。

如果压边力太小,在凸缘部就会起皱,在r d部分如不能控制住起皱,r p或r d部分就产生破裂。尤其是r d偏小,当压边力小时,破裂就集中发生于r d部位。其措施是必须首先很好地研磨r d部位并提高压边力,如仍发生破裂,就要再增大压边力。

(3)材料的加工硬化。

对方筒进行深拉深,当拉深到下死点时,完全没有起皱,但在r d部位却发生破裂。原因是,进行剧裂的拉深加工时,由于材料的硬化按比例增加,因此,r d部位不能承受剧烈的弯曲,在变形功极低的情况下,r d附近就会破裂。

消除方法

(1)改变毛坯形状;

(2)更换润滑油;

(3)稍微变换缓冲销压力;

(4)经常进行研磨,消除破裂部位的凸缘部撞击;

(5)产生局部破裂的原因及消除方法。

①定位不好或毛坯形状不合适;

②缓冲销的位置或长度不合适;

③润滑油不合适;

④凹模面的接触不良;

⑤垂直度不好;

⑥根据r d的破裂部位再研磨凸缘部位。

返回

折线

模具表面形状复杂,在成形结束时,往往会产生象图1那样的弯曲线--折线。

压边圈板面成复杂曲面时,在压住材料的瞬时,发生扭曲而形成弯曲线。这条曲线在拉深过程中不会消失而残留下来。

其次,有的拉深是在部分凸模高出压边圈板面的情况下进行的,在凹模与压边圈接触前,材料已与凸模的凸起部分接触,以凸模作为顶点,形成一条象图2那样的弯曲线,接着才是凹模与压边圈相接触。该条曲线在拉深过程中,往往也不会消失而一直遗留下来。

另外,成形时弯曲线变深,成形初期发生的大折皱,到最后不能消除而成为壁折皱、折皱或折线。

消除方法与复杂形状的壁折皱相同。

图1折线

图2部分凸模高出压边圈板

面,产生折线

返回

臌凸

所谓臌凸,是在拉深、成形或弯曲加工时,凸模或凹模R部位的材料产生弹性回复或轻度偏移,沿棱线发生的少量臌凸现象。一般都发生在凸模肩的底部或侧壁部。

(1)凸模圆角半径(r p)部的材料向底部偏移引起的臌凸

图1表示,用薄板成形r p比较小的制品时,在成形过程中,拉伸力发生急骤变化,材料的流入平衡受到破坏,由r p部被弯曲的材料,离开r p部位,移向凸模底部,结果,随着凸模底部弯曲和板厚减少,而发生臌凸。

消除方法

①当增大r p时,臌凸就变得不明显。

②如因整个毛坯越过拉深筋,或因毛坯的凹口部分越过r d时发生臌凸,则以修正毛坯形状为好。

(2)凸模圆角半径(r p)的材料向侧壁偏移产生的臌凸

图2表示,在薄板成形过程中,凸模R部的材料,由于材料的延伸和材料流入失去平衡,凸模r p部的材料向侧壁偏移,弯曲被遗留下来,而形成臌凸。

图1由于拉伸力的急骤变化,

材料在凸模底部移动而发生臌凸

图2侧壁上材料流动发生的臌

凸消除方法

①压边力稍微降低一点。

只要压边力稍微降低一点,便能解决上述缺陷。为了使效果更好,还要同时考虑不使凸模底部的材料流动。

②创造凸模底部材料难以向侧壁移动的条件。

从成形初期,就对凸模底部的材料用压料垫压紧,另外,可将凸模r p稍微减小,

以及把r p部位表面变粗糙一些。

(3)由于拉伸力不足引起的臌凸。

用较小r p成形薄板时,如果与材料的弯曲刚性相对应的凹模平面一侧的引伸力不足,由于r p部材料回弹和加工硬化,与r p不能贴合,会发生臌凸。

消除方法

如果拉伸力不足为主要原因,则应通过各种方法增强附加拉力。

①安装压边圈。

象图3那样,不用压边圈拉深时,由于拉伸力不足,就有发生臌凸的危险。将间隙稍稍减小有时能解决问题,另外,如果用压边圈来调节拉伸力,也能防止这种缺陷。

②增强压边力。

这是一种应用最广的方法。如果局部发生臌凸,其原因是该部分拉伸力不足,应修正接触状态,提高拉伸力。

③改变毛坯形状。

当不能采用拉深筋控制时,可将毛坯形状加大。

④将间隙变小。

如间隙变小,改为变薄拉深。进行较浅拉深时,如改为变薄拉深,对拉伸材料很有效。但是在批量生产时,由于臌凸随模具的摩损成比例增大,所以无法保证质量。

⑤ r p增大,r d减小。

r p小,不但臌凸容易发生而且很明显,所以r p必须尽可能增大;为了增加拉伸力,r d要尽可能减小,其成形条件就会好起来。

⑥再次检查润滑方法。

因为过于润滑有发生臌凸的危险,所以要再次检查润滑油的种类,使滑动下降。为了不发生臌凸,也可以不润滑。

⑦采用拉深筋控制和多次拉深的方法。

如想在局部附加拉力,使用拉深筋控制为好。如想整体增加拉力,多次拉深较为有效。

⑧为了不产生拉深筋引起的伤痕,可增加工序。

例如,不锈钢板方形筒拉深时,由于拉深强度大,臌凸和回弹瘪陷就会大量发生。虽然采用拉深筋控制进行变薄拉深可以解决问题,但由于制品的商品价值降低,所以一般不能采用。

消除方法为:

第一道工序进行粗拉深,精整时,在制品外面四周都装上拉深筋,以控制材料流入,增加拉深深度的同时,去除臌凸。

图3拉伸力不足引起的臌凸

返回

弓背形

产生的原因与翘曲一样。象图1那样,制品弯成鞍形,称之为弓背形。

消除方法

最有效的方法是估计出鞍形的翘度,然后将凸模做成反翘度。由于每一批量都必须把凸模面刮削成反翘度,所以做成可调式凸模是有利的。

可调式凸模是将模面稍微做大一些,沿凸模长方向的中央嵌入一薄镶片,然后固紧即可。

如产生小量翘曲,只需用底模稍加校正。

图1弓背形

返回

收缩垂驰

“收缩”和“垂驰”是由于成形过程中所产生的板面应力分布不均匀,引起成形后的弹性回复,部分表面或臌起,或塌陷,使形状发生变化。如图1所示。

曲率半径小,部分形面臌起,称之为“垂驰”,它往往同时发生在表面的几个地方。与此相反,曲率半径大,将部分形面挤瘦,称之为“收缩”。

“收缩”和“垂驰”是由于制品力刚性不足产生的,它也是“凹陷”的原因之一。但总的来说,是因为周边附加拉力不足所造成的,基本消除方法与“凹陷”相同。

图1收缩、垂驰

消除方法

①改变形状。

当采取改变模具结构形状及加强压边力等措施不能奏效时,将形状曲面试加厚几个毫米。

②创造胀形条件。

虽然加大压边力能消除缺陷,但是为了把拉深变成接近于胀形成形的拉深胀形成形法,就要用拉深筋围起来。另外,多次拉深法效果也较好。

③模面配合状态要好。

这是修整时最基本而又重要的项目。配合状态分压边圈板面的配合状态和凸模面的配合状态。凸模面的配合状态最为重要,用200号砂纸轻轻打磨成形后的制品,配合状态就会一目了然。

