当前位置:文档之家› 大学物理8章作业教学文案

大学物理8章作业教学文案

大学物理8章作业教学文案
大学物理8章作业教学文案

大学物理8章作业

第八章波动光学

(一) 光的干涉

答案在最后

一. 选择题

1. 波长为λ的单色平行光垂直照射在薄膜上,经上下两表面

反射的两束光发生干涉,如图所示,若薄膜的厚度为e,且

,则两束反射光的光程差为

(A)

(B)

(C)

(D)

2. 如图示,波长为λ的单色光,垂直入射到双缝,若P点是

在中央明纹上方第二次出现的明纹,则光程差为

(A) 0 (B) λ

(C) 3λ/2 (D) 2 λ

3. 在双缝干涉实验中,屏幕上的P点处是明条纹,若将缝

盖住,并在连线的垂直平分面处放一高折射率介质反射

面M,如图示,则此时

(A) P点处仍为明条纹

(B) P点处为暗条纹

(C) 不能确定P点处是明条纹还是暗条纹

(D) 无干涉条纹

4. 双缝干涉中,若使屏上干涉条纹间距变大,可以采取

(A) 使屏更靠近双缝

(B) 使两缝间距变小

(C) 把两个缝的宽度稍稍调窄

(D) 用波长更短的单色光入射

5. 波长为λ的单色光垂直入射到折射率为n的透明薄膜上,薄膜放在空气中,要使反射光干涉加强,薄膜厚度至少为

(A) λ /2 (B) λ /2n

(C) λ /4 (D) λ /4n

6. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射,若上面的平玻璃慢慢向上平移,则干涉条纹

(A) 向棱边方向平移,条纹间距变小

(B) 向棱边方向平移,条纹间距变大

(C) 向棱边方向平移,条纹间距不变

(D) 向远离棱边方向平移,条纹间距不变

(E) 向远离棱边方向平移,条纹间距变小

7. 在图示三种透明材料构成的牛顿环装置中,用单色光垂

直照射,再反射光中看到干涉条纹,则在接触点处形成的圆斑

(A) 全明

(B) 全暗

(C) 右半边明,左半边暗

(D) 右半边暗,左半边明

8. 在迈克耳逊干涉仪的一条光路中放入折射率为n的透明薄膜后,观察到条纹移动6条,则薄膜的厚度是

(A) 3λ (B) 3λ /n

(C) 3λ /(n-1) (D) 6λ /n

二. 填空题

9. 有两种获得相干光的基本方法,它们是__________________和___________________.

10. 两同相位相干点光源、,发出波长为λ的光,A是它们连线中垂线上的一点,在

与A间插入厚度为e折射率为n的薄玻璃片,两光源发出的光到达A点时光程差为

______________,相位差为____________________.

11. 杨氏双缝干涉实验中,双缝间距为d,屏距双缝的间距为D(D >>d),测得中央明条纹与第三级明条纹间距为x,则入射光的波长为_____________________.

12. 一双缝干涉装置,在空气中观察时干涉条纹间距为1mm ,若将整个装置放入水中,干涉条纹的间距变为_________________mm .(设水的折射率为4/3)

13. 波长为λ的单色光垂直照射到两块平玻璃片构成的劈尖上,测得相邻明条纹间距为l ,若将劈尖夹角增大至原来的2倍,间距变为__________________.

14. 用λ=600nm 的平行单色光垂直照射空气牛顿环装置时,第四级暗环对应的空气膜厚度为______________μm .

三. 计算题

15. 在双缝干涉实验中,两个缝分别用和的厚度相同的薄玻璃片遮着,在

观察屏上原来的中央明纹处,现在为第5级明纹,若入射光的波长为nm 600,求玻璃片的厚

度.

16. 用白光入射到mm 25.0 d 的双缝,距缝50cm 处放置屏幕,问观察到第一级明纹彩色带有多宽?

17. 一薄玻璃片,厚度为μm

4.0,折射率为1.50,用白光垂直照射,问在可见光范围内,哪些波长的光在反射中加强?哪些波长的光在透射中加强?

18. 波长为680nm的平行光垂直地照射到12cm长的两块玻璃片上,两玻璃片一边相互接触,另一边被厚0.048mm的纸片隔开. 试问在这12cm内呈现多少条明条纹?

(二) 光的衍射、偏振

一. 选择题

1. 光的衍射现象可以用

(A) 波传播的独立性原理解释

(B) 惠更斯原理解释

(C) 惠更斯-菲涅耳原理解释

(D) 半波带法解释

2. 在单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射到宽为a =4 λ的单缝上,对应衍射角为30o的方向,单缝处波面可分成的半波带数目为

