当前位置:文档之家› 钢结构梁柱刚性节点抗震设计

钢结构梁柱刚性节点抗震设计

钢结构梁柱刚性节点抗震设计
钢结构梁柱刚性节点抗震设计

浅谈钢结构梁柱刚性节点抗震设计摘要:本文首先论述了钢结构梁柱节点的基本特性,进而论述了梁柱刚性节点的主要处理形式,第三论述了梁柱节点连接时的规定,最后详细论述了钢结构梁柱刚性节点设计建议。

关键词:钢结构;梁柱;刚性连接节点;抗震设计

梁柱刚性连接节点设计是钢结构整个设计工作中的一个非常重要的组成部分,因其设计得是否恰当将直接影响到钢结构承载力的安全性和可靠性。当前,随着钢结构日益广泛的应用,为了避免出现人员伤亡和财产损失,对钢结构梁柱节点抗震设计进行深入的研究已经迫在眉睫。

1钢结构梁柱节点的基本特性

1.1刚性连接节点,从保证构件原有的力学特性来说,在连接节点处应保证其原有的完全连续性。这种构造能使所连接的构件之间夹角在达到承载能力之前不发生变化,其连接强度应不低于被连接构件的屈服强度。

1.2半刚性连接节点,能保证其承载力等于或大于构件的承载力,但由于所采用的连接方法和细部构造设计的关系,致使连接节点的弹性刚度比构件的弹性刚度低,这样的节点形式作为设计要求一般不采用。

1.3铰接连接节点,从理论上讲是完全不能承受弯矩的连接节点,因而一般不能用于构件的拼接连接。铰接连接节点通常只用于构件端部的连接,比如柱脚、梁、析架和网架杆件的端部连接等。

钢框架结构梁柱刚性节点抗震设计

钢框架结构梁柱刚性节点抗震设计 摘要:本文主要探讨了钢框架结构梁柱刚性节点抗震设计。 关键词:钢框架结构;梁柱;刚性连接节点;抗震设计 1引言 在钢框架结构的设计过程中,梁柱刚性节点的设计是其中一项重要的设计内容,梁柱刚性节点设计工作是否合理和可行,对钢框架结构稳定性产生着重要的影响,因此要做好梁柱刚性节点的设计工作,为钢框架结构的稳定性提供保障。在社会生产力不断发展和进步的基础上,钢结构的使用范围和使用数量都呈现着逐渐上涨的趋势。为了给建筑工程的经济效益和社会效益提供保障,要将钢结构梁柱刚性节点的设计工作落实到位。 2钢结构梁柱节点的基本特性 2.1刚性连接点 为了使构件原本的力学特征得到保留,对于连接节点位置的完全连接性,要使其不发生任何变化,避免连接节点的完全连接形受到影响。使用这种构造,可以保证构件之间的夹角保持稳定的夹角度数,保证构件具有一定的承载能力,也为构建的连接强度提供保障。 2.2半刚性连接节点 对于半刚性连接节点而言,一般情况下,要使其承载能力不小于构件的承载能力,但是由于受到一些因素的影响,例如:半刚性节点的连接方法不恰当、细部构造设计不合理等等,导致半刚性连接节点的弹性刚度不理性,即其弹性刚度没有构件的弹性刚度好,因此在实际的情况中,一般不会使用半刚性连接节点的设计方式。 2.3铰接连接节点 对于铰接连接节点而言,从理论的角度考虑,铰接连接节点对于弯矩的情况,则完全不能够承担,所以在构件拼接连接的过程中,通常都不会使用铰接连接节点的设计方式。一般情况下,在构件端部连接的过程中会使用铰接连接,例如:柱脚之间的连接和梁之间的连接等等。 2.4螺栓连接计算

钢结构节点

1.梁与柱的刚性连接 (1)梁与柱刚性连接的构造形式有三种,如图所示: (2)梁与柱的连接节点计算时,主要验算以下内容: ①梁与柱连接的承载力 ②柱腹板的局部抗压承载力和柱翼缘板的刚度 ③梁柱节点域的抗剪承载力 (3)梁与柱刚性连接的构造 ①框架梁与工字形截面柱和箱形截面柱刚性连接的构造: 框架梁与柱刚性连接 ②工字形截面柱和箱形截面柱通过带悬臂梁段与框架梁连接时,构造措施有两种: 柱带悬臂梁段与框架梁连接

梁与柱刚性连接时,按抗震设防的结构,柱在梁翼缘上下各500mm的节点范围内,柱翼缘与柱腹板间或箱形柱壁板间的组合焊缝,应采用全熔透坡口焊缝。 (4)改进梁与柱刚性连接抗震性能的构造措施 ①骨形连接 骨形连接是通过削弱梁来保护梁柱节点。 骨形连接 梁端翼缘加焊楔形盖板 梁端翼缘加焊楔形盖板 在不降低梁的强度和刚度的前提下,通过梁端翼缘加焊楔形盖板。 (5)工字形截面柱在弱轴与主梁刚性连接 当工字形截面柱在弱轴方向与主梁刚性连接时,应在主梁翼缘对应位置设置柱水平加劲肋,在梁高范围内设置柱的竖向连接板,其厚度应分别与梁翼缘和腹板厚度相同。柱水平加劲肋与柱翼缘和腹板均为全熔透坡口焊缝,竖向连接板与柱腹板连接为角焊缝。主梁与柱的现场连接如图所示。 2梁与柱的铰接连接

(1)梁与柱的铰接连接分为:仅梁腹板连接、仅梁翼缘连接: 仅梁腹板连接仅梁翼缘连接 柱上伸出加劲板与梁腹板相连梁与柱用双盖板 相连 (2)柱在弱轴与梁铰接连接分为:柱上伸出加劲板与梁腹板相连、梁与柱用双盖板相连 柱的拼接节点一般都是刚接节点,柱拼接接头应位于框架节点塑性区以外,一般宜在框架梁上方1.3m左右。考虑运输方便及吊装条件等因素,柱的安装单元一般采用三层一根,长度10~12m 左右。根据设计和施工的具体条件,柱的拼接可采取焊接或高强度螺栓连接。 按非抗震设计的轴心受压柱或压弯柱,当柱的弯矩较小且不产生拉力的情况下,柱的上下端应铣平顶紧,并与柱轴线垂直。柱的25%的轴力和弯矩可通过铣平端传递,此时柱的拼接节点可按75%的轴力和弯矩及全部剪力设计。抗震设计时,柱的拼接节点按与柱截面等强度原则设计。 非抗震设计时的焊缝连接,可采用部分熔透焊缝,坡口焊缝的有效深度不宜小于板厚度的 1/2。有抗震设防要求的焊缝连接,应采用全熔透坡口焊缝。

