当前位置:文档之家› 物理化学第十章界面现象

物理化学第十章界面现象

物理化学第十章界面现象
物理化学第十章界面现象

第十章界面现象

10.1 界面张力

界面:两相的接触面。

五种界面:气—液、气—固、液—液、液—固、固—固界面。(一般常把与气体接触的界面称为表面,气—液界面=液体表面,气—固界面=固体表面。)

界面不是接触两相间的几何平面!界面有一定的厚度,

有时又称界面为界面相(层)。

特征:几个分子厚,结构与性质与两侧体相均不同

比表面积:αs=A s/m(单位:㎡·㎏-1)

对于一定量的物质而言,分散度越高,其表面积就越大,表面效应也就越明显,物质的分散度可用比表面积αs来表示。

与一般体系相比,小颗粒的分散体系有很大的表面积,它对系统性质的影响不可忽略。

1. 表面张力,比表面功及比表面吉布斯函数

物质表面层的分子与体相中分子所处的力场是不同的——所有表面现象的根本原因!

表面的分子总是趋向移往内部,力图缩小表面积。液体表面如同一层绷紧了的富有弹性的橡皮膜。

称为表面张力:作用于单位界面长度上的紧缩力。单位:N/m,

方向:表面(平面、曲面)的切线方向

γ可理解为:增加单位表面时环境所需作的可逆功,称比表面功。单位:

J · m-2。

恒温恒压:

所以:

γ等于恒温、恒压下系统可逆增加单位面积时,吉布斯函数的增加,所以,γ也称为比表面吉布斯函数或比表面能。单位J · m-2

表面张力、比表面功、比表面吉布斯函数三者的数值、量纲和符号等同,但物理意义不同,是从不同角度说明同一问题。(1J=1N·m故1J·m-2=1N·m-1,三者单位皆可化成N·m-1)

推论:所有界面——液体表面、固体表面、液-液界面、液-固界面等,由于界面层分子受力不对称,都存在界面张力。

2. 不同体系的热力学公式

对一般多组分体系,未考虑相界面面积时:

当体系作表面功时,G 还是面积A的函数

在恒温、恒压、组成不变的情况下,使面积减小或表面张力减小,致系统总界面吉布斯函数减小的表面过程可以自发进行。

3.界面张力的影响因素

①物质的本性:

(1)不同的物质,分子间的作用力不同,对界面上分子的影响也不同。分子间相互作用力越大,界面分子受力不平衡程度就越大,γ越大。

一般有:γ(金属键)> γ(离子键)> γ(极性键)> γ(非极性键)

(2)固体分子间的相互作用力远远大于液体的, 固体物质要比液体物质具有更高的表面张力。

(3)两种互不混溶的液体形成液-液界面时,界面层分子所处力场取决于两种液体。所以不同液-液对界面张力不同。

②温度

T↑γ↓

③压强及其它因素:

通常每增加 1 MPa (约10 大气压)的压强,表面张力约降低 1 mN · m-1 。

10.2 弯曲液面的附加压力及其后果

1. 弯曲液面的附加压强——拉普拉斯(Laplace)方程

一般情况下,水平液面下液体所受压强即为外界压强,

水中的气泡(凹面)及小液滴(凸面),表面是弯曲的。

弯曲液面下的液体不但受到外界压强,还要受到弯曲液

面的附加压强?p 。

圆周界线上表面张力的合力对底面下液体造成额外压

力。若弯曲液面凹面一侧压强以p内表示,凸面一侧压

强用p外表示,定义附加压强:

Δp = p内-p外

Δp 总是一个正的值,它的方向指向凹面曲率半径的

中心

小结:(1)弯曲液面会产生附加压力,水平液面无附加压力;

(2)附加压力产生原因:表面张力不能相互抵消;

(3)附加压力的方向:指向弯曲液面的曲率中心。

弯曲液面附加压强Δp与液面曲率半径的关系:

因为球缺底部圆周长2πr1 ,

得垂直方向在圆周上合力为:

因为,cos α = r1/ r,球缺底面积为πr12,所以弯曲液面对单位水平面上附加压强为:

——拉普斯方拉程

表明弯曲液面附加压强与液体表面张力成正比,与曲率半径成反比。其中,曲率半径r,总取正值,Δp 指向凹面中心,总取正值。

对于气泡(空气中的肥皂泡),其有内外两个气-液界面:

2.毛细管现象

当液体在毛细管中呈弯曲液面时,管内高度≠管外高度,即管内外存在高度差。 总结:(1)水在毛细管中呈凹液面,毛细管内液面上升;

(2)水银在毛细管中呈凸液面,毛细管内液面下降。

R ——— 毛细管的半径; r ——— 液体的密度;

q ——— 液体与毛细管的接触

角;

g ——— 液体的表面张力;

h ——— 毛细管内液面上升的高度

由上式可知,在一定温度下,毛细管越细,液体的密度越小,液体对管壁的润湿越好,即接触角θ越小,液体在毛细管中上升的越高。

当液体不能润湿管壁。即θ>90°,cos θ<0时,液体在毛细管内呈凸液面,h 为负值,代表液面在管内下降的深度。 温度影响表面张力,所以h 反比于T 。

3. 微小液滴的饱和蒸气压—开尔文( Kelvin )公式

蒸气压与物质本性, 温度,组成, 压强有关,还与液滴的大小,即其曲率半径有关

V

r

γρM r γp p RT 22ln r ==*——开尔文公式

ρ - 液体密度(kg/m3); M – 液体摩尔质量(kg/mol); V m – 液体摩尔体积(m3/mol)。 滴越小,饱和蒸气压越大!

对于凹液面(或液体中的气泡),开尔文公式变为: 曲率半径越小,饱和蒸气压越小。毛细管凝结:回潮;硅胶做干燥剂

(1) 对于液滴(凸面),其蒸气压大于平面

情况下的蒸气压力,且液滴半径越小,蒸气压越大。 (2)对于气泡(凹面),其泡内蒸气压小于平面情

况下的蒸气压力,且气泡半径越小,蒸气压越低。

3. 亚稳态及新相的生成

过饱和蒸气、过饱和溶液、过冷液体、过热液体等,这些状态都是亚稳态。是热力学不完全稳定的状态。一旦新相生成,亚稳态即失去稳定,变成稳定的相态。

(1)过饱和蒸气

按相平衡条件应当凝结而未凝结的蒸气,称为过饱和蒸气。

(2)过热液体:

p

p

按照相平衡条件,应当沸腾而不沸腾的

液体,称为过热液体

(3)过冷液体:

微小晶体的凝固点,低于普通

晶体!