要达到全面而良好的配合状态,需要花时间用砂纸等打磨,经过打磨,弹性回复等缺陷也就会消除。

④使用屈服点低,屈强比低的材料为好。

返回

冲撞痕线

所谓冲撞痕线,是在进行拉深或者胀形加工时,在成形初期,凸模圆角半径(r p)部位、凹模圆角半径(r d)部位、或与拉深筋相接部分的材料发生弯曲,而到成形结束时,

拉深缺陷及解决措施

壁破裂 这种缺陷一般出现在方筒角部附近的侧壁,通常,出现在凹模圆角半径(r cd)附近。在模具设计阶段,一般难以预料。破裂形状如图1所示,即倒W字形,在其上方出现与拉深方向呈45°的交叉网格。交叉网格象用划线针划过一样,当寻找壁破裂产生原因时,如不注意,往往不会看漏。它是一种原因比较清楚而又少见的疵病。 方筒拉深,直边部和角部变形不均匀。随着拉深的进行,板厚只在角部增加。从而,研磨了的压边圈,压边力集中于角部,同时,也促进了加工硬化。 为此,弯曲和变直中所需要的力就增大,拉深载荷集中于角部,这种拉深的行程载荷曲线如图2所示,载荷峰值出现两次。 图1 方筒壁破裂 图2 方筒拉深时,凸模行程与拉深载荷的关系 第一峰值与拉深破裂相对应,第二峰值与壁破裂相对应。就平均载荷而言,第一峰值最高。就角部来说,在加工后期由于拉深载荷明显地向角部集中,在第二峰值就往往出现壁破裂。 与碳素钢板(软钢板)相比较,18—8系列不锈钢由于加工硬化严重,容易发生壁破裂。即使拉深象圆筒那样的均匀的产品,往往也会发生壁破裂。 原因及消除方法 (1)制品形状。 ① 拉深深度过深。 由于该缺陷是在深拉深时产生的,如将拉深深度降低即可解决。但是必须按图纸尺寸要求进行拉深时,用其他方法解决的例子也很多。 ② r d、r c过小。 由于该缺陷是在方筒角部半径(r c)过小时发生的,所以就应增大r c。凹模圆角半径(r d)小而进行深拉深时,也有产生壁破裂的危险。如果产生破裂,就要好好研磨(r d),将其加大。 (2)冲压条件。 ① 压边力过大。 只要不起皱,就可降低压边力。如果起皱是引起破裂的原因,则降低压边力必须慎

浅谈冲压拉深件制造中缺陷的产生和消除

浅谈汽车车身冲压拉深件制造中缺陷的产 生和消除 陆国庆 (上海大众汽车有限公司) 摘要:冲压工件的制造工艺水平及质量,在较大程度上对汽车制造质量和成本有直接的影响。 而为了减少车身总成的分块数量、同时也为减少冲压过程的工序数、节约投资额和能耗,现在汽车称身制造中较多采用大面积冲压件,如车顶、发动机盖外板等,这样既可使汽车外形美观、空气阻力减少,又可减少冲压件数量及焊点,能有效地降低成本(图1)。这样相应的对于生产制造厂中的冲压拉深件的质量控制、及缺陷产生后的消除又提出了更高的要求。本篇主要介绍部分汽车车身冲压拉深件的缺陷和消除方法。 关键词:瘪塘麻点检验冲压 1.简介 冲压工件的制造工艺水平及质量,在较大程度上对汽车制造质量和成本有直接的影响。 而为了减少车身总成的分块数量、同时也为减少冲压过程的工序数、节约投资额和能耗,现在汽车称身制造中较多采用大面积冲压件,如车顶、发动机盖外板等,这样既可使汽车外形美观、空气阻力减少,又可减少冲压件数量及焊点,能有效地降低成本(图1)。这样相应的对于生产制造厂中的冲压拉深件的质量控制、及缺陷产生后的消除又提出了更高的要求。本篇主要介绍部分汽车车身冲压拉深件的缺陷和消除方法。 图1 santana2000车顶 2.瘪塘 1.1产生 如图2所示,当对大曲面制品的顶部施加正向压力时,会产生部分瘪塘,但去掉该正向压力后又回复到原来形状;或者去掉压力后不回复而照样瘪塘,但从里面施加压力后又回复成原样。象这类对顶部施加小正压力产生的缺陷,称之为瘪塘。

其原因是:用刚性低的材料成形曲率半径大的形状时,由于材料张力刚性不足产生凹陷。因此,这是材料性能不好引起的表面精度不良。 图2 瘪塘 1.2检验方法 用LAPPORT公司的200MM*20MM*20MM的油石(Oelstein)(适用于大平面)或100MM*10MM*10MM(适用于圆弧处以及难以够到的部位)的油石(Oelstein)轻轻打磨成形后的制品,这时高的地方有油石 B5冲压件图例:油石打磨线断显出零件表面凹陷 擦伤的痕迹,而低的地方却没有Array(如图3),这样,配合状态也就 一目了然了。要创造全面而均衡 的配合状态,就要花时间用砂轮 对压边圈板面或凸模面进行认真 打磨,将表面打磨成象镜面那样, 拉伸条件就会变好,同时,还要 达到全面而均衡的胀形。配合状 态好,弹性回复变形也就会减少, 张力刚性提高。 1.3消除方法 1.3.1消除凹陷方法从下面几方面考虑。 1.3.1.1凹陷是被成形件的弹性回复问题。 1.3.1.2凹陷的大小由板厚和形状决定。 1.3.1.3成形性好,屈服点低,屈强比低的材料比较好,而与钢种关系不大。然而,如果制品形状复杂,则张力刚性和钢种之间关系密切。 1.3.2消除方法 1.3.2.1制品形状。 1.3.2.1.1将曲率半径减小。 大曲面制品,或多或少都会发生凹陷。一般而言,这与张力刚性和形状有关。主要措施是减小曲率半径,这时,跳移负荷增大,刚性增高;但如果形状复杂,周围支承条件也不是简单支承时,这时只从形状上就难以判断。 然而,即使用拉深和胀形加工成形形状,由于整体弹性回复变形,曲率半径变大,多数情况张力刚性会下降。 1.3.2.1.2增加板材厚度。 张力刚性一般为板厚的三次方。如果将法向力和曲率半径固定,增加板厚,变形量就会渐渐减少。因此,当不允许形状变化时,增加板厚,凹陷就一定会减少。 1.3.2.2冲压条件。 1.3.2.2.1采用拉深胀形法。 凹陷由于是张力刚性不足引起的弹性回复问题,就加工方法而言,拉伸要均衡,有必要 将拉深加工改在修整线外。原先是将毛坯尺寸增大来进行拉伸成形的,现代生产一般为了提 高材料利用率均采用拉深筋。