钢结构节点图

钢结构节点图 Document number:PBGCG-0857-BTDO-0089-PTT1998

门式刚架横梁与立柱连接节点,可采用端板竖放、平放和斜放三种形式(图、b 、c )。斜梁与刚架柱连接节点的受拉侧,宜采用端板外伸式,与斜梁端板连接的柱的翼缘部位应与端板等厚度;斜梁拼接时宜使端板与构件外边缘垂直 (图),应采用外伸式连接,并使翼缘内外螺栓群中心与翼缘中心重合或接近。 屋面梁与摇摆柱连接节点应设计成铰接节点,采用端板横放的顶接连接方式(图)。 屋面梁与混凝土柱采用锚栓连接(图),该连接节点应为铰接节点,锚栓及底板设计同铰接柱脚。 吊车梁承受动力荷载,其构造和连接节点须满足以下规定: 4 吊车梁与制动梁的连接,可采用高强度摩擦型螺栓连接或焊接。吊车梁与刚架上柱的 (a) 端板竖放 (b)端板平放 (c)端板斜放 (d)斜梁拼接 图 刚架连接节点 图 屋面梁和混凝土柱连接节点 (a) (b) (a) (b) (c) 图 屋面梁和摇摆柱连接节点

连接处宜设长圆孔(图);吊车梁与牛腿处垫板采用焊接连接(图);吊车梁之间应采用高强螺栓连接。 用于支承吊车梁的牛腿可做成等截面,当也可做成变截面(图);柱在牛腿上下翼缘的相应位置处应设置横向加劲肋;为保证传力均匀,在牛腿上翼缘吊车梁支座处应设置垫板,垫板与牛腿上翼缘连接采用围焊;为避免较大的局部承压应力,在吊车梁支座对应的牛腿腹板处应设置横向加劲肋。 牛腿与柱连接处承受剪力V 和弯矩 GB50017 在设有夹层的结构中,夹层梁与柱可采用刚接,也可采用铰接(图)。当采用刚接连接时,夹层梁翼缘与柱翼缘应采用全熔透焊接,而腹板可采用高强螺栓与柱 图 吊车梁连接节点 (a) 吊车梁与上柱连接 (b) 吊车梁与牛腿连接 图 牛腿节点 (a)等截面牛腿 (b)变截面牛腿