(A) 2个 (B) 4个

(C) 6个 (D) 8个

3. 单缝衍射中,若屏上P点满足,则该点为

(A) 第二级暗纹

(B) 第三级暗纹

(C) 第二级明纹

(D) 第三级明纹

4. 利用波动光学试验可测细丝的直径,通常采用下述实验的哪种

(A) 牛顿环 (B) 劈尖干涉

(C) 劈尖干涉和杨氏双缝干涉 (D) 单缝衍射或衍射光栅

5. 某元素的特征光谱中含有波长和的谱线,在光栅光谱中两种谱线有重叠现象,重叠处谱线的级次是

(A) 2、3、4、5…

(B) 2、5、8、11…

(C) 2、4、6、8…

(D) 3、6、9、12…

6. 波长的单色光垂直入射于光栅常数的平面衍射光栅上,可能观察到的光谱线的最大级次为

(A) 2 (B) 3

(C) 4 (D) 5

7. 一束光强为的自然光垂直穿过两个偏振片,两偏振片的偏振化方向成45o角,则穿过两个偏振片后的光强I为

(A)

(B)

(C)

(D)

8. 一束光自空气斜入射至的玻璃表面时,发现没有反射光,由此可以判断

(A) 入射光为完全线偏振光,入射角为

(B) 入射光为完全线偏振光,入射角为

(C) 入射光为任意光,入射角为

大学物理 1章作业 answers

第一章质点运动学 一. 选择题 1.某质点作直线运动的运动方程为(SI),则该质点做 (A) 匀加速直线运动,加速度沿x轴正方向 (B) 匀加速直线运动,加速度沿x轴负方向 (C) 变加速直线运动,加速度沿x轴正方向 (D) 变加速直线运动,加速度沿x轴负方向 2.小球沿斜面向上运动,运动方程为(SI),则小球运动到最高点的时刻是 (A) (B) (C) (D) 3.质点沿x轴作变速运动,加速度,已知时质点位于坐标原点且速度为零,则其运动方程为 (A) (B) (C) (D) 4.运动质点某瞬时位于位矢的端点处,其速度大小为 (A) (B) (C)(D) 5.一质点沿直径为 d 的圆周运动一周,运动过程中,位移的最大值和所走路程的最大值分别为 (A), (B), (C),(D),

6.质点做半径为R的变速圆周运动,v表示任一时刻的速率,其加速度大小为 (A) (B) (C)(D) 7. 下列说法正确的是 (A) 质点作圆周运动时加速度指向圆心 (B) 匀速率圆周运动的加速度为恒量 (C) 只有切向加速度的运动一定是直线运动 (D) 只有法向加速度的运动一定是圆周运动 二.填空题 8. 描述质点运动状态和运动状态变化的物理量是_______________和__________,二者关系的数学表示式为_________________.(速度,加速度,) 9.已知质点运动方程为,则速度随时间t变化的函数关系为 ________________,时的加速度为____________.(,) 10.质点以加速度做直线运动,k为常数,设初速度为,则质点速度与时间的 关系是__________________________.() 11.质点做半径为R的圆周运动,运动方程为(SI),则t时刻质点法向加速度 a n=_______________,角加速度=______________.(,2 rad/s2 )

大学物理第7章习题

o b a c d 班级 学号 姓名 第7-1 磁场 磁感应强度 磁场对运动电荷的作用 一.选择题 1. 一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则( ) (A )两粒子的电荷必然同号; (B )粒子的电荷可以同号也可以异号; B (C )粒子的动量必然不同; (D )粒子的运动周期必然不同。 2. 图为四个带电粒子在0点沿相同的方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是( ) (A )oa (B )ob B (C )oc (D )od 二.计算题 3.图所示为一个电子通过大小为1B 和2B 的两个均匀磁场区域的路径。它在每个区域中的路径都是半圆,(a )哪个磁场较强?(b )两个磁场各是什么方向?(c )电子在1B 的区域中所花费的时间是大于、小于、还是等于在2B 的区域中所花费的时间?

4.在图中,一带电粒子进入均匀磁场B 的区域,通过半个圆,然后退出该区域。该粒子是质子还是电子。它在该区域内度过130ns 。(a )B 的大小是多少?(b )如果粒子通过磁场被送回(沿相同的初始路径),但其动能为原先的2倍。则它在磁场内度过多长时间? 5. 一质子以速度71 0 1.010m s υ-=??射入 1.5B T =的匀强磁场中,其速度方向与磁场方 向成30角,计算:(1)质子螺旋运动的半径;(2)螺距;(3)旋转频率。 (质子质量2719 1.6710, 1.610e m kg e C --=?=?)

大学物理7章作业分析

第七章机械波 一. 选择题 1. 机械波的表示式为(SI),则 (A) 其振幅为3m (B) 其波速为10m/s (C) 其周期为1/3s (D) 波沿x轴正向传播 2. 一平面简谐波沿x轴正向传播,时波形图如图示, 此时处质点的相位为 (A) 0 (B) π (C) π/2 (D) - π/2 3. 频率为100Hz、波速为300m/s的简谐波,在传播方向上有两点同一时刻振动相位差为π/3,则这两点相距 (A) 2m (B) 21.9m (C) 0.5m (D) 28.6m 4. 一平面简谐波在介质中传播,某瞬时介质中某质元正处于平衡位置,此时它的能量为 (A) 动能最大,势能为零 (B) 动能为零,势能最大 (C) 动能为零,势能为零 (D) 动能最大,势能最大 5. 一平面简谐波在弹性介质中传播,下述各结论哪个是正确的? (A) 介质质元的振动动能增大时,其弹性势能减小,总机械能守恒 (B) 介质质元的振动动能和弹性势能做周期性变化,但二者的相位不相同 (C) 介质质元的振动动能和弹性势的相位在任一时刻都相同,但二者的数值不相等 (D) 介质质元在其平衡位置处弹性势能最大 6. 两相干波源S1、S2发出的两列波长为λ的同相位波列在P点相遇,S1到P点的距离是r1,S2到P点的距离是r2,则P点干涉极大的条件是 (A) (B) (C) (D)