按照相平衡条件,应当凝固而

未凝固的液体,称为过冷液

体。

(4)过饱和溶液:

在一定温度下,溶液浓度已经超过了饱和浓度,但仍未析出晶体的溶液,称为过饱和溶液。

其产生原因是,同样温度下,小晶体溶解度大于普通晶体溶解度。小晶体不容易产生。而小晶体溶解度较大的原因是,小晶体的饱和蒸气压大于普通晶体的蒸气压。

10.3 固体表面

吸附:在相界面上,某种物质的浓度与体相浓度不同的现象

吸附只指表面效应,即气体被吸附后,只停留在固体表面,并不进入固体内部。

若气体进入到固体内部,则称为吸收。

吸附剂adsorbent:具有吸附能力的固体物质—活性炭,硅胶…

吸附质adsorbate :被吸附的物质—甲烷、氢气

吸附的热力学解释:

固体从外部空间吸引气体分子到表面,可减小表面分子受力不对称程度,从而降低表面张力及表面吉布斯函数。

固体表面的吸附的应用:

具有高比表面的多孔固体,如活性炭、硅胶等可作为吸附剂等,用于气体纯化、反应催化、环境保护。

应用吸附剂于氢气、甲烷的吸附存储,以及空气、石油气的变压吸附分离等。

1.物理吸附与化学吸附

按吸附质与吸附剂间作用力本质的不同,可将吸附分为物理吸附与化学吸附。

物理吸附-----以范德华引力相互作用

化学吸附------以化学键相结合。

物理吸附与化学吸附是共存的:

1 一个表面上,不同的吸附部位,可能有不同的吸附;

2 低温时物理吸附为主,高温时化学吸附为主。

2.等温吸附

吸附量:当吸附平衡时,吸附速率=解吸速率,单位质量吸附剂所吸附的气体的物质的量n或体积V {一般用换算成标准状况(0 ℃,101.325 kPa)下的体积}。

吸附量是温度与压强的函数。

研究中常常固定一个变量,研究其它两个变量间的关系:

1)压强(p)一定,吸附量与温度关系,吸附等压线:

2)吸附量一定,平衡压强与温度关系,吸附等量线

3)温度一定,吸附量与压强关系,吸附等温线

其中最常用的是吸附等温线。

吸附等温线大致有以下五种类型:

其中除第一种为单分子层吸附外,其余均为多分子层吸附。

3.吸附经验式—弗罗因德利希公式

中压范围内,第一类

吸附等温线:

n 在0 与1 之间,k

k ,n 的数值可由实验数据推求:

上式两边取对数: 将测得的不同p 下V a 的实验数据处理后,作lg V a- lg p 图, 斜率n,截距求k

4.朗缪尔(Langmuir )单分子层吸附理论及吸附等温式

单分子层吸附理论四个基本假设

Ⅰ.气体在固体表面上单分子层吸附。固体表面吸附力场作用范围只有分子直径大小 (0.2~0.3 nm) ,只有气体分子碰到固体空白表面,进入此力场,才可能被吸附。

Ⅱ.固体表面均匀。各个晶格位置的吸附能力相同,每个位置吸附一个分子,吸附热为常数,与覆盖率θ 无关。 Ⅲ.被吸附在固体表面的相邻分子间无作用力,在各晶格 位置上吸附与解吸难易程度,与周围有无被吸分子无关

Ⅳ.吸附和解吸(脱附)呈动态平衡。当吸附速率等于解吸速率时,从表观看,气体不再被吸附或解吸,实际上两者仍不断地进行,只是达到了吸附动态平衡。此时,固体表面有固定的覆盖率、平衡吸附量。

朗缪尔吸附等温式的推导:

覆盖率θ----任一瞬间,固体表面被覆盖的比率

V a :覆盖率是 θ 时的平衡吸附量。 a

m V

: 在压强足够高的情况下,固体表面的吸附位置完全被气体分子占据, θ

= 1 。达到吸附饱和状态,此时的吸附量称为饱和吸附量。

V

1

p /p *

吸附速率与A 的压强 p 及表面上的空位数 ( 1- θ )N 成正比。

N :固体表面上具有吸附能力的总的晶格位置数(吸附位置数)

解吸速率与固体表面上被覆盖的吸附位置数,即被吸附的分子数成正比。

动态平衡时,吸附速率与解吸速率相等:v 吸附= v 解吸 若设:1

1

-=

k k b b 为吸附作用平衡常数(吸附系数),单位pa-1。

可得:p b p b θ -1bp +=∴=1θθ

------朗缪尔吸附等温式

因为:a

m a V V θ=所以有a m a

1V V p b p b θ=+= 朗

附等

温式还可写成以下形式:

b p

1b p

V

V +=∴a

m

a

朗缪尔公式能较好地描述第I 类吸附等温线在不同压力范围内的吸附特征:

1.压强很低时,b p << 1, 为p b V V a m a =

2. 压强很高时,b p >> 1, 则有:a

m a

V V

=

3. 压强适中时,吸附量与平衡压强呈曲线关系。

N

θp k v )(11-=吸附N

θk v 1-=解吸(

)N

θk N θp k 11

1-=-

若已知每个被吸附分子的截面积 a m 及饱和吸附量 可用下式计算吸附剂的比表面积

10.4 液 - 固界面

1. 接触角与杨氏方程

润湿是固体表面上的气体被液体取代的过程。

定义:当一液滴在固体表面上不完全展开时,在气、液、 固三相会合点O ,液-固界面张力(或界面的切线)通过液体与气-液界面切线之间的夹角θ ,称为接触角。

—杨氏方程

2. 润湿现象

一定温度和压强下,润湿的程度可用润湿过程的Gibbs 函数改变量来衡量。Gibbs 函数降低越多,越易润湿。 按润湿程度深浅分类:

(1)沾湿(ahhensional wetting ):气-固,气-液界面消失,形成液-固界面的过程s

l

s

l a ΔγγγG --= 若沾湿过程为自发,则:

0

沾湿的逆过程需要的功,称为沾湿功。沾湿功0Δa

a

>'=-w G

(2)浸湿(immersional wetting )气-固界面完全被液-固界面取代的过程。

s s l i ΔγγG -=

b

V p

V 和可求得由其斜率及截距,得一条直线,作图,

1

对1的实验数据,处理后以~由a a

m a V p

它的逆过程所需的功为浸湿功浸湿功i

i Δ'G W -=

(3)铺展(spreading wetting )在固体表面上自动展开,形成一层薄膜的过程。它实际上是以液-固界面取代气-固界面,同时又增加气-液界面的过程。 铺展前以液滴的面积忽略不计,对于单位面积s l ls

s γγγ

-+=?G

铺展系数l ls

s

s γγγ--=?-=G S

铺展必要条件为:,0≥S S 越大,铺展性能越好

单位均为2-?m J

将杨氏方程代入粘湿、浸湿、铺展三过程的?G 计算式。

()()

1cos Δ cos Δ1cos Δl s ls l s l s ls i l l s ls a --=-+=-=-=+-=--=θγγγγG θγγγG θγγγγG :

铺展 :

浸湿

:沾湿

ΔG <0过程方能进行,由此推出条件

()()()()()或不存在

为0θ θθγγγγG θ θγγγG θθγγγγG 1cos 1cos Δ90θ 0cos cos Δ180θ 01cos 1cos Δl s l ls s l s ls i l s l ls a ≥--=-+=≤≥-=-=≤≥++-=--=要求 :

铺展要求 :

浸湿要求

:沾湿

显然沾湿过程是任何液体与固体之间都可进行的过程。

3.固体自溶液中的吸附

吸附量:

()m

n n m c c V n 后前-=-=0a

.

c n m V ,c ;c 时的吸附量浓度为在溶液平衡单位质量吸附剂吸附剂质量

溶液体积

吸附平衡后的浓度溶液配制浓度-----a 0

在恒温恒压下,测定吸附量与浓度的关系,得吸附等温线。

为单分子层吸附,可用朗缪尔吸附等温式描述

c

b c

b n n +?