高层建筑钢结构节点的设计原理分析

2012年6月(下)建筑科学科技创新与应用 高层建筑钢结构节点的设计原理分析 魏春敏 (昌黎县住房保障和房产管理局,河北秦皇岛066600) 钢结构是由构件和节点构成的。即使每个构件都能满足安全使用的要求,如果节点设计处理不恰当,连接节点的破坏,也常会引起整个结构的破坏。连接节点破坏是钢结构地震破坏的常见形式之一。1994年1月美国北岭地震后,调查了1000多栋钢结构房屋建筑,有100多栋建筑的梁柱连接破坏,其中80%以上破坏发生在梁的下翼缘连接。1995年1月日本阪神地震后的调查发现,部分钢结构也出现了梁柱连接破坏的震害,破坏位置主要在扇形切角工艺孔端部。可见,要使结构能够满足预定功能的要求,正确的节点设计与构件设计,两者具有同等的重要性。 1节点的连接方式 高层钢结构的节点连接可采用焊接、高强度螺栓连接,也可以采用焊接与高强度螺栓的栓焊混合连接。 1.1焊接连接 焊接连接的传力最充分,有足够的延性,但焊接连接存在较大的残余应力,对节点的抗震设计不利。焊接连接可采用全熔透或部分熔透焊缝。但对要求与母材等强的连接和框架节点塑性区段的焊接连接,应采用全熔透的焊接连接。 1.2高强度螺栓连接 高层钢结构承重构件的高强度螺栓连接应采用摩擦型。高强度螺栓连接施工方便,但连接尺寸过大,材料消耗较多,因而造价较高,且在大震下容易产生滑移。 1.3栓焊混合连接 栓焊混合连接在高层钢结构中应用最普遍,一般受力较大的翼缘部分采用焊接,腹板采用高强度螺栓连接。这种连接可以兼顾两者的优点,在施工上也具有优越性。由于施工时一般先用螺栓定位然后对翼缘施焊,此时栓接部分承载力应考虑先栓后焊的温度影响乘以折减系数0.9。 2梁与柱连接节点的设计 梁与柱的连接一般可分为三类:其一,铰接连接,这种连接柱身只承受梁端的竖向剪力,梁与柱轴线间的夹角可以自由改变,节点的转动不受约束;其二,刚性连接,这种连接柱身在承受梁端竖向剪力的同时,还将承受梁端传递的弯矩,梁与柱轴线间的夹角在节点转动时保持不变;其三,半刚性连接,介于铰接连接和刚性连接之间,这种连接除承受端传来的竖向剪力外,还可以承受一定数量的弯矩,梁与柱轴线间的夹角在节点转动时将有所改变,但又受到一定程度的约束。在实际工程中,理想的刚性连接是很少存在的。 2.1梁与柱节点的连接与极限承载力要求 钢框架一般采用柱贯通型,较少采用梁贯通型。抗震设计时,钢框架和钢支撑框架的梁柱连接应为刚接。工程中常用的方法有两种:①梁与柱直接连接;②在柱上焊接悬臂短梁,梁与悬臂短梁拼接。后一种连接方法对构件制作要求较高。 梁柱连接的极限受弯承载力,由翼缘全熔焊缝提供,应不小于梁的全塑性受弯承载力的1.2倍;极限受剪承载力,由腹板连接提供,应不小于梁跨中作用集中荷载时梁端达全塑性受弯承载力对应的梁端剪切力的1.3倍,且不小于梁腹板的屈服受剪承载力。系数1.2和1.3是考虑梁钢材的实际屈服强度可能高于标准值。 2.2梁与柱连接节点的抗震构造 梁与工字形截面柱的翼缘或箱形截面柱直接连接时,应符合下列抗震构造要求:梁翼缘与柱翼缘之间采用全熔透坡口焊缝,8度乙类建筑和9度时,应检验V形切口的冲击韧度,其恰帕冲击韧度在-20℃时不低于27J;柱在梁翼缘对应位置设置横向加劲肋,加劲肋的厚度不小于梁翼缘的厚度,6度抗震设防时,可以通过计算适当减小加劲肋的厚度,但不小于梁翼缘厚度的一半;梁腹板采用摩擦型高强度螺栓通过连接板与柱连接。腹板角部设置扇形切角,其端部与梁翼缘的全熔透焊缝应避开,当梁翼缘的塑性截面模量小于梁全截面塑性模量的70%时,梁腹板与柱的连接螺栓不得少于两列,当计算公需一列时,仍应布置两列,且此时螺栓总数不得少于计算值的1.5倍。 3次梁与主梁连接节点的设计 次梁与主梁的连接有铰接和刚接两种。若次梁按简支梁或连续梁计算,但在连接节点处只传递次梁的竖向支座反力,其连接为铰接。若次梁按连续计算,连接节点除传递次梁的竖向支座反力外,还能同时传递次梁的端弯矩,其连接为刚接。 次梁与主梁的铰接形式按其连接相对位置的不同,可分为叠接和平接两种。 3.1梁在工地的拼接,主要用于柱带悬臂梁段与梁的连接,其拼接形式有:翼缘采用全熔透焊缝连接;腹板用摩擦型高强度螺栓连接,翼缘和腹板均采用摩擦型高强度螺栓连接;翼缘和腹板均采用全熔透焊缝连接。 3.2次梁与主梁的连接宜采用铰接连接,按次梁的剪力设计,并考虑连接偏心产生的附加弯矩,可不考虑主梁受扭。 3.3抗震设防时,为防止框架横梁的侧向屈曲,框架横梁下翼缘在节点塑性区段应设置侧向支撑构件。由于梁上翼缘和楼板连在一起,所以只需在互相垂直的主梁下翼缘设置侧向隔撑,此时隔撑可起到支撑两根横梁的作用。 4柱与柱连接节点的设计 柱的连接主要指工地拼接,常用的连接方法有对齐坡口焊接以及高强度螺栓与焊缝的混合连接。 4.1钢框架宜采用工字形或箱形截面柱,型钢混凝土部分宜采用工字形或十字形截面柱。 4.2箱形柱通常为焊接柱,在工厂采用自动焊接组装而成。其角部的组装焊缝应为部分熔透的V形或U形焊缝,焊缝百度不应小于板厚的1/3,并不应小于14mm。 4.3为保证柱接头的安装质量和施工安全,柱的工地拼接处应设置安装耳板临时固定。耳板厚度的确定应考虑阵风和其他施工荷载的影响,并不得小于10mm。 4.4按非抗震设防的高层建筑钢结构,当柱的弯矩较小且截面不产生拉力时,可通过上下柱接触面直接传递25%的压力和弯矩,此时柱的上下端应磨同紧,并应与柱轴线垂直。坡口焊缝的有效深度不宜小于板厚的1/2。 4.5工字形柱的工地拼接设计中,弯矩由柱翼缘和腹板承受,剪力由腹板承受,轴力由翼缘和腹板分担。翼缘通常为坡口全熔透焊缝,腹板为高强度螺栓连接。当采用全焊接接头时,上柱翼缘开V形坡口、腹板开K形坡口。 5柱脚节点的设计 柱脚的作用是将柱的下端固定于基础,并将柱身所受的内力传给基础。基础一般由钢筋混凝土做成,其强度远比钢材低。为此,需要将柱身的底端放大,以增加其与基础顶部的接触面积,使接触面上的压应力小于或等于基础混凝土的抗压强度设计值。柱脚按其与基础的连接方式不同,可分为铰接和刚接两种型式。铰接柱脚主要用于轴心受压柱。柱子轴力较小时,柱子下端直接与底板焊接。柱子压力由焊缝传给底板,由底板扩散并传给基础。柱子轴力较大时,在柱子底板上设置靴梁、隔板和肋板,底板被分隔成若干小的区格。柱子轴力通过竖向角焊缝传给靴梁,靴梁再通过水平角焊缝传给底板。刚接柱脚主要用于框架柱(压弯构件)。整体式刚接柱脚用于实腹柱和支间距离小于1.5m的格构柱。当格构柱支间距较大时,采用整体式柱脚是不经济的,这时多采用分离式柱脚,每个分支下的柱脚相当于一个轴心受力铰接柱脚,两柱脚之间用隔材联系起来。 6结束语 钢结构住宅结构体系在我国正处于一个起步阶段,国家政策的导向,高层建筑的大量兴建等为钢结构住宅结构体系的发展和应用提供了非常广阔的前景。 参考文献 [1]吴云.钢结构住宅设计研究.2009年6月出版. [2]徐占发.钢结构与组合结构.2008年3月出版. [3]赵风华.钢结构原理与设计.2010年6月出版. [4]中国机械工业教育协会组编.钢结构.2001年9月第1版. 摘要:钢结构在高层建筑中应用广泛,在全世界已建成的高层建筑中,77层以上的建筑全部采用钢结构;34层以上的建筑中,85%采用钢结构。本文分别从钢结构节点连接方式、梁与柱连接节点的设计、次梁与主梁连接节点的设计、柱与柱连接节点的设计、柱脚节点的设计等方面进行着重分析研究。 关键词:钢结构;节点;设计 226 --

钢结构常见的几种梁柱刚性连形式

钢结构常见的几种梁柱刚性连形式(1)梁与柱刚性连接的构造形式有三种,如图所示: (2)梁与柱的连接节点计算时,主要验算以下内容: ①梁与柱连接的承载力 ②柱腹板的局部抗压承载力和柱翼缘板的刚度 ③梁柱节点域的抗剪承载力 (3)梁与柱刚性连接的构造 ①框架梁与工字形截面柱和箱形截面柱刚性连接的构造:

框架梁与柱刚性连接 ②工字形截面柱和箱形截面柱通过带悬臂梁段与框架梁连接时,构造措施有两种: 柱带悬臂梁段与框架梁连接 梁与柱刚性连接时,按抗震设防的结构,柱在梁翼缘上下各500mm的节点范围内,柱翼缘与柱腹板间或箱形柱壁板间的组合焊缝,应采用全熔透坡口焊缝。 (4)改进梁与柱刚性连接抗震性能的构造措施 ①骨形连接

骨形连接是通过削弱梁来保护梁柱节点。 骨形连接 梁端翼缘加焊楔形盖板 在不降低梁的强度和刚度的前提下,通过梁端翼缘加焊楔形盖板。 (5)工字形截面柱在弱轴与主梁刚性连接

当工字形截面柱在弱轴方向与主梁刚性连接时,应在主梁翼缘对应位置设置柱水平加劲肋,在梁高范围内设置柱的竖向连接板,其厚度应分别与梁翼缘和腹板厚度相同。柱水平加劲肋与柱翼缘和腹板均为全熔透坡口焊缝,竖向连接板与柱腹板连接为角焊缝。主梁与柱的现场连接如图所示。 2梁与柱的铰接连接 (1)梁与柱的铰接连接分为:仅梁腹板连接、仅梁翼缘连接: 仅梁腹板连接仅梁翼缘连接