7. 两相干波源S 1和S2相距λ/4(λ为波长),S1的相位比S2的相位超前,在S1、S2连线上,S1外侧各点(例如P点)两波干涉叠加的结果是 (A) 干涉极大 (B) 干涉极小 (C) 有些点干涉极大,有些点干涉极小 (D)无法确定 8. 在波长为λ的驻波中,任意两个相邻波节之间的距离为 (A) λ (B) 3λ/4 (C) λ/2 (D) λ/4 二. 填空题 9. 一声波在空气中的波长是0.25m,传播速度时340m/s,当它进入另一种介质时,波长变成了0.37m,则它在该介质中的传播速度为__________________. 10. 平面简谐波沿x轴正向传播,波动方程为,则处质点的振动方程为_________________,处质点与处质点振动的相位差为_______. 11. 简谐波沿x轴正向传播,传播速度为5m/s ,原点O振动方程为 (SI),则处质点的振动方程为_____________________. 12. 一平面简谐波周期为2s,波速为10m/s,A、B是同一传播方向上的两点,间距为5m,则A、B两点的相位差为_______________. 13. S1、S2是两个相干波源,已知S1初相位为,若使S1S2连线中垂线上各点均干涉相消,S 2的初相位为_______________. 14. 如图,波源S1、S2发出的波在P点相遇,若P点的合振 幅总是极大值,则波源S1的相位比S2的相位领先 _____________________. 三. 计算题

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

大学物理5章作业

第五章热力学基础 答案在最后 一.选择题 1.下列说法正确的是 (A) 热传递可以使系统内能发生变化,而做功不能 (B)做功与热传递都可以使系统内能发生变化 (C) 做功与热传递微观本质是一样的 (D) 做功与热传递均与具体过程无关 2. 一系统从外界吸收一定热量,则 (A) 系统的内能一定增加 (B) 系统的内能一定减少 (C) 系统的内能一定保持不变 (D) 系统的内能可能增加,也可能减少或保持不变 3. 用公式(式中为定体摩尔热容,视为常量,为气体摩尔数)计算理想气体内能增量时,此式 (A) 只适用于准静态的等体过程 (B) 只适用于一切等体过程 (C) 只适用于一切准静态过程 (D) 适用于一切始末态为平衡态的过程 4.一定量氧气经历等压膨胀过程,其对外做的功与从外界吸收的热量之比为 (A) (B) (C) (D) 5. 一定量理想气体从同一状态出发体积由V1膨胀至V2,经历的过程分别是:等压过程,

等温过程,绝热过程,其中吸热最多的过程是 (A) 等压过程 (B) 等温过程 (C) 绝热过程 (D) 几个过程吸热一样多 6. 两个卡诺热机共同使用同一低温热源,但高温热源的温度不同,在V p 图上,它们的循环曲线所包围的面积相等,则 (A) 两热机的效率一定相等 (B) 两热机从高温热源吸收的热量一定相等 (C) 两热机向低温热源放出的热量一定相等 (D) 两热机吸收的热量与放出的热量(绝对值)的差值一定相等 7. 在温度为427℃和27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为 (A) 28.6% (B) 93.7% (C) 57.1% (D) 46.9% 8. 由热力学第二定律可知 (1)对任何热力学过程,功可以完全变为热,而热不能完全变为功 (2)一切热机的效率不可能为100% (3)热不能从低温物体向高温物体传递 (4)气体能自由膨胀,但不能自动收缩 以上说法正确的是 (A) (1)(2) (B) (2)(3)(4) (C) (2)(4) (D) 全正确 二. 填空题

大学物理六七章作业

第六章机械振动 一. 选择题 1. 一弹簧振子,水平放置时做简谐振动,若把它竖直放置或放在一光滑斜面上,下列说法正确的是 (A) 竖直时做简谐振动,在斜面上不做简谐振动 (B) 竖直时不做简谐振动,在斜面上做简谐振动 (C) 两种情况下都做简谐振动 (D) 两种情况下都不做简谐振动 2. 质点沿x轴做简谐振动,振动方程用余弦函数表示,若时,质点过平衡位置且向x轴负方向运动,则它的振动初相位为 (A) 0 (B) (C) (D) 3. 两个质点各自做简谐振动,它们的振幅、周期相同,第一个质点的振动方程为 ,当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处,则第二个质点的振动方程为: (A) (B) (C) (D) 4. 质点沿x轴做简谐振动,振动方程为,从t = 0时刻起,到质点位置在x = -2cm处,且向x轴正方向运动的最短时间间隔为 (A) (B) (C) (D) 5. 质点做简谐振动,振幅为A,初始时刻质点的位移为,且向x轴正向运动,代表此简谐振动的旋转矢量图为

(A) (B) (D) (C) 6. 图示为质点做简谐振动的曲线,该质点的振动方程为 (A) ) cm (B) ) cm (C) ) cm (D) ) cm 7. 一弹簧振子做简谐振动,总能量为E0,如果振幅增加为原来的两倍,则它的总能量为 (A) (B) (C) (D) 8. 一弹簧振子做简谐振动,当位移为振幅的一半时,其动能为总能量的 (A) (B) (C) (D) (E) 9. 两个简谐振动,,,且,合振动的振幅为 (A) (B) (C) (D) 二. 填空题 10. 一弹簧振子,弹簧的弹性系数为k,物体的质量为m,则该系统固有圆频率为_________,故有振动周期为_____________.