=1a m

a

关.

与溶剂和溶质性质均有吸附系数,单分子层饱和吸附量;

--b a m n

弗罗因德利希公式

n

c

k n =a 其中。K 与n 为经验常数

影响固体从稀溶液中的吸附的因素:

吸附剂孔径的大小、被吸附分子的大小、温度、吸附剂 - 吸附质 – 溶剂三者的相对极性、吸附剂的表面化学性质 。 吸附选择性规律为:

极性吸附剂容易从非极性溶剂中吸附极性物质; 非极性吸附剂容易从极性溶剂中吸附非极性物质。

10.5 溶液表面

1.溶液的表面张力

溶质使溶剂表面张力降低的性质叫做表面活性。

表面惰性物质:γ随 c 增加以近于直线的关系而缓慢升高。(多数无机盐、非挥发性的酸或碱及蔗糖、甘露醇等多羟基有机物。)

表面活性物质:γ随 c 增加逐渐降低(分子质量较低的极性有机物,如醇、醛、酯、胺及其衍生物的水溶液)

表面活性剂:γ在 c很低时急剧下降,至一定浓度后溶液表面张力随浓度变化很小。(含长碳链的羧酸盐、硫酸盐、磺酸盐、苯磺酸盐和季铵盐)

2.溶液的表面吸附与吉布斯吸附公式

表面活性物质:表面浓度>内部浓度

非表面活性物质:表面浓度<内部浓度

Γ----溶质的吸附量(表面过剩量或表面超量),指溶液单位表面上与溶液内部就等量溶剂相比时溶质的过剩量,其单位为mol·m-2。

吸附等温线

3.分子在两相界面的定向排列

(1)当浓度很小时,kc<<1

Kc kc m =Γ=Γ

(2)当浓度足够大时,kc>>1

m

Γ=Γ

4 表面活性剂及其应用

(1) 表面活性剂的结构特征:既有亲水基团,又有亲油基团,具有两亲性质。

(2) 表面活性剂的分类

(3) 如何选择合适的表面活性剂

3种方法:有效值、效率、HLB 值5

100

表面活性剂的摩尔质量亲水基部分的摩尔质量值=HLB

(4) 临界胶束浓度

实验发现很少量的表面活性剂加入能使溶液的表面张力显著下降,而当溶液浓度增加到一定值后,表面张力几乎不再变化。

这一现象可以通过表面活性剂在溶液表面的吸附并定向排列和在溶液中形成胶束来得到解释。

表面活性剂是两亲分子。溶解在水中达一定浓度时,其非极性部分会自相结合,形成聚集体,使憎水基向里、亲水基向外,这种多分子聚集体称为胶束。

随着亲水基不同和浓度不同,形成的胶束可呈现棒状、层状或球状等多种形状。

表面活性剂在水溶液中形成一定形状的胶束所需的最低浓度被称为临界胶束浓度,通常以 cmc 表示。

实验表明,在临界胶束浓度的前后,不仅溶液的表面张力有显著变化,而且由于水溶液中的粒子数目变动很大,导致溶液的其他许多物理性质如电导率、渗透压、蒸气压、光学性质、去污能力及可溶性等皆产生很大差异即有突变。

(5)表面活性剂的实际应用

表面活性物质的种类甚多,用途不一。大体上有润湿作用、去污、助磨作用,乳化、破乳(消泡)作用,分散、增溶作用,匀染、防锈作用、助渗透、杀菌等等,应用广泛

(完整版)物理化学界面现象知识点

279 界面现象 1. 表面张力、表面功及表面吉布斯函数 表面张力γ:引起液体或固体表面收缩的单位长度上的力,单位为N·m -1。 表面功:'δ/d r s W A ,使系统增加单位表面所需的可逆功,单位为J·m -2。 表面吉布斯函数:B ,,()(/)s T p n G A α??,恒温恒压下系统增加单位表面时所增加的吉布斯 函数,单位为J·m -2。 表面吉布斯函数的广义定义: B()B()B()B(),,,,,,,,( )()()()S V n S p n T V n T p n s s s s U H A G A A A A ααααγ????====???? ',r s T p s W dA dG dA γδ== 表面张力是从力的角度描述系统表面的某强度性质,而表面功及表面吉布斯函数则是从能量角度和热力学角度描述系统表面的某一性质。三者虽为不同的物理量,但它们的数值及量纲等同的,均可化为N·m -1。 在一定温度、压力下,若系统有多个界面,其总界面吉布斯函数: s i i s i G A γ=∑ 2. 弯曲液面的附加压力、拉普拉斯方程 附加压力:Δp =p 内-p 外 拉普拉斯方程:2p r γ?= 规定弯曲液面凹面一侧压力位p 内,凸面一侧压力位p 外;γ为表面张力;r 为弯曲液面的曲率半径,△p 一律取正值;附加压力方向总指向凹面曲率半径中心。 3. 毛细现象 毛细管内液体上升或下降的高度 2cos h r g γθρ= 式中:γ为表面张力;ρ为液体密度;g 为重力加速度;θ为接触角;r 为毛细管半径。当液体不能润湿管壁,θ>90°即0cos θ<时,h 为负值,表示管内凸液体下降的深度。 4. 微小液滴的饱和蒸汽压——开尔文公式

10 第十章 界面现象习题解

第十章界面化学 课后作业题解 10.3 计算373.15K 时,下列情况下弯曲液面承受的附加压力。已知373.15K 时水的表面张力为58.91×10-3N.m -1。 (1)水中存在的半径为0.1μm 的小气泡; (2)空气中存在的半径为0.1μm 的小液滴; (3)空气中存在的半径为0.1μm 的小气泡。 解: 10.4 在298.15K 时,将直径为0.1mm 的玻璃毛细管插入乙醇中。问需要在管内加多大的压力才能防止液面上升?若不加任何压力,平衡后毛细管内液面的高度为多少?已知该温度下乙醇的表面张力为22.3×10-3N.m -1,密度为789.4 kg.m -3 ,重力加速度为9.8m.s -2。设乙醇能很好地润湿玻璃。 解:乙醇能很好地润湿玻璃,可看作cos θ=0, 所以r=r 1(曲率半径与毛细管半径相等) 需要在管内加892 Pa 的压力才能防止液面上升。 若不加任何压力,平衡后毛细管内液面的高度为0.115m 。 kPa 2356Pa 2356400101091584r 4p 3kPa 1178Pa 117820010 1091582r 2p 217 3 73==??=γ=?==??=γ=?----..)())((Pa 892100.051022.32r 2p 33 =???=γ=?--m 1150100.0589789.41022.32gr 2h 33 ..=?????=ργ=--