柱上伸出加劲板与梁腹板相连梁与柱用双盖板相连 (2)柱在弱轴与梁铰接连接分为:柱上伸出加劲板与梁腹板相连、梁与柱用双盖板相连 柱的拼接节点一般都是刚接节点,柱拼接接头应位于框架节点塑性区以外,一般宜在框架梁上方1.3m左右。考虑运输方便及吊装条件等因素,柱的安装单元一般采用三层一根,长度10~12m左右。根据设计和施工的具体条件,柱的拼接可采取焊接或高强度螺栓连接。 按非抗震设计的轴心受压柱或压弯柱,当柱的弯矩较小且不产生拉力的情况下,柱的上下端应铣平顶紧,并与柱轴线垂直。柱的25%的轴力和弯矩可通过铣平端传递,此时柱的拼接节点可按75%的轴力和弯矩及全部剪力设计。抗震设计时,柱的拼接节点按与柱截面等强度原则设计。 非抗震设计时的焊缝连接,可采用部分熔透焊缝,坡口焊缝的有效深度不宜小于板厚度的1/2。有抗震设防要求的焊缝连接,应采用全熔透坡口焊缝。

钢结构节点计算

“梁梁拼接全螺栓刚接”节点计算书==================================================================== 计算软件:MTS钢结构设计系列软件MTSTool v3.5.0.0 计算时间:2012年12月02日16:53:51 ==================================================================== H1100梁梁拼接全螺栓刚接 一. 节点基本资料 节点类型为:梁梁拼接全螺栓刚接 梁截面:H-1100*400*20*34,材料:Q235 左边梁截面:H-1100*400*20*34,材料:Q235 腹板螺栓群:10.9级-M20 螺栓群并列布置:10行;行间距70mm;2列;列间距70mm; 螺栓群列边距:50 mm,行边距50 mm 翼缘螺栓群:10.9级-M20 螺栓群并列布置:2行;行间距70mm;4列;列间距70mm; 螺栓群列边距:45 mm,行边距50 mm 腹板连接板:730 mm×345 mm,厚:16 mm 翼缘上部连接板:605 mm×400 mm,厚:22 mm 翼缘下部连接板:605 mm×170 mm,厚:24 mm 梁梁腹板间距为:a=5mm 节点前视图如下: 节点下视图如下:

二. 荷载信息 设计内力:组合工况内力设计值 工况N(kN) Vx(kN) My(kN·m) 抗震 组合工况1 0.0 115.4 152.3 否组合工况2 0.0 135.4 172.3 是 三. 验算结果一览 验算项数值限值结果 承担剪力(kN) 6.77 最大126 满足 列边距(mm) 50 最小33 满足 列边距(mm) 50 最大88 满足 外排列间距(mm) 70 最大176 满足中排列间距(mm) 70 最大352 满足列间距(mm) 70 最小66 满足 行边距(mm) 50 最小44 满足 行边距(mm) 50 最大88 满足 外排行间距(mm) 70 最大176 满足中排行间距(mm) 70 最大352 满足行间距(mm) 70 最小66 满足 净截面剪应力比0.066 1 满足净截面正应力比0.000 1 满足净面积(cm^2) 163 最小162 满足 承担剪力(kN) 8.93 最大140 满足 极限受剪(kN·m) 9450 最小7670 满足列边距(mm) 45 最小44 满足 列边距(mm) 45 最大88 满足

钢结构梁柱连接详图

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 1 .铰接连接 ( 1 )梁支承于柱顶时 图 6 - 45 所示为梁支承于柱顶的典型柱头构造。梁端焊接一端板(亦即梁的支承加劲肋),端板底部伸出梁的下翼缘不超过端板厚度的 2 倍。依靠端板底部刨平顶紧于柱的顶板而将梁的端部反力传给柱头。左右两梁端板间用普通螺栓相连并在其间设填板,以调整梁在加工制造中跨度方向的长度偏差。梁的下翼缘板与柱顶板间用普通螺栓相连以固定梁的位置。这种支承方式基本上使柱中心受压,可用于轴压柱的柱头构造设计。柱顶顶板用以承受由梁传下来的压力并均匀传递给整个柱截面,因而顶板必须具有一定的刚度,通常取厚度:t=20~30mrn ,不需计算。为了不使柱顶部腹板受力过分集中,在梁的端板下的柱腹板处可设置加劲肋。顶板与柱顶用角焊缝连接,并假定由此角焊缝传递全部荷载,焊脚尺寸通过计算确定。当柱腹板处设有加劲肋时,柱顶顶板焊缝的这种计算偏于保守,因这时大部分荷载将由加劲肋传递。加劲肋的连接需经计算。加劲肋顶部如刨平顶紧于柱顶板的底面,此时与顶板的焊缝按构造设置,否则其与顶板的连接角焊缝应按传力需要计算。加劲肋与柱腹板的竖向角焊缝连接要按同时传递剪力和弯矩计算,剪力为由加劲肋顶部传下之力,此力作用于每边加劲肋顶部的中点,对与柱腹板相连的竖向角焊缝有偏心而产生弯矩,参阅图 6-45 ( a )右图。 图 6-5 ( b )示一格构式柱的柱头构造,要注意的是:为了保证格构式柱两分肢受力均匀,不论是缀条柱或缀板柱,在柱顶处应设置端缀板,并在两分肢的腹板处设竖向隔板。 当梁传给柱身的压力较大时,也可采用如图 6 -45 (c)所示构造,梁端加劲肋对准柱的翼缘板,使梁的强大端部反力通过梁端加劲肋直接传给柱的翼缘,梁底可设或不设狭长垫板。但需注意,当两梁传给柱的荷载不对称时(如左跨梁有可变荷载,右跨无可变荷载),采用这种形式柱头的柱身除按轴心受压构件计算外,还应按压弯构件(偏心受压)进行验算。 ( 2 )梁支承于柱顶的两侧时 侧面连接时最常用的柱头构造如图 6-46 所示。梁端设端板,端板底面刨平顶紧支承于早已焊在柱身的托板上,托板一般采用厚钢板(厚 20-30mm )或大号角钢。要按所传压力验算端板的承压面积和托板与柱身的角焊缝连接,在后者的计算中,还应把反力适当加大(如加大 25 % 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