大学物理第8章稳恒磁场课后习题及答案

第8章 稳恒磁场 习题及答案 6. 如图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线,其半径为R 。若通以电流I ,求O 点的磁感应强度。 解:O 点磁场由AB 、C B 、CD 三部分电流产生,应用磁场叠加原理。 AB 在O 点产生的磁感应强度为 01 B C B 在O 点产生的磁感应强度大小为 R I B 402 R I R I 123400 ,方向垂直纸面向里 CD 在O 点产生的磁感应强度大小为 )cos (cos 4210 03 r I B )180cos 150(cos 60cos 400 R I )2 31(20 R I ,方向垂直纸面向里 故 )6 231(203210 R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。已知圆环的粗细均匀,求环中心O 的磁感应强度。 解:圆心O 点磁场由直电流 A 和 B 及两段圆弧上电流1I 与2I 所产生,但 A 和 B 在O 点 产生的磁场为零。且 21221R R I I 电阻电阻 1I 产生的磁感应强度大小为 )( 241 01R I B ,方向垂直纸面向外 2I 产生的磁感应强度大小为 R I B 4202 ,方向垂直纸面向里 所以, 1) 2(21 21 I I B B 环中心O 的磁感应强度为 0210 B B B 8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。 解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。 以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。在载流平板上取dx a I dI ,dI 在P 点产生的磁感应强度大小为 x dI dB 20 dx ax I 20 ,方向垂直纸面向里 P 点的磁感应强度大小为

大学物理4章作业

第四章气体动理论 答案在最后 一. 选择题 1.一个容器内储有1mol氢气和1mol氧气,处于平衡态.若两种气体各自对器壁产生的压强为p1和p2,则两者关系是 (A) p1p2 (B) p1p2 (C) p1p2 (D) 不确定 2. 关于温度的意义,下列说法中错误的是 (A) 气体的温度是分子平均平动动能的量度 (B) 气体的温度是大量气体分子热运动的集体表现,具统计意义 (C) 温度反映了物质内部分子运动的剧烈程度 (D) 从微观上看,气体的温度表示每个气体分子的冷热程度 3. 温度、压强相同的氦气和氧气,它们分子的平均动能和平均平动动能有如下关系 (A) 平均动能和平均平动动能都相等 (B) 平均动能相等,而平均平动动能不相等 (C) 平均平动动能相等,而平均动能不相等 (D) 平均动能和平均平动动能都不相等 4. 容器内装有N1个单原子理想气体分子和N2个刚性双原子理想气体分子,当该系统处在温度为T的平衡态时,其内能为 (A) (B) (C)

(D) 二.填空题 5. 1mol氦气,分子热运动的总动能为,则氦气的温度T=___________. 6. 1mol氦气和1mol氧气,温度升高1K,则两种气体内能的增加值分别为________________和____________. 7. 的物理意义是_________________________________________. 8. 由能量按自由度均分定理,设气体分子为刚性分子,分子自由度为i,则温度为T时,一个分子的平均动能为______________;一摩尔氧气分子的转动动能总和为____________. 三.计算题 300,求:(1)气体的分子数密 9. 一容器内储有氢气,其压强为Pa ,温度为K 01 10 .15 度;(2)气体的质量密度。 第四章气体动理论参考答案 一. 选择题 1. (C) 2. (D) 3. (C) 4. (A) 二.填空题 5.( 400K ) 6.( 12.5J ;20.8J ) 7.( 温度为T时,自由度为5的气体分子的平均动能 ) 8. ( ,RT )

大学物理7章作业上课讲义

大学物理7章作业

第七章机械波 一. 选择题 1. 机械波的表示式为(SI),则 (A) 其振幅为3m (B) 其波速为10m/s (C) 其周期为1/3s (D) 波沿x轴正向传播 2. 一平面简谐波沿x轴正向传播,时波形图如图 示,此时处质点的相位为 (A) 0 (B) π (C) π/2 (D) - π/2 3. 频率为100Hz、波速为300m/s的简谐波,在传播方向上有两点同一时刻振动相位差为π/3,则这两点相距 (A) 2m (B) 21.9m (C) 0.5m (D) 28.6m 4. 一平面简谐波在介质中传播,某瞬时介质中某质元正处于平衡位置,此时它的能量为 (A) 动能最大,势能为零 (B) 动能为零,势能最大 (C) 动能为零,势能为零 (D) 动能最大,势能最大 5. 一平面简谐波在弹性介质中传播,下述各结论哪个是正确的? (A) 介质质元的振动动能增大时,其弹性势能减小,总机械能守恒 (B) 介质质元的振动动能和弹性势能做周期性变化,但二者的相位不相同 (C) 介质质元的振动动能和弹性势的相位在任一时刻都相同,但二者的数值不相等 (D) 介质质元在其平衡位置处弹性势能最大 6. 两相干波源S1、S2发出的两列波长为λ的同相位波列在P点相遇,S1到P点的距离是r1,S2到P点的距离是r2,则P点干涉极大的条件是 (A)