10.9 已知在273.15K 时,用活性炭吸附CHCl 3,其饱和吸附量为93.8dm 3.kg -1,若CHCl 3的分压力为13.375 kPa ,其平衡吸附量为82.5 dm 3.kg -1。试求: (1)朗缪尔吸附等温式中的b 值; (2)CHCl 3的分压为6.6672 kPa 时,平衡吸附量为若干? 解:(1)朗缪尔吸附等温式 (2)根据朗缪尔吸附等温式 10.14 293.15K 时,水的表面张力为72.75mN.m -1,汞的表面张力为486.5mN.m -1,而汞和水之间的界面张力为375mN.m -1,试判断: (1)水能否在汞的表面上铺展开? (2)汞能否在水的表面上铺展开? 解:(1) 水能在汞的表面上铺展 (2) 汞不能在水的表面上铺展 bp 1bp V V m +=b 375131b 37513893582....+=0 m 38.75mN 72.75-375-486.5--S -1->?==γγγ=水水汞汞0 m -788.75mN 486.5-375-72.75--S -1-

第十章界面现象练习题及答案

第十章界面现象练习题 一、是非题(对的画√错的画×) 1、液体的表面张力总是力图缩小液体的表面积。() 2、液体的表面张力的方向总是与液面垂直。() 3、分子间力越大的物体其表面张力也越大。() 4、垂直插入水槽中一支干净的玻璃毛细管,当在管中上升平衡液面外加热时,水柱会上升。() 5、在相同温度下,纯汞在玻璃毛细管中呈凸液面,所以与之平衡的饱和蒸气压必大于其平液面的蒸汽压。() 6、溶液表面张力总是随溶液的浓度增大而减小。() 7、某水溶液发生负吸附后,在干净的毛细管中的上升高度比纯水在该毛细管中上升的高度低。() 8、通常物理吸附的速率较小,而化学吸附的速率较大。() 9、兰格缪尔等温吸附理论只适用于单分子层吸附。() 10、临界胶束浓度(CMC)越小的表面活性剂,其活性越高。() 11、物理吸附无选择性。() 12、纯水、盐水、皂液相比,其表面张力的排列顺序是:γ(盐水)<γ(纯水)<γ(皂液)。() 13、在相同温度与外压力下,水在干净的玻璃毛细管中呈凹液面,故管中饱和蒸气压应小于水平液面的蒸气压力。() 14、朗缪尔吸附的理论假设之一是吸附剂固体的表面是均匀的。() 15、同一纯物质,小液滴的饱和蒸气压大于大液滴的饱和蒸气压。() 16、弯曲液面的饱和蒸气压总大于同温度下平液面的蒸气压。() 17、表面张力在数值上等于等温等压条件下系统增加单位表面积时环境对系统所做的可逆非体积功。() 18、某水溶液发生正吸附后,在干净的毛细管中的上升高度比在纯水的毛细管中的水上升高度低。() 19、弯曲液面处的表面张力的方向总是与液面相切。()

20、吉布斯所定义的“表面过剩物质的量”只能是正值,不可能是负值。( ) 21、封闭在容器内的大、小液滴若干个,在等温下达平衡时,其个数不变,大小趋于一致。() 22、凡能引起表面张力降低的物质均称之为表面活性剂。() 23、表面过剩物质的量为负值,所以吸附达平衡后,必然引起液体表面张力降低。() 24、在吉布斯模型中,选择表面相的位置使溶剂的表面过剩物质的量n1(γ),则溶质的表面过剩物质的量ni(γ)可以大于零、等于零或小于零。() 25、过饱和蒸气之所以可能存在,是因新生成的微小液滴具有很大的 比表面吉布斯函数。() 二、选择题 1、液体表面分子所受合力的方向总是(),液体表面张力的方向总是() (1)沿液体表面的法线方向,指向液体内部。 (2)沿液体表面的法线方向,指向气体内部。 (3)沿液体表面的切线方向, (4)无确定的方向。 2、在定温定压下影响物质的表面吉布斯函数的因素是() (1)仅有表面积As (2)仅有表面张力γ (3)表面积As和表面张力γ(4)没有确定的函数关系 3、附加压力产生的原因是() (1)由于存在表面(2)由于在表面上存在表面张力 (3)由于表面张力的存在,在弯曲表面两边压力不同 (4)难于确定 4、在水平放置的玻璃毛细管中注入少许水(水润湿玻璃)在毛细管中水平水柱 的两端呈凹液面,当在右端水凹面处加热,毛细管中的水向何端移动。()(1)向左移动(2)向右移动 (3)不动(4)难以确定 5、今有一球形肥皂泡,半径为r,肥皂水溶液的表面张力为γ,则肥皂泡内附加压力是()

界面物理化学习题

选 择 题 1. 在相同的温度及压力下,把一定体积的水分散成许多小水滴经这一变化过程,以下性质保持不变 的是( d ) (a )总表面能 (b )比表面 ( c )液面下的附加压力 ( d )表面张力 2. 直径为 1×10 -2 m 的球形肥皂泡所受的附加压力为(已知表面张力为 ?m -1 )( d ) (a )5 Pa (b )10 Pa (c )15 Pa (d )20 Pa 思路:因为肥皂泡有内、外两个表面,内面的附加压力是负值,外面的附加压力是正值,故 4 p s ,答案选 d 。 R' 4. 298K 时,苯蒸汽在石墨上的吸附符合 Langmuir 吸附等温式, 在苯蒸汽压力为 40Pa 时,覆盖率 θ=, 当 θ =时,苯蒸汽的平衡压力为( b ) (a )400 Pa (b )760 Pa (c )1000 Pa ( d ) 200 Pa 思路: Langmuir 公式 1 ap 将已知条件的压强和覆盖率代入公式, 计算得到 a 的值,然后根据新的覆盖度和 a ,计算出平衡压力。 答案为 b 。(要求能够自己推导 Langmuir 公式) 5. 在 298K 时,已知 A 液的表面张力是 B 液的一半,其密度是 B 液的两倍。如果 A , B 液分别用相同 的毛细管产生大小相同的气泡时, A 液的最大气泡压力差等于 B 液的( a ) (a )倍 (b )1倍 (c )2倍 (d )4 倍 2 思路: p s ,代入该公式计算比值,答案选 a 。 s R' 6. 将一毛细管插入水中,毛细管中水面上升 5cm ,在 3cm 处将毛细管折断,这时毛细管上端( c ) (a )水从上端溢出 (b )水面呈凸面 (c )水面呈凹形弯月面 ( d )水面呈水平面 思路:液体具有流动性, Yang-Laplace 公式中的半径是可以变化的,不可能出现“井喷”的情况。 7. 用同一滴管分别滴下 1cm 3 的 NaOH 水溶液、水、乙醇水溶液,各自的滴数多少的次序为( c ) (a )三者一样多 (b )水 >乙醇水溶液 >NaOH 水溶液 (c )乙醇水溶液 >水 >NaOH 水溶液 (d )NaOH 水溶液 >水>乙醇水溶液 思路:乙醇对水而言是表面活性剂, NaOH 对水而言是非表面活性3. 已知水溶解某物质以后,其表面张力 γ0 为纯水的表面张力, 式中 A , γ 与溶质的活度 a 呈如下关系: B 为常 数,则溶液表面过剩 Γ2为( c ) a ) Aa RT 1 Ba b ) ABa RT 1 Ba c ) ABa RT 1 Ba d ) Ba RT 1 Ba 思路: ad RT da RT A B 1 Ba ABa ,答案选 c 。 RT 1 Ba