钢结构节点图

10.2.3 门式刚架横梁与立柱连接节点,可采用端板竖放、平放和斜放三种形式(图10.2.3a 、b 、c )。斜梁与刚架柱连接节点的受拉侧,宜采用端板外伸式,与斜梁端板连接的柱的翼缘部位应与端板等厚度;斜梁拼接时宜使端板与构件外边缘垂直(图10.2.3d ),应采用外伸式连接,并使翼缘内外螺栓群中心与翼缘中心重合或接近。 10.2.8 屋面梁与摇摆柱连接节点应设计成铰接节点,采用端板横放的顶接连接方式(图 10.2.8)。 10.2.9 10.2.11 4 );吊 10.2.12 (a)端板竖放 (b)端板平放 (c)端板斜放 (d)斜梁拼接 图10.2.3 刚架连接节点

1 圆钢支撑与刚架梁柱连接可用连接板连接(图10.2.14a );也可直接与梁柱腹板连接,但应设置垫块,宜采用角钢垫块或特制的楔形垫块(图10.2.14b 、c ),当圆钢直径大于25mm 或腹板厚度不大于5mm 时,应对支承孔周围进行加强。圆钢端部应设丝扣,待校正定位后宜采用花篮螺栓张紧。 2 型钢支撑与刚架梁柱连接宜用连接板连接(图10.2.14d );受力较大时,可设置双片柱间支撑,并双片柱间支撑间沿支撑的长度方向每隔一定距离设置连接板焊于柱间支撑。 10.2.15 系杆与刚架梁柱连接应设计成铰接节点,可采用普通螺栓连接(图10.2.15)。对于钢管系杆,钢管端部应设置封头板,对于双角钢系杆,应沿系杆长度方向每隔一定距离设置垫块以保证其协调工作。 10.2.16 隅撑与刚架构件腹板夹角不宜小于 45,宜采用单角钢制作。隅撑可连接在刚架构件受压侧附近的腹板上(图10.2.16a );也可连接在受压翼缘上(图10.2.16b );也可在靠受压侧设置连接板,隅撑连接在连接板上(图10.2.16c )。隅撑与刚架和檩条连接可采用普通螺栓,每端可设置一个螺栓。 螺栓连于刚架上,但重叠部分的檩条应采用螺栓相互连接。 2 当连接处采用连续搭接时,檩条的搭接长度2a (图10.2.17-2)及其连接螺栓的直径应 按连续檩条支座处承受的弯矩确定,且搭接长度不应小于檩条长度的10%。 ,为圆钢连接板 圆钢角钢垫块 圆钢楔形垫块连接板型钢图10.2.14 支撑与刚架梁柱连接节点 (a)圆钢用连接板连接 (b)圆钢用角钢垫块连接 (c)圆钢用楔形垫块连接 (d)型钢用连接板连接 图10.2.16 隅撑与刚架梁柱连接节点 (a)隅撑连于腹板 (b)隅撑连于翼缘 (c)隅撑连于连接板 屋架上弦 图10.2.15 系杆与刚架梁柱连接节点 (a) 钢管系杆 (b)单角钢系杆 (c)双角钢系杆

钢结构H型钢梁柱连接节点分析及施工质量控制

钢结构H型钢梁柱连接节点分析及施工质量控制 【摘要】分析了钢结构H型钢梁柱刚性连接节点分析的受力特性,针对钢结构施工中材料检验、焊接和高强螺栓连接等重要工序的施工质量提出了控制措施和检验标准。 【关键词】:钢结构连接节点高强螺栓焊接施工质量 一、引言 钢结构具有强度高、韧性好、抗震性能优良的优点,在工业和民用建筑上广泛应用。近来年,随着钢结构工程量的增加,施工中存在有许多不规范操作,如:各构件连接结构不按图施工;焊接工艺执行不规范,角焊缝长度及腰高不符合设计和规范要求,对接焊缝无损检测比例低;以及高强螺栓摩擦面处理达不到设计要求的抗滑移系数,螺栓紧固扭矩不符合设计和规范要求等等。这些施工质量缺陷会形成钢结构连接节点的薄弱环节影响其安全和使用寿命。 二、H型钢梁柱连接节点 钢结构梁柱节点连接形式设计原则是传力可靠、结构受力简单明确,满足强度和抗震性能要求,并兼顾施工方便。从受力特性而言,节点连接分为柔性连接(铰接)、半刚性连接、刚性连接等三种形式,其中,刚性连接具有具有较高的强度和刚度,在工业装置承重框架及民用建筑高层框架中最为常见,刚性连接根据受力特性又分为全焊接连接和栓焊连接、高强螺栓连接三种形式,如图1当柱为H型钢或工字钢时,梁与柱的刚性连接又分为柱墙轴方向连接和柱弱轴方向连接,强轴和弱轴连接都需在梁翼缘的对应位置设置水平加强肋。 全焊接连接(图1-a):梁翼缘与柱采用坡口全焊透焊接,梁腹板与柱采用双面角焊缝。为保证焊透,施焊时梁翼缘下面需设置小衬板,衬板反面与柱翼缘相接处宜用角焊缝补焊。为施焊方便梁腹板还要切去两角。节点结构强度和刚度最高,无滑移,传力最充分,避免了螺栓钻孔对梁截面的削弱,在同等强度下最经济。但焊接结构存在较大的焊接残余应力和变形,长期抗疲劳性较差。 焊接连接图(1-b):梁翼缘与柱采用坡口全焊透焊接,梁腹板与柱上焊接的连接板采用高强螺栓连接,梁翼缘的连接传递全部弯矩,腹板的连接只传递剪力。施工时一般采用先栓后焊,并在设计时考虑焊接热影响导致的高强螺栓顶拉力的损失。节点结构能同时承受拉力和剪力,在设计和施工上具有焊接和高强螺栓的优点,因此,在民用高层建筑框架上应用最多。