常见冲压质量问题及解决之冲裁件的常见缺陷及原因分析

常见冲压质量问题及解决之冲裁件的常见缺陷及原因分析 冲裁件的常见缺陷及原因分析 冲裁是利用模具使板料分离的冲压工序。 冲裁件常见缺陷有:毛刺、制件表面翘曲、尺寸超差。 1、毛刺 在板料冲裁中,产生不同程度的毛刺,一般来讲是很难避免的,但是提高制件的工艺性,改善冲压条件,就能减小毛刺。 产生毛刺的原因主要有以下几方面: 1.1 间隙 冲裁间隙过大、过小或不均匀均可产生毛刺。影响间隙过大、过小或不均匀的有如下因素: a 模具制造误差-冲模零件加工不符合图纸、底板平行度不好等; b 模具装配误差-导向部分间隙大、凸凹模装配不同心等; c 压力机精度差—如压力机导轨间隙过大,滑块底面与工作台表面的平行度不好,或是滑块行程与压力机台面的垂直度不好,工作台刚性差,在冲裁时产生挠度,均能引起间隙的变化; d 安装误差—如冲模上下底板表面在安装时未擦干净或对大型冲模上模的紧固方法不当,冲模上下模安装不同心(尤其是无导柱模)而引起工作部分倾斜; e 冲模结构不合理-冲模及工作部分刚度不够,冲裁力不平衡等; d 钢板的瓢曲度大-钢板不平。 1.2 刀口钝 刃口磨损变钝或啃伤均能产生毛刺。影响刃口变钝的因素有: a 模具凸、凹模的材质及其表面处理状态不良,耐磨性差; b 冲模结构不良,刚性差,造成啃伤; c 操作时不及时润滑,磨损快; d 没有及时磨锋刃口。 1.3 冲裁状态不当 如毛坯(包括中间制件)与凸模或凹模接触不好,在定位相对高度不当的修边冲孔时,也会由于制件高度低于定位相对高度,在冲裁过程中制件形状与刃口形状不服帖而产生毛刺。 1.4 模具结构不当

1.5 材料不符工艺规定 材料厚度严重超差或用错料(如钢号不对)引起相对间隙不合理而使制件产生毛刺。 1.6 制件的工艺性差-形状复杂有凸出或凹入的尖角均易因磨损过快而产生毛刺。 小结: 毛刺的产生,不仅使冲裁以后的变形工序由于产生应力集中而容易开裂,同时也给后续工序毛坯的分层带来困难。大的毛刺容易把手划伤;焊接时两张钢板接合不好,易焊穿,焊不牢;铆接时则易产生铆接间隙或引起铆裂。 因此,出现允许范围以外的毛刺是极其有害的。对已经产生的毛刺可用锉削、滚光、电解、化学处理等方法来消除。 孔变形,凸焊螺母后不易取出 孔毛刺,凸焊螺母困难 2、制件翘曲不平 材料在与凸模、凹模接触的瞬间首先要拉伸弯曲,然后剪断、撕裂。由于拉深、弯曲、横向挤压各种力的作用,使制件展料出现波浪形状,制件因而产生翘曲。 制件翘曲产生的原因有以下几个方面: 2.1 冲裁间隙大 间隙过大,则在冲裁过程中,制件的拉伸、弯曲力大,易产生翘曲。改善的办法可在冲裁时用凸模和压料板紧紧地压住,以及保持锋利的刃口,都能受到良好的效果。

拉伸件、弯曲件缺陷及消除

拉伸件、弯曲件缺陷及消除

【深拉深破裂】 凸模肩部相应部位裂纹 (2) 壁破裂 (3) 纵向破裂 (4) 自然时效破裂 (5) 凹模肩部相应部位裂纹 (6) 直边壁破裂 (6) 侧壁端面裂纹 (7) 侧壁纵向裂纹 (8) 【胀形破裂】 凹模肩部相应部位裂纹 (8) 凸模肩部相应部位裂纹 (9) 胀形时凸模棱线部位产生裂纹 (10) 【凸缘延伸裂纹】 凸缘延伸边缘裂纹 (10) 凸缘延伸内裂纹 (11) 凸缘延伸侧壁裂纹 (11) 【纵弯曲折皱】 凸缘折皱 (11) 壁折皱 (13) 薄壁容器筒体拉深皱纹、拉深筒体皱折 (16) 不均匀拉伸折皱 (16) 剪切折皱 (17) 发生于凸模底部的纵向弯曲 (18) 【壁增厚折皱】 复杂形状的壁折皱 (19) 由于拉深深度变化而引起的折皱 (19) 在凸模纵断面形状急骤变化部位产生的壁增厚折皱 (21) 反弯曲形、鞍形、葫芦形的壁减薄折皱 (21) 【表面精度不良】 折线 (22) 冲撞痕线 (23) 线偏移 (26) 臌凸 (28) 扭曲 (29) 模子印痕 (30) 弓背形 (30) 凹陷 (31) 收缩、垂驰 (31) 模具碰撞伤痕 (32) 麻点 (32) 真空变形和排气伤痕 (32) 【表面形状不良】 表面粗糙 (34) 拉伸滑带 (34) 弯曲件缺陷及消除 (35) 回 弹 (35) 弯曲裂纹 (38) 弯曲线垂直度不好 (38) 翘 曲 (38) 冲撞缺陷 (39) 折边形状左右不对称 (39) 扭 曲 (39) 孔精度不好 (40) 进行V形弯曲时引起直边弯曲 (40) 臌凸 (40) 形状精度不好 (40)

不锈钢拉伸过程中常见问题 一

不锈钢拉伸过程中常见问题一 不锈钢的延展率小、弹性模量E较大,硬化指数较高。不锈钢板拉深开裂有时发生在拉深变形之后,有时是在当拉深件由凹模内退出时立即发生;有时是在拉深变形后受撞击或振动时发生;也有时在拉深变形后经过一段时间的存放或在使用过程中才发生。 不锈钢拉伸过程中常见问题分析: 1开裂形成的原因 奥氏体不锈钢的冷作硬化指数高(不锈钢为0.34)。奥氏体不锈钢为亚稳定型,在变形时会发生相变,诱发马氏体相。马氏体相较脆,因此容易发生开裂。在塑性变形时,随着变形量的增大,诱发的马氏体含量也将随着变形量的增大而增高,残余应力也越大.残余应力与马氏体含量的关系:诱发的马氏体相含量越高,引起的残余应力也越大,在加工过程中也就越易开裂。 2表面划痕形成的原因: 不锈钢拉深件表面出现划痕主要是由于工件和模具表面存在相对移动,在一定压力的作用下,致使坯料与模具局部表面直接产生摩