第十章 界面现象概念题及解答

§10.2 概念题 10.2.1填空题 1. 液体表面层中的分子总受到一个指向()力,而表面张力则是()方向上的力。 2. 在恒T,P下,纯液体是通过()来降低其表面吉布斯函数的,例如荷叶上的水滴呈球状是因为()。 3. 在25℃下,于100KPa的大气中,当某溶液形成半径为r之液滴时,液滴内液体的压力为150KPa.若在同温、同压下的空气中,将该溶液吹成一半径为r的气泡时,则该气泡内气体的压力为()(填入具体数值)。不考虑重力的影响。 4. 分散在大气中的小液滴和小气泡,或者毛细血管中的凸液面和凹液面,所产生的附加压力的方向均指向于( )。 图10-1 5. 如图10-1所示,设管中液体对毛细血管完全润湿,当加热管中水柱的右端时,则水柱将向()移动。 6. 将同样量的两小水滴中之一灌在玻璃毛细血管中该水滴能很好地润湿管壁,而另一小水滴则放在荷叶上,若两者均放在温度的大气中,则最先蒸发掉的是()。 7. 产生过冷、过热和过饱和等亚稳态现象之原因是()。 8. 固体对气体的吸附有物理吸附和化学吸附之分,原因是() 9. 朗缪尔的吸附理论只适用于()吸附,根据朗缪尔理论导出的吸附等温式所描绘的吸附等温线的形状为()(画出图形)。 10. 如图10-2所示,在固体表面上附着一气泡,气泡被液体所包围,请在图中画出接触角 的位置。 图10一2 图10一3

11. 如图10-3所示,将一半径为r 的固体球体并恰有一般浸没在液体中,设固体和液体的表面张力分别为,s l γγ与固液界面张力为sl γ,则在恒T,P 下,球在浸没前后的表面吉布斯函数变化s G ?=( )(写出式子)。 10.2.2 单项选择题 1. 如图所示,该U 型管的粗、细两管的半径分别为0.05cm 和0.01cm 。若将密度30.80.g cm U ρ-=?的液体注入型管中,测得细管液面比粗管的液面高h= 2.2cm , (γ=l 利用上述数据便可求得该液体的表面张力 ) 。设该液体与管壁能很好润湿,即0θ=?。 选择填入:(a)5.20×31313110.;()10.7910.;()12.8210.;N m b N m c N m ------??(d)因数据不足,无法计算。 2. 在100℃,大气压力为101.325kPa 下的纯水中,如有一个半径为r 的蒸汽泡,则该蒸汽泡内的水的饱和蒸汽压r p ( )大气压力0p 0p ;若不考重力的作用,则蒸汽泡受到的压力为( )。 选择填入:(a )大于;0p (大气压力)-p ?(附加压力);(b)大于;0p +p ?;(c)小于; o p p -?;(d)小于;o p p +?。 3. 在T ,p 一定的条件下,将一体积为V 的大水滴分散为若干小水滴后,在下列性质中,认为基本不发生变化的性质为( )。 选择填入:(a)表面能; (b)表面张力;(c )弯曲液面下的附加压力;(d )饱和蒸汽压。 4. 在室温、大气压力下,用同一支滴管分别滴下同体积的纯水和稀的表面活性剂水溶液(其密度可视为与纯水相同)则水的滴数1n 与稀表面活性剂溶液的滴数2n 之比,即12 /n n

物理化学论 界面现象习题

第十章界面现象 10.1在293.15 K及101.325kPa下,把半径为1×10-3m的汞滴分散成半径为1×10-9m小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m-1。 10.2计算373.15K时,下列情况下弯曲液面承受的附加压。已知373.15K时水的表面张力为58.91×10-3 N·m-1。 (1)水中存在的半径为0.1μm的小气泡; (2)空气中存在的半径为0.1μm的小液滴; (3)空气中存在的半径为0.1μm的小气泡。 10.3 293.15K时,将直径为0.1mm的玻璃毛细管插入乙醇中。问需要在管内加入多大的压力才能防止液面上升?如不加任何压力,平衡后毛细管内液面高度为多少?已知该温度下乙醇的表面张力为22.3×10-3 N·m-1,密度为789.4kg·m-3,重力加速度为9.8m·s-2。设乙醇能很好地润湿玻璃。 10.4水蒸气迅速冷却至298.15K时可达过饱和状态。已知该温度下的表面张力为71.97×10-3 N·m-1,密度为997kg·m-3。当过饱和水蒸气压力为平液面水的饱和蒸汽压的4倍时,计算。 (1)开始形成水滴的半径; (2)每个水滴中所含水分子的个数。 10.5已知CaCO3(s)在773.15K时的密度3900kg·m-3,表面张力为1210×10-3 N·m-1,分解压力为101.325Pa。若将CaCO3(s)研磨成半径为30nm(1nm=10-9m)的粉末,求其在773.15K时的分解压力。 10.6已知273.15K时,用活性炭吸附CHCl3,其饱和吸附量为93.8dm3·kg-1,若CHCl3的分压为13.375kPa,其平衡吸附量为82.5 dm3·kg-1。试求:(1)朗缪尔吸附等温的b值; (2)CHCl3的分压为6.6672 kPa时,平衡吸附量为若干? 10.7在1373.15K时向某固体表面涂银。已知该温度下固体材料的表面张力γs =9 65 mN·m-1,Ag(l)的表面张力γl = 878.5 mN·m-1,固体材料与Ag(l)的表面张力γsl = 1364mN·m-1。计算接触角,并判断液体银能否润湿该材料表面。 10.8 293.15K时,水的表面张力为72.75mN·m-1,汞的表面张力486.5 mN·m-1,而汞和水之间的表面张力为375 mN·m-1,试判断:

第10章 界面现象

第10章界面现象 10.1 请回答下列问题: (1)常见的亚稳定状态有哪些?为什么会产生亚稳定状态?如何防止亚稳定状态的产生? 解:常见的亚稳定状态有:过饱和蒸汽、过热或过冷液体和过饱和溶液等。 产生亚稳定状态的原因是新相种子难生成。如在蒸气冷凝、液体凝固和沸腾以及溶液结晶等过程中,由于要从无到有生产新相,故而最初生成的新相,故而最初生成的新相的颗粒是极其微小的,其表面积和吉布斯函数都很大,因此在系统中产生新相极其困难,进而会产生过饱和蒸气、过热或过冷液体和过饱和溶液等这些亚稳定状态。 为防止亚稳定态的产生,可预先在系统中加入少量将要产生的新相种子。 (2)在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间恒温放置后,会出现什么现象? 解:若钟罩内还有该液体的蒸气存在,则长时间恒温放置后,出现大液滴越来越大,小液滴越来越小,并不在变化为止。 其原因在于一定温度下,液滴的半径不同,其对应的饱和蒸汽压不同,液滴越小,其对应的饱和蒸汽压越大。当钟罩内液体的蒸汽压达到大液滴的饱和蒸汽压时。该蒸汽压对小液滴尚未达到饱和,小液滴会继续蒸发,则蒸气就会在大液滴上凝结,因此出现了上述现象。 (3)物理吸附和化学吸附最本质的区别是什么? 解:物理吸附与化学吸附最本质的区别是固体与气体之间的吸附作用力不同。 物理吸附是固体表面上的分子与气体分子之间的作用力为范德华力,化学吸附是固体表面上的分子与气体分子之间的作用力为化学键力。 (4)在一定温度、压力下,为什么物理吸附都是放热过程? 解:在一定温度、压力下,物理吸附过程是一个自发过程,由热力学原理可知,此过程系统的ΔG<0。同时气体分子吸附在固体表面,有三维运动表为二维运动,系统的混乱度减小,故此过程的ΔS<0。根据ΔG=ΔH-TΔS可得,物理吸附过程的ΔH<0。在一定的压力下,吸附焓就是吸附热,故物理吸附过程都是放热过程。 10.2 在293.15K及101.325kPa下,把半径为1×10-3m的汞滴分散成半径为1×10-9m小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m-1。

物理化学第十章界面现象

第十章界面现象 10.1 界面张力 界面:两相的接触面。 五种界面:气—液、气—固、液—液、液—固、固—固界面。(一般常把与气体接触的界面称为表面,气—液界面=液体表面,气—固界面=固体表面。) 界面不是接触两相间的几何平面!界面有一定的厚度, 有时又称界面为界面相(层)。 特征:几个分子厚,结构与性质与两侧体相均不同 比表面积:αs=A s/m(单位:㎡·㎏-1) 对于一定量的物质而言,分散度越高,其表面积就越大,表面效应也就越明显,物质的分散度可用比表面积αs来表示。 与一般体系相比,小颗粒的分散体系有很大的表面积,它对系统性质的影响不可忽略。 1. 表面张力,比表面功及比表面吉布斯函数 物质表面层的分子与体相中分子所处的力场是不同的——所有表面现象的根本原因! 表面的分子总是趋向移往内部,力图缩小表面积。液体表面如同一层绷紧了的富有弹性的橡皮膜。 称为表面张力:作用于单位界面长度上的紧缩力。单位:N/m, 方向:表面(平面、曲面)的切线方向 γ可理解为:增加单位表面时环境所需作的可逆功,称比表面功。单位:

J · m-2。 恒温恒压: 所以: γ等于恒温、恒压下系统可逆增加单位面积时,吉布斯函数的增加,所以,γ也称为比表面吉布斯函数或比表面能。单位J · m-2 表面张力、比表面功、比表面吉布斯函数三者的数值、量纲和符号等同,但物理意义不同,是从不同角度说明同一问题。(1J=1N·m故1J·m-2=1N·m-1,三者单位皆可化成N·m-1) 推论:所有界面——液体表面、固体表面、液-液界面、液-固界面等,由于界面层分子受力不对称,都存在界面张力。 2. 不同体系的热力学公式 对一般多组分体系,未考虑相界面面积时:

第十章界面现象InterfacePhenomena

第十章 界面现象 Interface Phenomena 界面(相界面/界面相):密切接触的两相之间的过渡区(约几个分子的厚度) 界面的类型:气—液、气—固、液—液、液—固、固—固 表面 surface 界面现象的原因:“表里不一” 分散度:比表面 s A m V s a =表面积质量或体积 多孔硅胶 300~700 ,活性炭 1000~2000 m 2 . g –1 §10.1 表面吉布斯自由能和表面张力 一、表面功、表面吉布斯自由能、表面张力 液体都有自动缩小其表面积的趋势 γ dA s = δW ?r = dG T,P 表面功 ,,B s T P n G A γ???= ??? ? γ 称为比表面吉布斯自由能,单位:J . m –2 ,物理意义:定温定压定组成条件下,系统增加单位表面积时所增加的吉布斯自由能,也即单位面积表面层的分子比相同数量的内部分子所多出来的那部分能量。如:20℃的纯水,γ = 0.07275 1g (10 –6 m 3) 球形水滴 半径 1 nm 的小水滴 半径 0.62 cm 1 nm 个数 1 2.39 × 1020 表面积 4.83 × 10 – 4 m 2 3.01 × 103 m 2 ΔG = γ ΔA s = 219 J (相当于使这1g 水升温52.4 K)

系统比表面越大,能量越高,越不稳定。 粉尘爆炸极限:淀粉/硫磺7mg/L 空气,面粉/糖粉10,煤粉17。 δW ?r = γ dA s = γ . 2l d x F δW ?r = F d x 2F l γ==力总长 γ 称为表面张力 surface tension ,单位:N . m –1 ,物理意义:垂直作用于单位长度相界面上的表面紧缩张力。 任意形状自由移动 张开成圆(面积最大) 单位面积的表面功、比表面吉布斯自由能、表面张力:数值、量纲相同,物理意义、单位不同。 二、热力学基本方程(考虑表面功) dU = T dS – p dV + ∑ μB d n B + γ d A s dH = T dS + V dp + ∑ μB d n B + γ d A s dA = – S dT – p dV + ∑ μB d n B + γ d A s dG = – S dT + V dp + ∑ μB d n B + γ d A s ,,,,,,,,B B B B s s s s S V n S p n T V n T p n U H A G A A A A γ????????????==== ? ? ? ?????????????

物理化学习题6-界面现象

物理化学测验题(六) 一、选择题。在题后括号内,填上正确答案代号。 1、接触角是指: (1)g/l界面经过液体至l/s界面间的夹角; (2)l/g界面经过气相至g/s界面间的夹角; (3)g/s界面经过固相至s/l界面间的夹角; (4)l/g界面经过气相和固相至s/l界面间的夹角; 2、朗缪尔公式克描述为:( )。 (1)五类吸附等温线; (2)三类吸附等温线; (3)两类吸附等温线; (4)化学吸附等温线。 3、化学吸附的吸附力是:( )。 (1)化学键力;(2)范德华力; (3)库仑力。 4、温度与表面张力的关系是: ( )。 (1)温度升高表面张力降低; (2)温度升高表面张力增加; (3)温度对表面张力没有影响; (4)不能确定。 5、液体表面分子所受合力的方向总是:( ),液体表面张力的方向总是:( )。 (1)沿液体表面的法线方向,指向液体内部; (2)沿液体表面的法线方向,指向气相; (3)沿液体的切线方向; (4)无确定的方向。 6、下列各式中,不属于纯液体表面张力的定义式的是: ( ); (1); (2) ; (3) 。 7、气体在固体表面上吸附的吸附等温线可分为:( )。 (1)两类; (2)三类; (3)四类; (4)五类。 8、今有一球形肥皂泡,半径为r ,肥皂水溶液的表面张力为σ,则肥皂泡内附加压力是:( )。 (1) ;(2);(3)。 9、若某液体能在某固体表面铺展,则铺展系数?一定:( )。 (1)< 0; (2)> 0;(3)= 0。 10、等温等压条件下的润湿过程是:( )。 (1)表面吉布斯自由能降低的过程; (2)表面吉布斯自由能增加的过程; (3)表面吉布斯自由能不变的过程; p T A G ,??? ????p T A H ,??? ????V T A F ,? ?? ????r p σ2 =?r p 2σ=?r p σ4=?