如何做好钢结构设计之节点设计

如何做好钢结构设计——节点设计 七.节点设计 节点的设计应该遵循简洁,可靠,便于施工的原则,并且要考虑当前的施工水平。发达国家的钢结构节点多考虑尽量用高强度螺栓,少用焊接,因为他们的人工费用很高,工厂加工的机械化程度和精度较高。而目前我们还达不到这一点,还是安装螺栓加焊接用得多。这是中国的特色。因此很多情况不能照搬国外。下面介绍的是笔者在工作中经常遇到的节点问题,力求对新手有所启发和帮助,偏重于构造,具体计算,都有章可循,就不赘述了。 7.1 柱脚 柱脚有多种形式,一般考虑与基础嵌固比较合适,近几年的实践证明,插入式的柱脚是一种比较好的形式。无论是设计,还是施工,都很简单。尽管有时材料会稍多一些,但如考虑加工及安装费用的节省,可能总的造价还低一些。另外还可以免去交叉施工时对地脚螺栓防护的烦恼。有一些参考图集中,柱脚要求预先焊上抗剪栓钉,笔者认为大可不必,除非是柱子受到极大的拉力。但柱脚下部加焊一块底板是必要的,一是便于找平,二是可以增加嵌固的能力,二次浇灌层的厚度宜>100mm,便于找平。按抗震规范的要求,凡是考虑抗震设防,柱脚插入深度应是两倍柱高。 7.2 操作平台 小尺寸的操作平台(如长向尺寸<5米),应按一个构件整体考虑为好,在现场地面上将整个平台焊好,然后再安装到支乘构件上,不必将平台中的每一个小梁都考虑为一个构件在高空进行现场拼装。

梁与梁的连接最常用到的是铰接。一角一板几乎是中国的经典连接方式,见图10中的(a),角钢是在工厂焊在主梁上的,它除了起连接作用外,还有定位的作用。板是用安装螺栓临时固定在次梁上,在现场用三道焊缝将次梁连接于主梁上,因此,有两条工厂焊缝,有三条工地焊缝,不可混淆。在次梁与主梁为斜交的情况,角钢的一个肢要弯折,不如改成两个板的连接,此时,位于主梁上的定位板还可以兼作加劲肋,如(b)所示。这个节点要注意,如果是用高强度螺栓连接,次梁与主梁腹板的间隙s不小于20mm即可,但是如果采用焊接,考虑施焊的可行,s则必须大于70mm,再加上螺栓的孔距80mm,因此梁要160mm以上才行。如果次梁不是太大的话,不如采用如(d)所示的节点,更为简单。许多设计手册更喜欢如(c)所示的节点,理由是次梁传来的剪力的作用点离腹板近,因此附加弯矩小一些,其实除非是主梁位于边跨,如果是中间,再考虑有铺板的情况,这一附加弯矩是很小的。如(d)所示的节点可以节省次梁材料,且加工,安装都很方便。 事实上,上面的连接都不是真正的铰接,两条垂直焊缝可以传递不小的弯矩,因此考虑次梁的剪力所产生的附加弯矩可能在大多数情况下没有什么实际意义。工程中经常遇到弯矩不大的悬臂梁,如休息平台梁,习惯的做法是在两个梁的上部加焊一条钢板,这样做铺设平台钢板的时候,要切口,而且如果是上翼缘宽度较小小型槽钢梁,钢条的尺寸会很小,此时可以用(e)的做法,简单省事。

高层钢结构连接节点设计

高层钢结构连接节点设计 【摘要】连接节点的设计是钢结构设计中重要的内容之一。节点设计应符合“二强”抗震设计准则,即“强节点弱构件、强焊缝弱钢材”。在结构分析前,必须对节点的形式有充分思考与确定,避免出现最终设计的节点与结构分析模型中使用的形式完全不一致。连接节点按传力特性不同,节点分刚接,铰接和半刚接。连接节点的不同对结构产生很大的影响。 【关键词】钢结构;节点设计;连接方法 1 节点设计应遵循原则 1.1 节点受力明确,减少应力集中,避免材料三向受拉; 1.2 节点连接设计应采用强连接弱构件的原则,不致因连接较弱而使结构破坏; 1.3 节点连接应按地震组合内力进行弹性设计,并对连接的极限承载力进行验算; 1.4 构件的连接一搬应采用与构件等强度或比等强度更高的设计原则; 1.5 简化节点构造,以便于加工及安装时容易就位和调整。 2 “二强”抗震设计准则 2.1 强节点、弱构件 对于框架、支撑等杆件,使节点的承载能力高于构件的承载能力,防止节点的破坏先于构件的破坏,是确保构件整体性的必要条件。但节点又不可过强,应允许地震时梁-柱节点区域的板件能产生一定量的剪切变形,以提高整个框架的延性。 2.2 强焊缝、弱钢材 构件焊缝的延性,一般均低于被连接板件的钢材延性,“强焊缝、弱钢材”,即要求焊缝的承载力应高于被连接钢材板件的承载力,可以使构件的屈服截面避开焊缝而位于钢板之中,从而提高构件以至整个结构的延性。 3 梁与柱的刚性连接 3.1 梁与柱的刚性连接系指节点具有足够的刚性,能使所连接构件间的夹角在达到承载力之前,实际夹角不变的接头,连接的极限承载力不低于被连接构件的屈服承载力。

钢结构二次深化设计-经验总结

钢结构二次设计 1.钢结构二次设计: 钢结构二次设计就是将施工图设计图纸转换为钢结构加工和安装的施工图纸。其主要内容包括如下: (1)构件布置图的绘制:按业主提供的施工图设计图纸,标识构件、节点编号,构件、节点所在图纸,加工和安装的技术要求。 (2)节点设计图:根据BINE提供的设计规范和构件型号确定构件之间的 连接详图,包括连接型式、螺栓规格、数量,定位,焊缝尺寸、型式、节点板尺寸。 (3)绘制车间加工图:按照构件布置图和节点设计图,以确定各组成件的型号、加工尺寸,孔规格及相互位置关系,焊缝尺寸,以便于车间加工。 (4)编制节点设计依据的计算书:根据概念设计图纸所给定的力或按设计规范确定的载荷,进行节点连接的强度计算,为连接设计提供计算依据。 上述二次设计的工作过程中,提供节点设计和计算书是二次设计工作的重要环节。 2. 钢结构连接设计 2.1 钢结构节点的连接型式: 按构件受力方式可分为单剪(铰接)连接、轴力连接、弯矩(刚接)连接,扭矩连接,组合连接等。 按构件的连接方式可分为单板连接,双板连接,单角钢连接,双角钢连接,端板连接。 按构件与构件间的连接可分为梁-梁连接,梁-柱连接及其分别带有水平支撑和垂直支撑的连接,柱拼接(包括大小柱的拼接)。 2.2 钢结构连接节点的设计要求 钢结构的节点设计应满足承载力的要求,还应具有必要的延展性,避免应力集中和过大的约束应力。同时,便于加工和安装,满足加工工艺性要求。应该注意节点的合理构造,符合经济性要求。此外还必须适应岭澳二期核电的钢结构施工要求。 岭澳二期核电工程对钢结构的加工和安装要求决定了钢构件的连接方式,由