擦,加之坯料的变形热使坯料及金属屑熔敷在模具表面上,使工件表面擦伤产生划痕。 不锈钢常见成形缺陷的预防措施: 1、选择合适的不锈钢材质:在奥氏体不锈钢中常用材料是1Cr18Ni9Ti和0Cr18Ni9Ti。在拉深过程中1Cr18Ni9Ti比0Cr18Ni9Ti稳定,抗开裂性好。因此应尽可能选择1Cr18Ni9Ti材料。 2、合理选择模具材料不锈钢在深拉深过程中硬化显著,产生许多硬金属点,造成粘附,使工件和模具表面容易划伤、磨损,因此不能采用一般模具用工具钢。实践证明:选择铜基合金模具能消除不锈钢件表面划痕、划伤,降低破损率。另一种材料为高铝铜基合金模具材料(含铝13Wt%~16Wt%),这种材料与SUS304不锈钢互溶性小,拉深件和模具之间不粘着,拉深件表面不易产生划痕划伤,产品抛光成本低,在不锈钢拉深成形领域已经获得成功应用。但是由于这种模具硬度偏低(40HRC~45HRC),常用于生产相对厚度t/D较小的产品。一般拉深1500件~2000件以后在凹模表面容易产生始于圆角R处呈放射状拉深棱。氮化硅陶瓷(Si3N4)已成为重要的工程材料,尤其是反应烧结氮化硅陶瓷,具有良好的高低温力学性能、耐热冲击性和化学稳定性,而且可以非常方便地制成形状复杂的零件。可利用陶瓷材料的高硬度、高耐磨性以及高化学稳定性,用反应烧结氮化硅材料模具

常见冲压件质量及解决办法

一、冲裁件的常见缺陷及原因分析 冲裁是利用模具使板料分离的冲压工序。 冲裁件常见缺陷有:毛刺、制件表面翘曲、尺寸超差。 1、毛刺 在板料冲裁中,产生不同程度的毛刺,一般来讲是很难避免的,但是提高制件的工艺性,改善冲压条件,就能减小毛刺。 产生毛刺的原因主要有以下几方面: 1.1 间隙 冲裁间隙过大、过小或不均匀均可产生毛刺。影响间隙过大、过小或不均匀的有如下因素: a. 模具制造误差-冲模零件加工不符合图纸、底板平行度不好等; b. 模具装配误差-导向部分间隙大、凸凹模装配不同心等; c. 压力机精度差—如压力机导轨间隙过大,滑块底面与工作台表面的平行度不好,或是滑块行程与压力机台面的垂直度不好,工作台刚性差,在冲裁时产生挠度,均能引起间隙的变化; d. 安装误差—如冲模上下底板表面在安装时未擦干净或对大型冲模上模的紧固方法不当,冲模上下模安装不同心(尤其是无导柱模)而引起工作部分倾斜; e. 冲模结构不合理-冲模及工作部分刚度不够,冲裁力不平衡等; d. 钢板的瓢曲度大-钢板不平。 1.2 刀口钝 刃口磨损变钝或啃伤均能产生毛刺。 影响刃口变钝的因素有: a.模具凸、凹模的材质及其表面处理状态不良,耐磨性差; b.冲模结构不良,刚性差,造成啃伤; c. 操作时不及时润滑,磨损快; d.没有及时磨锋刃口。 1.3 冲裁状态不当 如毛坯(包括中间制件)与凸模或凹模接触不好,在定位相对高度不当的修边冲孔时,也会由于制件高度低于定位相对高度,在冲裁过程中制件形状与刃口形状不服帖而产生毛刺。 1.4 模具结构不当。 1.5 材料不符工艺规定 材料厚度严重超差或用错料(如钢号不对)引起相对间隙不合理而使制件产生毛刺。 1.6 制件的工艺性差 形状复杂有凸出或凹入的尖角均易因磨损过快而产生毛刺。 毛刺的产生,不仅使冲裁以后的变形工序由于产生应力集中而容易开裂,同时也给后续工序毛坯的分层带来困难。大的毛刺容易把手划伤;焊接时两张钢板接合不好,易焊穿,焊不牢;铆接时则易产生铆接间隙或引起铆裂。因此,出现允许范围以外的毛刺是极其有害的。对已经产生的毛刺可用锉削、滚光、电解、化学处理等方法来消除。 2、制件翘曲不平 材料在与凸模、凹模接触的瞬间首先要拉伸弯曲,然后剪断、撕裂。由于拉深、弯曲、横向挤压各种力的作用,使制件展料出现波浪形状,制件因而产生翘曲。 制件翘曲产生的原因有以下几个方面: 2.1 冲裁间隙大

冲压件常见缺陷

冲压件常见缺陷及调整 一、拉深模的调整内容有哪些?如何进行? 1 进料阻力的调整 在拉深过程中,若拉深模进料阻力较大,则易使制品拉裂;进料阻力小,则又会起皱。因此,在试模时,关键是调整进料阻力的大小,即调整压边力的大小。 拉深阻力的调整方法是: (1)调节压力机滑块的压力,使其处于正常压力下进行工作; (2)调整拉延模的平衡块,以控制压料力的大小; (3)调整材料的定位,也可以控制压料力的大小; (4)调节拉深模的压边圈的压边面,使其与坯料有良好的配合; (5)修整凹模的圆角半径; (6)修整压边筋间隙; (7)采用合适的润滑剂。 2拉深深度及间隙的调整 (1)在调整时,可把拉深深度分成2~3段来进行调整。即先将较浅的一段调整后,再往下调深一段,直到调到所需的拉深深度为止; (2)在调整时,先将上模固紧在压力机滑块上,下模放在工作台上先不固紧,然后在凹模内放入样件,使上`下模吻合对中,调整各方向间隙,使之均匀一致后,再将模具处于闭合位置,拧紧螺栓,将下模固紧在工作台上,取出样件,即可试模。 二、试摸时,出现工件表面檫伤或壁部变薄现象的原因是什么?应怎么进行调整? 其主要原因如下:调整方法是: 1、凹模圆角太小或表面质量粗糙;1、加大凹模圆角半径,或进行凸、凹模抛光; 2、凸、凹模间隙太小,造成表面檫伤;2、应加大凸、凹模间隙; 3、压边力太大,3、分析材料的流动方向,设法减小压边力; 4、润滑不良或板料的金属微料附着在凹模上。4、将凹模表面抛光或镀铬,减小表面粗糙度值。 三、试模时,拉深件表面起皱应该如何调整? 1、调整压力边的大小 当折皱在制件四周均匀产生时,应判断为压料力不足,逐渐加大压料力即可使皱纹消除。如果增大压料力仍不能克服折皱时,则需增加压边圈的刚性。由于压边圈刚性不足,在拉深过程中,压边圈会产生局部挠曲而造成坯料凸缘起皱。 当拉深锥形件和半球形件时,拉深开始时大部分材料处于悬空状态,容易产生侧壁起皱,故除增大压边力外,还应采用拉深肋来增大板内径向拉应力,以消除皱纹。 2、调整凹模圆角半径 凹模圆角半径太大,增大了坯料悬空部位,减弱了控制起皱的能力,故若发生起皱时,可在调整时,适当减小凹模圆角半径。 3 调整间隙值 间隙过大,当坯料的相对厚度(坯料的厚度与直径之比)较小时,薄板抗失稳能力较差,容易产生折皱,因此适当调整冲模间隙,使其间隙调得小一些,也可以防皱。 四、拉深模在试模时,制品常会被拉裂,其调整冲模的方法是什么?