(B) (C) (D) 7. 两相干波源S1和S2相距λ/4(λ为波长),S1的相位比S2的相位超前,在S1、S2连线上,S1外侧各点(例如P点)两波干涉叠加的结果是 (A) 干涉极大 (B) 干涉极小 (C) 有些点干涉极大,有些点干涉极小 (D)无法确定 8. 在波长为λ的驻波中,任意两个相邻波节之间的距离为 (A) λ (B) 3λ/4 (C) λ/2 (D) λ/4 二. 填空题 9. 一声波在空气中的波长是0.25m,传播速度时340m/s,当它进入另一种介质时,波长变成了0.37m,则它在该介质中的传播速度为__________________. 10. 平面简谐波沿x轴正向传播,波动方程为,则处质点的振动方程为_________________,处质点与处质点振动的相位差为_______. 11. 简谐波沿x轴正向传播,传播速度为5m/s ,原点O振动方程为 (SI),则处质点的振动方程为_____________________. 12. 一平面简谐波周期为2s,波速为10m/s,A、B是同一传播方向上的两点,间距为 5m,则A、B两点的相位差为_______________. 13. S1、S2是两个相干波源,已知S1初相位为,若使S1S2连线中垂线上各点均干涉

大学物理 1-5章作业参考解

1-2章作业 1-4.一质点的运动学方程为2x t =,()21y t =-(SI )。试求:(1)质点的轨迹方程;(2)在2t =s 时,质点的速度和加速度。 [解] (1) 由质点的运动方程 2t x = (1) ()21-=t y (2) 消去参数t ,可得质点的轨迹方程 ( ) 2 1-= x y (2) 由(1)、(2)对时间t 求一阶导数和二阶导数可得任一时刻质点的速度和加速度 t t x v 2d d x == ()12d d y -==t t y v 所以 ()j i j i v 122y x -+=+=t t v v (3) 2d d 22x ==t x a 2d d 22y ==t y a 所以 j i a 22+= (4) 把2s =t 代入式(3)、(4),可得该时刻质点的速度和加速度. j i v 24+= j i a 22+= 1-8.质点沿x 轴运动,已知228t v +=,当8=t s 时,质点在原点左边52m 处(向右为x 轴正向)。试求: (1)质点的加速度和运动学方程; (2)质点的初速度和初位置; (3)分析质点的运动性质。 [解] (1) 质点的加速度 t t v a 4/d d == 又 t x v /d d = 所以 t v x d d = 对上式两边积分,得 ??? +==t t t v x d )28(d d 2 所以 c t t x ++=3)3/2(8 由题知 5283 2 8838-=+?+?==c x t m

所以 c = 3 1457m 因而质点的运动方程为 33 283 1457t t x ++-= (2) m/s 802820=?+=v m 3 1 4570-=x (3) 质点沿x 轴正方向作变加速直线运动,初速度为8m ?s -1,初位置为-4573 1 m. 1-9.一物体沿x 轴运动,其加速度与位置的关系为x a 62+=。物体在0x =处的速度为10m ?s -1,求物体的速度与位置的关系。 [解] 根据链式法则 x v v t x x v t v a d d d d d d d d === ()x x x a v v d 62d d +== 对上式两边积分并考虑到初始条件,得 ()?? += x v x x v v 0 10 d 62d 故物体的速度与位置的关系为 100462++=x x v s m 1-10.在重力和空气阻力的作用下,某物体下落的加速度为Bv g a -=,其中g 为 重力加速度,B 为与物体的质量、形状及媒质有关的常数,并设0=t 时物体的初速度为零。试求: (1)物体的速度随时间变化的关系式; (2)当加速度为零时的速度(称为收尾速度)值。 [解] (1) 由t v a /d d =得 t Bv g v d d =- 两边积分,得 ? ?=-t Bv g v d d 即 c Bt Bv g ln )ln(+-=- 由t =0时v =0 得 c=g 所以,物体的速率随时间变化的关系为: )1(Bt e B g v --=

大学物理6,7章作业答案

第六章 机械振动参考答案 一. 选择题 1. ( C ) 2. ( B ) 3.( D ) 4. ( D ) 5. ( B ) 6. ( D ) 7. ( D ) 8. ( D ) 9. ( C ) 二. 填空题 10. ( , ) 11. ( ; ; ) 12. ( ; ) 13. ( ) 14. ( 0 ) 三. 计算题 15. 质量为10g 的小球与轻弹簧组成的系统,按 cm )3 8cos(5.0π π+=t x 的规律振动, 式中t 的单位为S 。 试求: (1)振动的圆周期、周期、初相、速度及加速度的最大值; (2)t =1s 、2s 时的相位各为多少? 解:(1)将原式与简谐振动的一般表达式 比较 圆频率 ,初相 ,周期 速度最大值 加速度最大值 (2) 相位 将 代入,得相位分别为 .