于加工车间的焊接易于保证焊缝质量,而大批量的钢构件仅适于车间加工才能保证工程进度的要求,同时便于现场安装方便快速,因此决定了在钢结构的节点设计中,构件与构件间的连接要尽可能使用螺栓连接,除非在那些使用螺栓连接将使整个节点变得非常复杂或者被连接构件的尺寸较小、无足够的空间布置一定数量的螺栓,而采用现场焊接的连接设计。此外,对于和预埋件相连接的构件,为使其连接方便,并且便于处理预埋件定位偏差造成的影响,宜采用现场焊接。同时为便于钢构件和混凝土的固定或在浇筑混凝土时遗漏预埋件的情形下,采用HILTI膨胀螺栓连接。 2.3 钢结构连接节点的设计方法 钢结构连接中最基本的连接型式为铰接连接、刚性连接、支撑连接及柱拼接,以下就各连接型式的特点分别说明。 (1) 铰接连接 板板厚,可承受剪力和轴向力的组合荷载。同时,对于主次梁斜交连接的场合下,端板连接在加工工艺性上的优点比双角钢连接更好。

钢结构节点设计浅析

钢结构节点设计浅析 摘要:钢结构节点的设计与工程的质量有着密切的关系,本文介绍了钢结构接点设计的一般措施并提出了优化改进的途径。 关键词:钢结构;节点设计;梁柱 引言 钢结构生产具备成批大件生产和高度准确性的特点,可以采用工厂制作、工地安装的施工方法,使其生产作业面多,可缩短施工周期,进而为降低造价、提高效益创造了条件,再加上钢结构在大跨度上优势明显且轻质高强,因此,现代建筑中,钢结构的应用越来越广泛。 一、钢结构梁柱节点的基本特征 在钢结构设计时,对于钢结构的连接形式在计算模型中的确定是钢结构计算、设计必须首先解决的问题,其次要明确传力途径,然后才能将整个结构受力模型简化出来用软件进行分析计算。按照传力特征不同,节点分刚接、铰接和半刚性连接。 1、铰接连接节点,具有很大的柔性。钢梁仅在腹板处采用高强螺栓连接,上、下翼缘无需进行现场焊接。采用铰接时构造简单,使现场安装程序大为简化,现场作业量大大减小,现场安装可以不受天气及季节的影响,钢结构的安装速度大大提高。但是,铰接连接刚度和耗能性能差,对于结构抗风、抗震不利。 2、刚性连接节点,具有较高的强度和刚度。其特点是受力性能好,但构造复杂,施工难度大。设计中梁柱节点一般是做刚接,这是由于梁柱节点承受的荷载一般较大而且还要抵御风荷载和水平地震引起的位移。 3、半刚性连接节点,刚度和强度介于铰接和刚接之间。我国《钢结构设计规范》中没有给出半刚性连接的具体计算和设计方案,而且节点转动刚度很难确定。这样的节点形式在工程设计中一般很少采用。结构设计中习惯的做法是把连接当成理想刚接或者铰接,这样做能够使计算大大简化,得到的计算结果必然与实际存在偏差。目前,主要通过采用调整系数来减少这种偏差。 二、钢结构梁柱节点的一般设计 目前抗侧力框架和梁柱的抗弯连接均采用刚性方案。梁柱刚性连接的主要构造形式有3种:全焊节点、高强螺栓连接节点、栓焊混合节点。 1、全焊节点 1.1全焊节点连接形式

钢结构厂房梁柱节点设计

3.7节点设计 3.7.1梁柱节点 3.7.1.1螺栓布置及验算 采用M24 的10.9级摩擦型高强度螺栓连接,摩擦面采用喷砂处理, 45.0=μ,kN P 225=。螺栓布置如图3-70、3-71所示 图3-70 梁柱节点布置图 图3-71 梁柱节点螺栓布置图 每个螺栓的抗剪承载力设计值为 50 12510 0125125100450 5012510050757550

kN P n N f R b v 125.9122545.019.0=???==μα R α——抗力分项系数的倒数,一般取0.9; f n ——一个螺栓的传力摩擦面数。 每个螺栓的抗拉承载力设计值为 kN P N b t 1802258.08.0=?== 选取梁端最不利组合272.7299.7767.995M kN m V kN N kN =-??? ?? =????=-?? ,轴力和剪力转化 考虑轴向压力影响最上端螺栓的拉力为 () 1222272.720.175 146.8540.1750.225t i M y N kN m y ??= ==?+∑ 每个螺栓的剪力为 99.7712.478 v V N kN n = == 计算最上端螺栓的承载力为 12.47146.850.95 1.091.125180v t b b v t N N N N +=+=< 满足要求。 3.7.1.2 端板厚度设计 对于最上排螺栓,此处端板属于两边支承类,端板平齐。 ()()3665046146.85103224625045050462054f w t w f f w e e N t mm e b e e e f ????≥==?+??+?????++???? f e ——螺栓中心至翼缘板表面的距离; w e ——螺栓中心至腹板的距离; a ——螺栓间距;

高层建筑钢结构施工技术及钢结构体系梁柱的连接节点设计

龙源期刊网 https://www.doczj.com/doc/475472170.html, 高层建筑钢结构施工技术及钢结构体系梁柱的连接节点设计 作者:高月敏 来源:《世界家苑·学术》2017年第11期 摘要:高层建筑是现代城市的重要组成部分,对城市的美观性和功能性具有直接的影 响。在实际的高层建筑建设过程中,为了提高高层建筑的建设效率和建设质量,可以选择钢结构施工技术展开施工,具体的钢结构施工中,为提升工程的质量、减少施工成本,需要科学的展开钢结构体系梁柱的连接节点设计。然而,在实际的高层建筑钢结构施工中,一些问题是切实存在的,影响高层建筑结构的稳定性和安全性。故此,需要加强对钢结构施工技术的解读和分析,在有效的控制钢结构体系梁柱的连接节点设计,旨在推动高层建筑钢结构施工的效率和质量,规避质量隐患,推动高层建筑的功能性发挥。 关键词:高层建筑;钢结构施工;梁柱;连接节点 1概述 钢结构施工技术作为当前高层建筑施工中使用最为普遍的一种施工技术,这种施工技术具有施工速度快与工业化强度大的优势。当前,高层建筑钢结构施工主要包括了高层重型钢结构施工、钢和混凝土组合结构施工与大跨度空间结构施工等类型。虽然,高层建筑中使用的钢结构技术具有较为明显的优势,但是也具有一定的不足之处,主要体现在钢的性质上。钢本身作为一种金属材料,其热传递性较强,因此,高层建筑钢结构也就具有较强的热传递性。因此,高层建筑一旦发生火灾,就势必会对整个高层建筑安全造成威胁,带来难以估计的损失。因此,企业在高层建筑中使用钢结构施工技术时,应预先采取一定的安全性措施,确保高层建筑工程质量能够达到相关标准,确保企业能够获得一定的经济效益。 2高层建筑钢结构施工技术要点 2.1加强钢结构的下料中的施工监管加强钢结构的下料中的施工监管 钢结构的施工过程相对比较复杂,具有一定的施工难度,一旦某个环节出现了问题,都会使得后续的施工不能正常开展。另外,钢结构施工中,不是单纯的某种型号的施工,需要很多型号,规格的不同零件共同参与,零部件的管理虽然比较麻烦,但是他对整个工程的施工质量有着很大的影响。因此必须加强对钢结构的下料过程中的监管,确保各项管理符合施工需要求,零件质量有所保障,才能更好的为后期的施工做好基础。 2.2注意钢结构的焊接质量,注意钢结构的焊接质量