第十章 界面现象

第十章界面现象 1.液体在毛细管中上升的高度与基本无关。 A.温度 B.液体密度 C.大气压力 D.重力加速度 2.微小晶体与同一种的大块晶体相比较,下列说法中不正确的是。 A.微小晶体的饱和蒸气压大 B.微小晶体的表面张力未变 C. 微小晶体的溶解度小 D.微小晶体的熔点较低 3.水在某毛细管内上升高度为h,若将此管垂直地向水深处插下,露在水面以上的高度为h/2,则。 A.水会不断冒出 B. 水不流出,管内液面凸起 C. 水不流出,管内凹液面的曲率半径增大为原先的2倍 D.水不流出,管内凹液面的曲率半径减小为原先的一半 4. 在用最大气泡法测定液体表面张力的实验中,是错误的。 A.毛细管壁必须清洁干净 B.毛细管口必须平整 C.毛细管必须垂直放置 D.毛细管须插入液体内部一定深度 5. 在干净的粗细均匀的U形玻璃毛细管中注入纯水,两侧液柱的高度相同,然后用微量注射器从右侧注入少许正丁酸水溶液,两侧液柱的高度将是。 A.相同 B.左侧高于右侧 C.右侧高于左侧 D.不能确定 6. 在三通活塞两端涂上肥皂液,关闭右端,在左端吹一大泡,关闭左端,在右端吹一小泡,然后使左右两端相通,将会出现什么现象。 A.大泡变小,小泡变大 B.小泡变小,大泡变大 C.两泡大小保持不变 D.不能确定 7. 在一支干净的、水平放置的、内径均匀的玻璃毛细管中部注入一滴纯水,形成一自 由移动的液柱。然后用微量注射器向液柱右侧注入少量NaCl水溶液,假设接触角不变,则液柱将。 A. 不移动 B.向右移动 C.向左移动 D无法判断 8. 在潮湿的空气中,放有3只粗细不等的毛细管,其半径大小顺序为:r1>r2>r3,则毛细管内水蒸气易于凝结的顺序是。

关于界面物理化学习题

一、选择题 1. 在相同的温度及压力下,把一定体积的水分散成许多小水滴经这一变化过程,以下性质保持不变的是(d ) (a )总表面能 (b )比表面 (c )液面下的附加压力 (d )表面张力 2. 直径为1×10-2m 的球形肥皂泡所受的附加压力为(已知表面张力为0.025N?m -1)(d ) (a )5 Pa (b )10 Pa (c )15 Pa (d )20 Pa 思路:因为肥皂泡有内、外两个表面,内面的附加压力是负值,外面的附加压力是正值,故 4' s p R γ=,答案选d 。 3. 已知水溶解某物质以后,其表面张力γ与溶质的活度a 呈如下关系: ()0ln 1A Ba γγ=-+ 式中γ0为纯水的表面张力,A ,B 为常数,则溶液表面过剩Γ2为(c ) (a )()21Aa RT Ba Γ=-+ (b )() 21ABa RT Ba Γ=-+ (c )()21ABa RT Ba Γ=+ (d )() 21Ba RT Ba Γ=-+ 思路:() 211a d a B ABa A RT da RT Ba RT Ba γ??Γ=-=--= ?++??,答案选c 。 4. 298K 时,苯蒸汽在石墨上的吸附符合Langmuir 吸附等温式,在苯蒸汽压力为40Pa 时,覆盖率θ=0.05,当θ=0.5时,苯蒸汽的平衡压力为(b ) (a )400 Pa (b )760 Pa (c )1000 Pa (d )200 Pa 思路:Langmuir 公式1ap ap θ=+ 将已知条件的压强和覆盖率代入公式,计算得到a 的值,然后根据新的覆盖度和a ,计算出平衡压力。答案为b 。(要求能够自己推导Langmuir 公式) 5. 在298K 时,已知A 液的表面张力是B 液的一半,其密度是B 液的两倍。如果A ,B 液分别用相同的毛细管产生大小相同的气泡时,A 液的最大气泡压力差等于B 液的(a ) (a )0.5倍 (b )1倍 (c )2倍 (d )4倍 思路:2' s p R γ=,代入该公式计算比值,答案选a 。 6. 将一毛细管插入水中,毛细管中水面上升5cm ,在3cm 处将毛细管折断,这时毛细管上端(c ) (a )水从上端溢出 (b )水面呈凸面 (c )水面呈凹形弯月面 (d )水面呈水平面

物理化学界面现象知识点

界面现象 1. 表面张力、表面功及表面吉布斯函数 表面张力γ:引起液体或固体表面收缩的单位长度上的力,单位为N·m -1。 表面功:'δ/d r s W A ,使系统增加单位表面所需的可逆功,单位为J·m -2。 表面吉布斯函数:B ,,()(/)s T p n G A α??,恒温恒压下系统增加单位表面时所增加的吉布斯 函数,单位为J·m -2。 表面吉布斯函数的广义定义: B()B()B()B(),,,,,,,,( )()()()S V n S p n T V n T p n s s s s U H A G A A A A ααααγ????====???? ',r s T p s W dA dG dA γδ== 表面张力是从力的角度描述系统表面的某强度性质,而表面功及表面吉布斯函数则是从能量角度和热力学角度描述系统表面的某一性质。三者虽为不同的物理量,但它们的数值及量纲等同的,均可化为N·m -1。 在一定温度、压力下,若系统有多个界面,其总界面吉布斯函数: s i i s i G A γ=∑ 2. 弯曲液面的附加压力、拉普拉斯方程 附加压力:Δp =p 内-p 外 拉普拉斯方程:2p r γ?= 规定弯曲液面凹面一侧压力位p 内,凸面一侧压力位p 外;γ为表面张力;r 为弯曲液面的曲率半径,△p 一律取正值;附加压力方向总指向凹面曲率半径中心。 3. 毛细现象 毛细管内液体上升或下降的高度 2cos h r g γθρ= 式中:γ为表面张力;ρ为液体密度;g 为重力加速度;θ为接触角;r 为毛细管半径。当液体不能润湿管壁,θ>90°即0cos θ<时,h 为负值,表示管内凸液体下降的深度。 4. 微小液滴的饱和蒸汽压——开尔文公式