16. 一质点沿x 轴作简谐振动,平衡位置在x 轴的原点,振幅cm 3=A ,频率Hz 6=ν。 (1)以质点经过平衡位置向x 轴负方向运动为计时零点,求振动的初相位及振动方程; (2)以位移 cm 3-=x 时为计时零点,写出振动方程. 解: (1) 设振动方程为 当t =0, x =0, 做旋转矢量图,可得初相位 振动方程为 (2) 当t =0 , x = -3cm , 做旋转矢量图,可得初相位 所以振动方程为 17. 在一轻弹簧下端悬挂 砝码时,弹簧伸长8cm ,现在此弹簧下端悬挂 的物体,构成弹簧振子。将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 初 速度(设这时t = 0)令其振动起来,取x 轴向下,写出振动方程。 解: 设振动方程为 由 ,可知 振幅A 初相位由旋转矢量图可得 振动方程为

大学物理8章作业

第八章波动光学 (一) 光的干涉 答案在最后 一. 选择题 1. 波长为λ的单色平行光垂直照射在薄膜上,经上下两表面 反射的两束光发生干涉,如图所示,若薄膜的厚度为e,且 ,则两束反射光的光程差为 (A) (B) (C) (D) 2. 如图示,波长为λ的单色光,垂直入射到双缝,若P点是 在中央明纹上方第二次出现的明纹,则光程差为 (A) 0 (B) λ (C) 3λ/2 (D) 2 λ 3. 在双缝干涉实验中,屏幕上的P点处是明条纹,若将缝 盖住,并在连线的垂直平分面处放一高折射率介质反射面 M,如图示,则此时 (A) P点处仍为明条纹 (B) P点处为暗条纹 (C) 不能确定P点处是明条纹还是暗条纹 (D) 无干涉条纹 4. 双缝干涉中,若使屏上干涉条纹间距变大,可以采取 (A) 使屏更靠近双缝 (B) 使两缝间距变小 (C) 把两个缝的宽度稍稍调窄 (D) 用波长更短的单色光入射 5. 波长为λ的单色光垂直入射到折射率为n的透明薄膜上,薄膜放在空气中,要使反射光干涉加强,薄膜厚度至少为

(A) λ /2 (B) λ /2n (C) λ /4 (D) λ /4n 6. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射,若上面的平玻璃慢慢向上平移,则干涉条纹 (A) 向棱边方向平移,条纹间距变小 (B) 向棱边方向平移,条纹间距变大 (C) 向棱边方向平移,条纹间距不变 (D) 向远离棱边方向平移,条纹间距不变 (E) 向远离棱边方向平移,条纹间距变小 7. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直 照射,再反射光中看到干涉条纹,则在接触点处形成的圆斑为 (A) 全明 (B) 全暗 (C) 右半边明,左半边暗 (D) 右半边暗,左半边明 8. 在迈克耳逊干涉仪的一条光路中放入折射率为n的透明薄膜后,观察到条纹移动6条,则薄膜的厚度是 (A) 3λ (B) 3λ /n (C) 3λ /(n-1) (D) 6λ /n 二. 填空题 9. 有两种获得相干光的基本方法,它们是__________________和___________________. 10. 两同相位相干点光源、,发出波长为λ的光,A是它们连线中垂线上的一点,在 与A间插入厚度为e折射率为n的薄玻璃片,两光源发出的光到达A点时光程差为______________,相位差为____________________. 11. 杨氏双缝干涉实验中,双缝间距为d,屏距双缝的间距为D(D >>d),测得中央明条纹与第三级明条纹间距为x,则入射光的波长为_____________________. 12. 一双缝干涉装置,在空气中观察时干涉条纹间距为1mm,若将整个装置放入水中,干涉条纹的间距变为_________________mm.(设水的折射率为4/3) 13. 波长为λ的单色光垂直照射到两块平玻璃片构成的劈尖上,测得相邻明条纹间距为l,

大学物理作业

第4章 真空中的静电场 4-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。 解:建立如图所示的直角坐标系o-xy ,在半环上任取d l =Rd θ的线元,其上所带的电荷为 则 2 2r e r πε= r r 外E 0q 4 4-9 如图所示,厚度为d 的“无限大”均匀带电平板,体电荷密度为ρ,求板内外 的电场分布。 解:带电平板均匀带电,产生的电场具有面对称性,因而可以应用高斯定理求解。作一柱形高斯面,其侧面与板面垂直;两底面s 和板面平行,且到板中心平面的距离相等,用x

表示。 (1) 平板内(2 d x < ) 1 1 10 2d 2S S x E S ρψε?=?==?E S r r ? 得 10 E x ρ ε= ,方向垂直板面向外。 3 2 123304S Q Q E dS E r πε+?==?r r ? 12304r Q Q E e πε+=r r (2)求各区域的电势 (a) 1r R <