拉深缺陷及解决措施

该缺陷是由于流入凹模的材料在压缩应力作用下失稳引起的。 消除方法 (1)制品形状。 凸模侧壁由于呈锥形或曲面形,所以在拉深时,材料存在无约束部分,即处于悬空状态。由于切向压应力的作用,材料发生纵向弯曲折皱。 为了制造没有折皱的制品,材料在拉伸时,必须防止多余材料的流入。如果拉伸过度,就会发生破裂,如果成形条件苛刻,破裂和折皱会一起发生,在这种情况下,或者分几道工序成形,或者稍微改变制品形状。 ①将制品深度降低。 提高压边力,采用拉伸的方法对防止薄壁容器筒体拉深皱纹是有效的。 逐渐提高压边力,虽然可减少薄壁容器拉深折皱,但如果超过极限,r p部会产生缩颈现象。这时,如果制品深度与要求深度有一些差别的话,只须改变压延条件,就可控制在图纸要求的围之。 ②将侧壁制成垂直壁。 凸模稍有倾斜而不能消除薄壁容器拉深折皱时,可将制品高度的1/3~1/4改制成垂直壁。垂直壁对防止折皱是有效的。如果制品不允许有垂直壁,可用精整达到图纸要求。 ③减少侧壁的倾斜度。 将凸模倾斜度设计成接近于垂直,薄壁容器拉深的折皱就不易产生。 ④将角部R增大。 为了消除异形凸形曲面制品角部R处产生折皱,可将角部R增大,其成形条件就会好起来。 (2)冲压条件。 ①提高压边力。 为了抑制材料的流入,压边圈板面应认真进行研磨。r d应尽可能小些,试验时,r d可从2t开始试起。而拉伸应在增加压边力后进行,反复几次,直到不产生折皱。 ②压边力须均衡。 薄壁容器拉深折皱分布不均时,大都是由缓冲销的长度不一所致。另外,还有接触状态不好,凹模平面的研磨不良、加工油的涂敷不均等,可根据上述情况逐一进行检查。 ③检查加工油的种类及涂敷量。 为了提高拉伸力,一般是全面涂上一层薄薄的低粘度加工油,基本上在无润滑状态下进行拉深。 ④检查毛坯形状。 试将毛坯尺寸增大进行试验,其结果将作为是否需要加强筋和确定加强筋布置的依据。毛坯形状上带有凸凹也包括在检查之列。 (3)检查模具。

汽车覆盖件拉深成型缺陷产生的原因和解决措施

39 中国设备 工程 Engineer ing hina C P l ant 中国设备工程 2018.12 (上) 1?汽车覆盖件的特点 汽车覆盖件成型材料薄、结构尺寸大、形状复杂(多为立体曲面),不但要求具有特定的使用功能,而且要求有一定的观赏功能,被拉深的材料应经过充分的塑性变形,使制件有一定的刚性,有光顺挺拔的表面和均匀而清晰的棱线,不允许有缺陷,尺寸精度高,以保证装配准确。 2?汽车覆盖件的成型工艺 汽车覆盖件通常采用高强度、高质量、抗腐蚀的钢板,成型设备采用具有稳定压边力的双动压床或三动冲床。汽车覆盖件冲压工艺编制、冲模设计、冲模制造工艺都有一些特殊的要求,汽车覆盖件模具常把落料、拉深、修边、翻边、冲孔工序进行组合设计,力求减少冲压工序,降低生产成本。拉深、修边和翻边是最基本的工序,其中拉深工序是覆盖件冲压成型的关键工序,它直接影响产品质量、材料利用率、生产效率和制造成本。模具在设计过程中采取有限元来分析冲压过程中板料的受力和流动方向,并通过结构设计控制板料受力的大小和流动方向,大大提高模具成型质量。 3?汽车覆盖件拉深成型缺陷产生的主要原因 模具设计质量、模具零件的制造精度、模具的装配精度直接影响模具本身质量,是影响汽车覆盖件拉深 成型缺陷产生的主要原因。模具材料的机械性能(拉深系数、屈强比等)、模具的间隙大小、模具加工工艺和热处理工艺的选择、模具零件使用过程中的正常磨损、使用状况和保养、模具在机床上安装或使用不当都会造成汽车覆盖件拉深成型过程中缺陷产生。冲压设备的精度也会影响汽车覆盖件拉深成型质量。 4?汽车覆盖件拉深成型缺陷分析及解决措施 4.1?拉伤 图1?拉伤缺陷 图2?模具成型表面整体镀铬 上图1为汽车顶盖,成型过程中在侧面经常产生拉伤,应检查模具以下技术状态。 (1)检查上道工序模具(制品)是否有划伤。(2)检查本工序模具表面是否有划痕拉伤制品表面。(3)检查模具成型表面是否因粗糙度未达到要求拉伤制品表面。(4)检查是否压边力太大,造成料流困难,工件表面拉伤。(5)是否由于凸凹模间隙小,由于挤压使制品表面拉伤。 在保证凸凹模合理间隙的前提下,采用火焰淬火的方式,淬硬成型凹模圆角达50HRC 以上,抛光其表面粗糙度达Ra0.4μm,投入生产。由于模具材料本身的缺陷,淬硬后的凹模圆角由于磨损,凹模圆角处的表面粗糙度极易恶化,产品合格率只有75%,部分次品只能让步接收。为提高产品合格率,彻底改善模具成型性能,将模具凹模圆角进行激光硬化处理,硬度达58HRC,抛光(研磨)成型表面,粗糙度达Ra0.4μm,并将凹模整体镀硬铬,镀层厚度0.05mm,拉伤缺陷得到的有效改善,产品下线合格提升至百分之九十五,效果显著,生产效率得到较大提高(图2)。4.2?起皱 冲压工件产生起皱缺陷是材料在拉深时受切向压应力作用而失去稳定性的结果。切向压应力越大越容易失稳起皱;凸缘区板料本身的抵抗失稳的能力,凸缘宽度越大,厚度越薄,材料弹性模量和硬化模量越小,抵抗失稳能力越小。 当汽车覆盖件出现起皱现象,应考虑调整以下部位。 汽车覆盖件拉深成型缺陷产生的原因和解决措施 黄达辉 (广西机电技师学院,广西 柳州 545001) 摘要:汽车覆盖件的成型缺陷直接影响汽车整车外观质量,本文针对汽车覆盖件拉深成型过程中的拉伤、起皱、开裂等质量缺陷,通过分析缺陷产生的原因,提出相应的解决措施,并在生产实践中取得良好效果。 关键词:汽车覆盖件;拉深成型;缺陷;解决措施 中图分类号:TG386 文献标识码:A 文章编号:1671-0711(2018)12(上)-0039-02