钢结构梁柱连接详图

1 .铰接连接 ( 1 )梁支承于柱顶时 图 6 - 45 所示为梁支承于柱顶的典型柱头构造。梁端焊接一端板(亦即梁的支承加劲肋),端板底部伸出梁的下翼缘不超过端板厚度的 2 倍。依靠端板底部刨平顶紧于柱的顶板而将梁的端部反力传给柱头。左右两梁端板间用普通螺栓相连并在其间设填板,以调整梁在加工制造中跨度方向的长度偏差。梁的下翼缘板与柱顶板间用普通螺栓相连以固定梁的位置。这种支承方式基本上使柱中心受压,可用于轴压柱的柱头构造设计。柱顶顶板用以承受由梁传下来的压力并均匀传递给整个柱截面,因而顶板必须具有一定的刚度,通常取厚度:t=20~30mrn ,不需计算。为了不使柱顶部腹板受力过分集中,在梁的端板下的柱腹板处可设置加劲肋。顶板与柱顶用角焊缝连接,并假定由此角焊缝传递全部荷载,焊脚尺寸通过计算确定。当柱腹板处设有加劲肋时,柱顶顶板焊缝的这种计算偏于保守,因这时大部分荷载将由加劲肋传递。加劲肋的连接需经计算。加劲肋顶部如刨平顶紧于柱顶板的底面,此时与顶板的焊缝按构造设置,否则其与顶板的连接角焊缝应按传力需要计算。加劲肋与柱腹板的竖向角焊缝连接要按同时传递剪力和弯矩计算,剪力为由加劲肋顶部传下之力,此力作用于每边加劲肋顶部的中点,对与柱腹板相连的竖向角焊缝有偏心而产生弯矩,参阅图 6-45 ( a )右图。 图 6-5 ( b )示一格构式柱的柱头构造,要注意的是:为了保证格构式柱两分肢受力均匀,不论是缀条柱或缀板柱,在柱顶处应设置端缀板,并在两分肢的腹板处设竖向隔板。 当梁传给柱身的压力较大时,也可采用如图 6 -45 (c)所示构造,梁端加劲肋对准柱的翼缘板,使梁的强大端部反力通过梁端加劲肋直接传给柱的翼缘,梁底可设或不设狭长垫板。但需注意,当两梁传给柱的荷载不对称时(如左跨梁有可变荷载,右跨无可变荷载),采用这种形式柱头的柱身除按轴心受压构件计算外,还应按压弯构件(偏心受压)进行验算。 ( 2 )梁支承于柱顶的两侧时 侧面连接时最常用的柱头构造如图 6-46 所示。梁端设端板,端板底面刨平顶紧支承于早已焊在柱身的托板上,托板一般采用厚钢板(厚 20-30mm )或大号角钢。要按所传压力验算端板的承压面积和托板与柱身的角焊缝连接,在后者的计算中,还应把反力适当加大(如加大 25 %~30 % )以考虑反力对焊缝的偏心作用。梁通过其端板还用普通粗制螺栓与柱翼缘板相连,螺栓连接不需计算,纯为固定梁的位置按构造设置,因此不能传递弯矩;梁只能是按简支考虑。这种柱头传力明确、构造简单、便于安装,但对梁的加工制造要求较严,梁的长度与两柱对应翼缘板

梁柱节点计算书

梁柱节点计算书 一、参考规范《GB50017-2003 钢结构设计规范》《GB50009-2001 建筑结构荷载规范》《CECS102:2002 门式钢架轻型钢结构设计规程》 二、构件几何信息1)梁柱几何尺寸边柱采用 Z360~900x250x8x10边梁采用h600~900x200x6x82)高强螺栓信息采用 10、9级M24摩擦型高强度螺栓连接,构件接触面采用处理方法为喷砂,摩擦面抗滑移系数μ=0、5,每个高强螺栓的预拉力为P=155kN。高强螺栓数量:15最外排螺栓到翼缘边的距离ef: 45、0mm高强螺栓到腹板边的距离ew: 50、0mm第2排螺栓和第3排螺栓间距a: 100、0mm高强螺栓排列参数第1排高强螺栓到螺栓群形心的距离x1:195mm第2排高强螺栓到螺栓群形心的距离x2:295mm 第3排高强螺栓到螺栓群形心的距离x3:395mm第4排高强螺栓到螺栓群形心的距离x4:495mm3)端板尺寸信息端板厚度 t=20mm,宽度b=260mm4)节点形式端板平放 三、材料特性材料牌号:Q345B屈服强度fy:3 45、0 MPa抗拉强度设计值f:310 MPa抗剪强度设计值f:180 MPa弹性模量E:2、06x105 MPa 四、内力设计值N=-1

33、20kN,V= 45、90kN,M=4 13、50kN?m 五、验算1)高强螺栓群承载力验算(A)高强螺栓承载力设计值高强螺栓抗拉承载力设计值Ntb=0、8P=1 80、0kN高强螺栓抗剪承载力设计值Nvb=0、9*nf*μP=0、 9x1x0、5x225=101、3kN(B)高强螺栓群承载力验算假设螺栓群在弯矩作用下绕形心转动高强螺栓最大拉力Nt=My1Σyi2-Nn= 88、94kN<0、8P=124kN螺栓抗拉满足要求。每个高强螺栓所受的剪力设计值Nv=Vn= 45、9016=2、87 kN0、4P=62Nt2/ewtw=2 30、97≤310N/mm2刚架梁腹板强度满足要求。4)节点域剪应力计算根据《技术规程》7、2、10条规定,τ=M/(db*dc*tc)= 88、6<180N/mm2,节点域剪应力满足要求。

相关主题
文本预览
相关文档 最新文档