1221 2 1 2112 11232 00 44R R R r R R R R Q Q Q V E dr E dr E dr dr dr r πεπε∞∞ +=?+?+?=?+????? ?r r r r r r 得 12 10 12 1( 4Q Q V R R πε= + R r ≤时:10 2R R r r V E dr rdr ε=?= ?? )(4220 r R -= ε 习题7-10图

R r >时: 22202S R l E dS E rl ρππε?==?r r ?2202n R E e r ρε→=r r 2 20 2R R r r R dr V E dr r ρε=?= ? ? r r r R R ln 202ερ= 空间电势分布并画出电势分布曲线大致如图。

大学物理 章作业解

7-3.在体积为2.0×10-3m 3的容器中,有内能为6.75×102 J 的刚性双原子分子理想气体。求: (1)气体的压强;(2)设分子总数为5.4×1022个,则分子的平均平动动能及气体的温度。 [解](1)理想气体的内能kT i N E 2 ?=(1) 理想气体的压强kT V N nkT p = =(2) 由(1)、(2)两式可得53 2 1035.110251075.6252?=????==-V E p Pa (2)由kT i N E 2 ?=则362104.51038.151075.625222232=??????==-kN E T K 又2123105.73621038.12 323--?=???==kT w J 7-4.容器内储有氧气,其压强为p =1.01×105Pa ,温度为t =27℃。试求: (1)单位体积内的分子数; (2)分子的平均平动动能。 解:(1)由nkT p = (2)J 1021.63001038.12 3232123--?=???==kT w

7-5.容器内某理想气体的温度T =273K ,压强p =1.00×10-3atm ,密度为3 1.25g m ρ-=?, 求:(1)气体的摩尔质量;(2)气体分子运动的方均根速率;(3)气体分子的平均平动动能和转动动能;(4)单位体积内气体分子的总平动动能;(5)0.3mol 该气体的内能。 [解](1)由RT pV ν= 所以4931025.110013.11000.13333 5 32 =?????===--ρp m kT v m (2)气体的摩尔质量 所以该气体是2N 或CO (3)气体分子的平均平动动能 气体分子的转动动能 (4)单位体积内气体分子的总平动动能 (5)该气体的内能 8-3.一定量的理想气体,其体积和压强依照V =a 的规律变化,其中a 为已知常 数。试求: (1)气体从体积V 1膨胀到V 2所作的功; (2)体积为V 1时的温度T 1与体积为V 2时的温度T 2之比。 解:??? ? ??-===? ?21222112 1 21 V V a dv v a pdv A v v v V

最新大学物理第8章试卷答案

第8章电磁感应作业题答案 一、选择题 1. 圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上,当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。 (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动。 (C) 铜盘上有感应电流产生,铜盘中心处电势最高。 (D) 铜盘上有感应电流产生,铜盘边缘处电势最高。 答案(D) 2.在尺寸相同的铁环和铜环所包围的面积中穿过相同变化率的磁通量,则两环中A.感应电动势相同,感应电流相同; B.感应电动势不同,感应电流不同; C.感应电动势相同,感应电流不同; D.感应电动势不同,感应电流相同。 答案(C) 3.两根无限长的平行直导线有相等的电流,2. 但电流的流向相反如右图,而电流的变化 率均大于零,有一矩形线圈与两导 线共面,则 A.线圈中无感应电流; B.线圈中感应电流为逆时针方向; C.线圈中感应电流为顺时针方向; D.线圈中感应电流不确定。 答案: B (解:两直导线在矩形线圈处产生的磁场方向均垂直向里,且随时间增强,由楞次定律可知线圈中感应电流为逆时针方向。) 4.如图所示,在长直载流导线下方有导体细棒,棒与直导线垂直且共面。(a)、(b)、(c)处有三个光滑细金属框。今使以速度向右滑动。设(a)、(b)、(c)、(d)四种情况下在细棒中的感应电动势分别为?a、?b、?c、?d,则

A.?a =?b =?c ?d C.?a =?b =?c =?d D.?a >?b

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。 1 R I B 80μ= 方向 垂直纸面向外 2 R I R I B πμμ2200- = 方向 垂直纸面向里 3 R I R I B 4200μπμ+ = 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。试求圆筒内部的磁感应强度。 解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2 作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B 的 大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直, 在de , cd fe ,上各点0=B .应用安培环路定理 ∑??=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00== 圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.

67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。 解:) (22r R I J -= π 1012 1 r J B ?= μ 2022 1 r k J B ?-=μ j Ja O O k J r r J B B 021******** 21)(2 1 μμμ=?=-?= += r R Ia ) (22 2 0-= πμ 68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

大学物理习题答案第五章

[习题解答] 5-1 作定轴转动的刚体上各点的法向加速度,既可写为a n= v2 /R,这表示法向加速度的大小与刚体上各点到转轴的距离R成反比;也可以写为a n= ω2 R,这表示法向加速度的大小与刚体上各点到转轴的距离R成正比。这两者是否有矛盾?为什么? 解没有矛盾。根据公式 ,说法向加速度的大小与刚体上各点到转轴的距离R成反 比,是有条件的,这个条件就是保持v不变;根据公式 ,说法向加速度的大小与刚体上各 点到转轴的距离R成正比,也是有条件的,条件就是保持ω不变。 5-2一个圆盘绕通过其中心并与盘面相垂直的轴作定轴转动,当圆盘分别在恒定角速度和恒定角加速度两种情况下转动时,圆盘边缘上的点是否都具有法向加速度和切向加速度?数值是恒定的还是变化的? 解 (1)当角速度ω一定时,切向速度也是一定的,所以切向加速度 , 即不具有切向加速度。而此时法向加速度 , 可见是恒定的。 (2)当角加速度一定时,即 恒定,于是可以得到 , 这表示角速度是随时间变化的。由此可得