拉伸缺陷

拉伸缺陷 这种缺陷一般出现在方筒角部附近的侧壁,通常,出现在凹模圆角半径(rcd)附近。在模具设计阶段,一般难以预料。即倒W字形,在其上方出现与拉深方向呈45°的交叉网格。交叉网格象用划线针划过一样,当寻找壁破裂产生原因时,如不注意,往往不会看漏。它是一种原因比较清楚而又少见的疵病。 方筒拉深,直边部和角部变形不均匀。随着拉深的进行,板厚只在角部增加。从而,研磨了的压边圈,压边力集中于角部,同时,也促进了加工硬化。 为此,弯曲和变直中所需要的力就增大,拉深载荷集中于角部,这种拉深的行程载荷曲线载荷峰值出现两次。 第一峰值与拉深破裂相对应,第二峰值与壁破裂相对应。就平均载荷而言,第一峰值最高。就角部来说,在加工后期由于拉深载荷明显地向角部集中,在第二峰值就往往出现壁破裂。 与碳素钢板(软钢板)相比较,18—8系列不锈钢由于加工硬化严重,容易发生壁破裂。即使拉深象圆筒那样的均匀的产品,往往也会发生谄屏选? 原因及消除方法 (1)制品形状。 ① 拉深深度过深。 由于该缺陷是在深拉深时产生的,如将拉深深度降低即可解决。但是必须按图纸尺寸要求进行拉深时,用其他方法解决的例子也很多。 ② rd、rc过小。 由于该缺陷是在方筒角部半径(rc)过小时发生的,所以就应增大rc。凹模圆角半径(rd)小而进行深拉深时,也有产生壁破裂的危险。如果产生破裂,就要好好研磨(rd),将其加大 (2)冲压条件。 ① 压边力过大。 只要不起皱,就可降低压边力。如果起皱是引起破裂的原因,则降低压边力必须慎重。如果在整个凸缘上发生薄薄的折皱,又还在破裂地方发亮,那就可能是由于缓冲销高度没有加工好,模具精度差,压力机精度低,压边圈的平

冲压件的缺陷及其预防措施

冲压件的缺陷及其预防措施 1.废品产生的原因: A原材料质量低劣; B冲模的安装调整、使用不当; C操作者没有把条料正确的沿着定位送料或者没有保证条料按一定的间隙送料; D冲模由于长期使用,发生间隙变化或本身工作零件及导向零件磨损; E冲模由于受冲击振动时间过长紧固零件松动使冲模各安装位置发生相对变化; F操作者的疏忽,没有按操作规程进行操作。 2.预防废品的主要措施: A原材料必须与规定的技术条件相符合(严格检查原材料的规格与牌号,在有条件的情况下对尺寸精度和表面质量要求高的工件进行化验检查。) B对于工艺规程中所规定的各个环节应全面的严格的遵守; C所使用的压力机和冲模等工装设备,应保证在正常的工作状态下工作; D生产过程中建立起严格的检验制度,冲压件首件一定要全面检查,检查合格后才能投入生产,同时加强巡检,当发生意外时要及时处理; E坚持文明生产制度,如工件和坯件的传送一定要用合适的工位

器具,否则会压伤和擦伤工件表面影响到工件的表面质量; F在冲压过程中要保证模具腔内的清洁,工作场所要整理的有条理加工后的工件要摆放整齐。 3.冲裁件毛刺的产生产生原因 ◆冲裁间隙太大、太小或不均匀; ◆冲模工作部分刃口变钝; ◆凸模和凹模由于长期的受振动冲击而中心线发生变化,轴线不重合,产生单面毛刺。 对策 ◇保证凸凹模的加工精度和装配质量,保证凸模的垂直度和承受侧压力及整个冲模要有足够的刚性;◇在安装凸模时一定要保证凸凹模的正确间隙并使的凸凹模在模具固定板上安装牢固没,上下模的端面要与压力机的工作台面保持相互平行。 ◇要求压力机的刚性要好,弹性变形小,道轨的精度以及垫板与滑块的平行度等要求要高; ◇要求压力机要有足够的冲裁力。 冲裁件剪裂断面允许毛刺的高度 冲裁板材厚度>0.3>0.3-0.5>0.5-1.0>1.0-1.5>1.5-2.0 新试模毛刺高度≤0.015≤0.02≤0.03≤0.04≤0.05 生产时允许的毛刺高度≤0.05≤0.08≤0.10≤0.13≤0.15 4冲裁件产生翘曲变形原因:有间隙作用力和反作用力不在一条线上产生力矩。(凸凹模间隙过大及凹模刃口带有反锥度时,或

冲压件常见质量缺陷及原因分析,整改对策

有用!最全的冲压件缺陷产生原因及其预防措施 一、图片展示 常见的缺陷有9类,分别是:开裂、叠料、波浪、拉毛、变形、毛刺、缺料、尺寸不符、坑、包以及压伤。

二、冲压件缺陷原因及预防 1.冲压废品 1)原因: 原材料质量低劣; 冲模的安装调整、使用不当; 操作者没有把条料正确的沿着定位送料或者没有保证条料按一定的间隙送料;冲模由于长期使用,发生间隙变化或本身工作零件及导向零件磨损; 冲模由于受冲击振动时间过长紧固零件松动使冲模各安装位置发生相对变化;操作者的疏忽,没有按操作规程进行操作。

2)对策: 原材料必须与规定的技术条件相符合(严格检查原材料的规格与牌号,在有条件的情况下对尺寸精度和表面质量要求高的工件进行化验检查。); 对于工艺规程中所规定的各个环节应全面的严格的遵守; 所使用的压力机和冲模等工装设备,应保证在正常的工作状态下工作; 生产过程中建立起严格的检验制度,冲压件首件一定要全面检查,检查合格后才能投入生产,同时加强巡检,当发生意外时要及时处理;>前沿数控技术微信不错,记得关注。 坚持文明生产制度,如工件和坯件的传送一定要用合适的工位器具,否则会压伤和擦伤工件表面影响到工件的表面质量; 在冲压过程中要保证模具腔内的清洁,工作场所要整理的有条理加工后的工件要摆放整齐。 2.冲裁件毛刺 1)原因: 冲裁间隙太大、太小或不均匀; 冲模工作部分刃口变钝; 凸模和凹模由于长期的受振动冲击而中心线发生变化,轴线不重合,产生单面毛刺。 2)对策: 保证凸凹模的加工精度和装配质量,保证凸模的垂直度和承受侧压力及整个冲模要有足够的刚性; 在安装凸模时一定要保证凸凹模的正确间隙并使凸凹模在模具固定板上安装牢固,上下模的端面要与压力机的工作台面保持相互平行; 要求压力机的刚性要好,弹性变形小,道轨的精度以及垫板与滑块的平行度等要求要高; 要求压力机要有足够的冲裁力; 冲裁件剪裂断面允许毛刺的高度冲裁板材厚 度>0.3>0.3-0.5>0.5-1.0>1.0-1.5>1.5-2.0 新试模毛刺高度≤0.015≤0.02≤0.03≤0.04≤0.05 生产时允许的毛刺高度≤0.05≤0.08≤0.10≤0.13≤0.15 3.冲裁件产生翘曲变形 1)原因: 有间隙作用力和反作用力不在一条线上产生力矩。(凸凹模间隙过大及凹模刃口带有反锥度时,或顶出器与工件接触面积太小时产生翘曲变形)。 2)对策: 冲裁间隙要选择合理; 在模具结构上应增加压料板(或托料板)板材与压料板平面接触并有一定的压力; 检查凹模刃口如发现有反锥度则必须将冲模刃口修整合适;

冲裁件质量缺陷的分析和解决措施

冲裁件质量缺陷的分析和解决措施 由于各种原因,冲裁件会出现许多质量缺陷,工艺人员应及时分析质量缺陷产生的原因,提出解决的方法,才能保证冲裁件达到质量要求。本文对实际生产中易于出现的冲裁件质量缺陷进行了分析,并提出了解决措施。 标签:冲裁件质量缺陷解决措施 0 引言 冲裁是冲压工艺中最基本的工序之一,它在冲压生产中所占比例非常大,有着十分重要的地位,冲裁不仅可以直接制出成品零件,还可以为弯曲、拉深、成形等其他工序制备坯料,或作为这些工序的后续工序。 1 冲裁件的质量 冲裁件的质量包括断面质量、工件形状、尺寸精度、表面平直度等。冲裁件的质量不仅影响成品制件的精度要求,而且也影响后续工序的顺利进行,所以对冲裁件有较高的质量要求。冲裁过程中,由于各方面的原因,冲裁件往往会出现这样或那样的质量缺陷,工艺人员应及时分析质量缺陷产生的原因,提出解决的方法,才能保证冲裁件达到质量要求。 2 冲裁件缺陷分析及解决措施 2.1 断面质量分析及解决措施(图1) a图中塌角较小,光面所占比例较宽,毛刺较小,断面量好。是符合质量要求的冲裁断面质量。 b图中出现了二次剪切,产生了两个光亮面,并且毛面及塌角都较少,只要无夹层或夹层不深,工件可使用。如二次剪切在第二光亮带处存在潜裂纹或夹层较深,影响断面质量,则需要消除二次剪切面。其方法是扩大冲裁间隙,可通过研磨凸模或凹模来增大间隙。具体研磨哪一个,需测量冲裁件的尺寸,根据图纸上的公差来确定。 c图中工件上部形成倒锥形齿状毛刺。产生的原因是凸、凹模间隙过小,产生了挤长的毛刺。解决的措施是调整凸、凹模间隙,修磨凸、凹模刃口。 d图中工件上有较厚的拉断毛刺,切断面上有显著的斜度,断面粗糙,两面裂纹不重合,断面的凹进现象。产生的原因是凸、凹模间隙过大。解决措施是更换凸模或凹模,使间隙合理。 e图中工件一边有较大的带斜度的毛刺,而另一边较小。产生的原因是凸模与

拉伸模具常见缺陷及解决办法

拉伸模的常见缺陷及解决办法凸模肩部相应部位裂纹 由于材料的强度不够,当拉深载荷达到材料破断载荷时就会发生此缺陷。缺陷部位产生于凸模肩R相应的部位(rp处),即比冲撞痕线更接近rp的部分。破裂部分的冲撞痕线,因与其他部位不同,可以对下面几种情况进行观察检查:或者被延展;或者在凸缘的上下面有发亮的部分;或者产生折皱。另外,在侧壁上有时也有发亮的部分。初期横向破裂,呈舌状。 原因及消除方法: (1)制品形状。①拉深深度过大。目前,圆筒、方筒深拉深的极限是在设计阶段确定的。从而,在极限附近进行拉深时,要用表面光洁、平整的材料,综合模具配合和研磨,加工润滑油,缓冲压力,压力机精度等现场条件,进行试验拉深。②凸模半径(rp)过小。a 将rp修正到适当值。b图纸上的rp过小时,首先按适当值进行拉深,然后再增加一道工序,成形所需尺寸。③凹模尺寸(rd)过小。 a 将rd修正到适当值。b 图纸上的rd过小时,首先用适当rd值进行拉深,然后再增加一道工序,成形到所需尺寸。④方筒的角部半径(rc)过小。 a 将拉深深度减小;b 多增加一道拉深工序;c 换成更高级的材料;d 将板料厚度增加。 (2)冲压条件。①压边力过大。压边力过大时,在凸缘面上不会发生起皱。防皱压板面粗糙度,模具配合,间隙,rp,rd,加工油的种类和涂敷条件,缓冲销造成的压边力分布等,都影响防皱压力。如果有关拉深的上述这些条件都合适的话,压边力就会下降,在起皱之前,不会发生破裂。压边力过大时,由于凸缘面会全面发亮,所以很容易判断。