. 切向加速度为 , 这表示切向加速度是恒定的。法向加速度为 , 显然是时间的函数。 5-3 原来静止的电机皮带轮在接通电源后作匀变速转动,30s后转速达到152 rad?s-1 。求: (1)在这30 s内电机皮带轮转过的转数; (2)接通电源后20 s时皮带轮的角速度; (3)接通电源后20 s时皮带轮边缘上一点的线速度、切向加速度和法向加速度,已知皮带轮的半径为5.0 cm。 解 (1)根据题意,皮带轮是在作匀角加速转动,角加速度为 . 在30 s内转过的角位移为 . 在30 s内转过的转数为 .

大学物理第七章习题及答案word版本

第七章 振动学基础 一、填空 1.简谐振动的运动学方程是 。简谐振动系统的机械能是 。 2.简谐振动的角频率由 决定,而振幅和初相位由 决定。 3.达到稳定时,受迫振动的频率等于 ,发生共振的条件 。 4.质量为10-2㎏的小球与轻质弹簧组成的系统,按20.1cos(8)3 x t ππ=-+的规律做运动,式中t 以s 为单位,x 以m 为单位,则振动周期为 初相位 速度最大值 。 5.物体的简谐运动的方程为s ()x A in t ωα=-+,则其周期为 ,初相位 6.一质点同时参与同方向的简谐振动,它们的振动方程分别为10.1cos()4x t πω=+,20.1cos()4 x t πω=-,其合振动的振幅为 ,初相位为 。 7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为)4cos(06.01π ω+=t x ,250.05cos()4 x t πω=+,其合振动的振幅为 ,初相位为 。 8.相互垂直的同频率简谐振动,当两分振动相位差为0或π时,质点的轨迹是 当相位差为 2π或32π时,质点轨迹是 。 二、简答 1.简述弹簧振子模型的理想化条件。 2.简述什么是简谐振动,阻尼振动和受迫振动。 3.用矢量图示法表示振动0.02cos(10)6 x t π =+,(各量均采用国际单位).

三、计算题 7.1 质量为10×10-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos (8πt+2π/3)的规律做运动,式中t 以s 为单位,x 以m 为单位,试求: (1)振动的圆频率,周期,初相位及速度与加速度的最大值; (2)最大恢复力,振动能量; (3)t=1s ,2s ,5s ,10s 等时刻的相位是多少? (4)画出振动的旋转矢量图,并在图中指明t=1s ,2s ,5s ,10s 等时刻矢量的位置。 7.2 一个沿着X 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为: (1)X 0=-A ; (2)过平衡位置向正向运动; (3)过X=A/2处向负向运动; (4)过X=2A 处向正向运动。 试求出相应的初相位之值,并写出振动方程。 7.3 做简谐振动的小球速度的最大值为0.03m ·s -1,振幅为0.02m ,若令速度具有正最大值的时刻为t=0,试求: (1)振动周期; (2)加速度的最大值; (3)振动的表达式。

大学物理作业题答案

二章 2-2 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为f x =6 N ,f y =-7 N.当t =0时,x =y =0,v x =-2 m·s - 1,v y =0.求当t =2 s 时质点的位矢和速度. 解: 2s m 8 3166-?===m f a x x (1) 于是质点在s 2时的速度 (2) 2-6 一颗子弹由枪口射出时速率为v 0 m·s - 1,当子弹在枪筒内被加速时,它所受的合力为F =(a -bt )N(a ,b 为常数),其中t 以s 为单位: (1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量;(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有 0)(=-=bt a F ,得b a t = (2)子弹所受的冲量 将b a t = 代入,得 (3)由动量定理可求得子弹的质量 2-8 如题2-8图所示,一物体质量为2 kg ,以初速度v 0=3 m·s - 1从斜面A 点处下滑,它与斜面的摩擦力为8 N ,到达B 点后压缩弹簧20 cm 后停止,然后又被弹回.求弹簧的劲度系数和物体最后能回到的高度. 题2-8图 解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。则由功能原理,有 式中m 52.08.4=+=s ,m 2.0=x ,再代入有关数据,解得 再次运用功能原理,求木块弹回的高度h ' 代入有关数据,得 m 4.1='s , 则木块弹回高度 五章 5-7 试说明下列各量的物理意义. (1) 12 kT ; (2)32kT ; (3)2i kT ; (4)2mol M i M RT ; (5) 2i RT ; (6) 32 RT . 解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k 2 1 T . (2)在平衡态下,分子平均平动动能均为 kT 2 3.

大学物理活页作业答案

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-== ?? sin cos 2 t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 32 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2020 2 121ky v C --= )(22 22y y k v v o o -+= ωt h s

相关主题
文本预览
相关文档 最新文档