②润滑不良。拉深加工与润滑有极为密切的关系,特别是包含有减薄拉深加工时,必须控制制品温度的升高。如果是条件好的拉深加工,润滑油的选择不成什么问题;条件不好的拉深加工,如果润滑油选择不当,就会引起破裂。 ③毛坯形状不良。在试拉深阶段,决定毛坯形状是重要的工作之一。必须将毛坯形状限制在最小尺寸。当用方形毛坯进行圆筒拉深时,极限拉深率为0.58左右。另外,如果拉深率过于严苛,rp部位的伤痕会产生破裂,如进行切角,就可防止破裂。拉深方筒时可先用方坯进行,这样可以制造出漂亮的制品,但是如果达到拉深极限,在rcp附近就会产生破裂。如果已经破裂,可将毛坯的四角切去一部分。但如果切多了的话,就会产生凸缘起皱,成为产生壁裂纹的原因。 ④毛坯定位不好。即使毛坯形状良好,但如果调整位置不好,或者放置方位不对,这时,凸模与毛坯产生错位,也会产生破裂或起皱。另外,用500吨油压机,对较大尺寸的拉深件成形时(材料是SUS304),使用粘度低的油就可进行深拉深。当使用粘度高的油进行深拉深时,拉深到高度的1/4,rp部位就会破裂。不锈钢与软钢板相比较,容易受到速度的影响,但如进行充分的冷却和润滑,在实际操作中,其他方面的问题比速度问题更重要。当进行高速冲裁时,即使使用一般间隙,切口的全部剪切面都是非常理想的。 ⑤模具安装不良。该缺陷是由模具安装不良,上下模不对中所造成的。近来,几乎所有的模具都备有导向装置,由于模具不对中产生的故障已很少见。 ⑥缓冲销的长短不齐。缓冲销在使用过程中,由于出现压弯,冲击伤痕等,往往变得长短不一,拉深过程中,缓冲销长的部分,由于受到集中载荷而破裂。为了对缓冲销的长短不一进行检查,在模具调整阶段,用手来回摇销,长销由于集中承受压边圈的重量,而变得很重,这是很容易理解的。

拉伸模具常见缺陷及解决办法

拉伸模的常见缺陷及解决办法 凸模肩部相应部位裂纹 由于材料的强度不够,当拉深载荷达到材料破断载荷时就会发生此缺陷。缺陷部位产生于凸模肩R相应的部位(rp处),即比冲撞痕线更接近rp的部分。破裂部分的冲撞痕线,因与其他部位不同,可以对下面几种情况进行观察检查:或者被延展;或者在凸缘的上下面有发亮的部分;或者产生折皱。另外,在侧壁上有时也有发亮的部分。初期横向破裂,呈舌状。原因及消除方法: (1)制品形状。①拉深深度过大。目前,圆筒、方筒深拉深的极限是在设计阶段确定的。从而,在极限附近进行拉深时,要用表面光洁、平整的材料,综合模具配合和研磨,加工润滑油,缓冲压力,压力机精度等现场条件,进行试验拉深。 ②凸模半径(rp)过小。a 将rp修正到适当值。b图纸上的rp过小时,首先按适当值进行拉深,然后再增加一道工序,成形所需尺寸。③凹模尺寸(rd)过小。 a 将rd修正到适当值。b 图纸上的rd过小时,首先用适当rd值进行拉深,然后再增加一道工序,成形到所需尺寸。④方筒的角部半径(rc)过小。a 将拉深深度减小;b 多增加一道拉深工序; c 换成更高级的材料; d 将板料厚度增加。 (2)冲压条件。①压边力过大。压边力过大时,在凸缘面上不会发生起皱。防皱压板面粗糙度,模具配合,间隙,rp,rd,加工油的种类和涂敷条件,缓冲销造成的压边力分布等,都影响防皱压力。如果有关拉深的上述这些条件都合适的话,压边力就会下降,在起皱之前,不会发生破裂。压边力过大时,由于凸缘面会全面发亮,所以很容易判断。 ②润滑不良。拉深加工与润滑有极为密切的关系,特别是包含有减薄拉深加工时,必须控制制品温度的升高。如果是条件好的拉深加工,润滑油的选择不成什么问题;条件不好的拉深加工,如果润滑油选择不当,就会引起破裂。 ③毛坯形状不良。在试拉深阶段,决定毛坯形状是重要的工作之一。必须将毛坯形状限制在最小尺寸。当用方形毛坯进行圆筒拉深时,极限拉深率为0.58左右。另外,如果拉深率过于严苛,rp部位的伤痕会产生破裂,如进行切角,就可防止破裂。拉深方筒时可先用方坯进行,这样可以制造出漂亮的制品,但是如果达到拉深极限,在rcp附近就会产生破裂。如果已经破裂,可将毛坯的四角切去一部分。但如果切多了的话,就会产生凸缘起皱,成为产生壁裂纹的原因。 ④毛坯定位不好。即使毛坯形状良好,但如果调整位置不好,或者放置方位不对,这时,凸模与毛坯产生错位,也会产生破裂或起皱。另外,用500吨油压机,对较大尺寸的拉深件成形时(材料是SUS304),使用粘度低的油就可进行深拉深。当使用粘度高的油进行深拉深时,拉深到高度的1/4,rp部位就会破裂。不锈钢与软钢板相比较,容易受到速度的影响,但如进行充分的冷却和润滑,在实际操作中,其他方面的问题比速度问题更重要。当进行高速冲裁时,即使使用一般

不锈钢板拉深时缺陷分析及解决措施

龙源期刊网 https://www.doczj.com/doc/477415860.html, 不锈钢板拉深时缺陷分析及解决措施 作者:李树强 来源:《科学与财富》2017年第19期 摘要:不锈钢拉深开裂是拉深处理中遇到的主要问题之一,为提高拉深制品制作水平, 保障制品的加工质量,文章通过试样的检测实验,研究分析了不锈钢板拉深时产生开裂缺陷的原因,并提供不锈钢板拉伸防开裂的有效措施。 关键词:不锈钢;裂缝原因;解决措施 1 引言 不锈钢制品由于其美观的外表和良好的综合性能,在国民经济各行各业中被广泛使用,与人们的日常生活息息相关。但在拉深过程中硬化严重,易出现粘模、起皱、开裂现象,使成品率降低,影响不锈钢拉深制品表面质量。文章就通过试验研究,对不锈钢拉深制品开裂原因及预防展开分析。 2 试样的截取及试验方法 在本实验研究中,送检的材料材质为201不锈钢拉深制品,见图1。对送检的拉深延迟开裂试样进行宏观检测、采集宏观图片,选取典型部位截取试样,试样截取示意图见图2。 截取金相试样,磨制、抛光后在GX51金相显微镜上进行夹杂物和组织检测;截取开裂部位的断口试样,利用XL-30扫描电子显微镜进行电镜能谱分析;利用TMV-1显微硬度计进行硬度检测。 3 试验结果 3.1 宏观检验 经宏观检测试样存在两条与拉深方向相同的裂纹,裂纹长度约为拉深深度的二分之一,靠近口部的裂纹均止于加热后表面氧化呈深蓝色的区域。经测量口部经热处理的部位厚度在 0.45~0.5mm,而开裂部位厚度为0.4mm。 3.2 显微硬度检测 通过对拉深件口部和中间开裂部位进行显微硬度检测,检测结果见表1。由表1可知中间开裂部位较口部经热处理的部位硬度高。 3.3 金相分析

相关主题
文本预览
相关文档 最新文档