完整版物理化学界面现象知识点.doc

第九章界面现象 界面现象 1.表面张力、表面功及表面吉布斯函数 表面张力γ:引起液体或固体表面收缩的单位长度上的力,单位为N·m 1。 表面功:' 2。 W A ,使系统增加单位表面所需的可逆功,单位为J·m δ r / d s 表面吉布斯函数:( G / A s ) T , p,n B ( ) ,恒温恒压下系统增加单位表面时所增加的吉布斯 函数,单位为 J·m 2。 表面吉布斯函数的广义定义: ( U )S ,V , n B( H ) S, p,n B( ) ( A G A s ) ( ) T,V ,n B( ) ( )T ,p ,n B( ) A s A s A s ' dA s dG T , p dA s W r 表面张力是从力的角度描述系统表面的某强度性质,而表面功及表面吉布斯函数则是 从能量角度和热力学角度描述系统表面的某一性质。三者虽为不同的物理量,但它们的数 值及量纲等同的,均可化为N·m 1。 在一定温度、压力下,若系统有多个界面,其总界面吉布斯函数: G s i A s i i 2.弯曲液面的附加压力、拉普拉斯方程 附加压力:p=p 内 p 外 2 拉普拉斯方程:p r 规定弯曲液面凹面一侧压力位 p 内,凸面一侧压力位 p 外;γ为表面张力; r 为弯曲液面的曲率半径,△ p 一律取正值;附加压力方向总指向凹面曲率半径中心。 3.毛细现象 毛细管内液体上升或下降的高度 2 cos h g r 式中:γ为表面张力;ρ为液体密度; g 为重力加速度;θ为接触角;r为毛细管半径。当液体不能润湿管壁,θ>90°即cos0 时,h为负值,表示管内凸液体下降的深度。 4.微小液滴的饱和蒸汽压——开尔文公式

界面物理化学(完整版)

硕士研究生课程论文(或读书报告) 课程名称:界面物理化学 题目:讨论空气中微小分散粒子对环境的影响题目类型(课程论文或读书报告):读书报告 学院:化学工程学院 专业名称: 姓名: 学号: 任课教师: 授课时间:2013年11月13日~2014年01月08日提交时间: 2014年01月13日

背景:在工业化时代,人类对能量资源的开发利用极度丰富了人类自身生活,促进了人类发展。然而对资源的过度开发以及对环境的忽视,人类居住的空间愈发混沌。40年代美国洛杉矶光化学烟雾事件;1952年伦敦毒雾事件;1989年希腊雅典二氧化碳超标接近60%全国进入紧急状态事件;2013年年初,我国中东部地区雾霾久久不能散去,一条巨大的深褐色的污染带横扫华夏,北京地区PM2.5检测值接近1000等等。环境污染事件层出不穷,触目惊心。对空气监测刻不容缓,研究和掌握空气中微小分散粒子的性质意义重大。 空气中微小分散粒子对环境的影响 分散质即分散介质是由物质分散成微小的离子而分布在另一种物质中所组成的物系。通常根据分散介质为气液固得到气溶胶液溶胶和固溶胶。由各种固体或液体微粒均匀地分散在空气中形成一个庞大的分散体系,称为气溶胶体系。气溶胶体系中分散的各种粒子称为大气颗粒物。从城市空气质量评价标准的角度考虑,有总悬浮颗粒物、二氧化硫、氮氧化物三大指标。其中,总悬浮颗粒物按粒径分为动力学直径小于10μm不能被人的上呼吸道所阻挡的可吸入性颗粒PM10;动力学直径小于2.5μm的可吸入性气溶胶PM2.5,这种气溶胶微粒被吸入人体后,会渗透到肺部组织的深处,可引起支气管炎和肺癌等病变。从颗粒状态分成8类,如图1。 图1 大气颗粒物分类及其粒径

第十章 界面现象 答案

第十章 界面现象答案仅作参考,以课堂讲授为准 10.1 在293.15 K 及101.325kPa 下,把半径为1×10-3m 的汞滴分散成半径为1×10-9m 小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m -1。 解:设大汞滴的半径为r1,小汞滴的半径为r2,小汞滴的数目为N ,因为分散前后的以及不变,故 33 33318112924411011033110=r r N r N r ππ--?????===? ? ??????,即个 ()()()()(){}2 1222121222218932144440.4865101101106.114d J A A G A A A N r r Nr r γγγπππγπ--?==-=-=-=????-?=? 10.2计算373.15K 时,下列情况下弯曲液面承受的附加压。已知373.15K 时水的表面张力为58.91×10-3 N·m -1。 (1)水中存在的半径为0.1μm 的小气泡; (2)空气中存在的半径为0.1μm 的小液滴; (3)空气中存在的半径为0.1μm 的小气泡。 解:根据2s p r γ?= (1)()362258.91101 1.178100.110 -3 -==kPa s p r γ???=?? (2)()362258.91102 1.178100.110 -3 -==kPa s p r γ???=?? (3)空气中存在的小气泡有内外两个表面,且r 内≈r 外。 即:()364258.91103 2.356100.110 -3 -==kPa s p r γ???=?? 10.3293.15K 时,将直径为0.1mm 的玻璃毛细管插入乙醇中。问需要在管内加入多大的压力才能防止液面上升?如不加任何压力,平衡后毛细管内液面高度为多少?已知该温度下乙醇的表面张力为22.3×10-3 N·m -1,密度为789.4kg·m -3,重力加速度为9.8m·s -2。设乙醇能很好地润湿玻璃。 解:为防止管内液面上升,则所加压力恰好等于管内附加压,即

第十章界面现象

第十章 界面现象 第十章 界面现象 10.2. 在293.15K 及101.325kPa 下,把 半径为1×10-3m 的汞滴分散成半径为 1×10-9m 的小汞滴,试求此过程系统的表面吉布斯自由能(ΔG )为多少?已知293.15K 时汞的表面张力为0.4865N·m -1。 解:设大汞滴和小汞滴的半径分别为R 和r ,1个半径为R 的大汞滴可以分散为n 个半径为r 的小汞滴。只要求出汞滴的半径从 R =1×10-3m 变化到r =1×10-9m 时,其表面积 的变化值,便可求出该过程的表面吉布斯函数变ΔG 。汞滴分散前后的体积不变,即V R =nV r ,所以 334433R n r ππ=?, 3 R n r ??= ??? 分散前后表面积的变化 2222 444s A n r R nr R ?πππ=-=-()

系统表面吉布斯函数变: 3 224π4π1s R R G A R R r r ?γ?γγ????==-=- ? ????? ()3391104π0.48651101J 6.114J 110---?????=????-=?? ????? ? 10.3. 计算373.15K 时,下列情况下弯曲液面承受的附加压力。已知373.15K 时水 的表面张力为58.91×10-3N·m -1。 ⑴水中存在一个半径为0.1μm 的小气泡; ⑵空气中存在一个半径为0.1μm 的小液滴; ⑶空气中存在一个半径为0.1μm 的小气泡。 解:⑴ ⑵ 两种情况只存在一个气-液界面其附加压力相同。根据拉普拉斯公式,有

第十章界面现象 Δp=2γ/r=2×58.91×10-3 N·m-1/(0.1×10-6m)Pa =1.178×103kPa ⑶对于空气中存在的气泡,其液膜有内外两个表面,故其承受的附加压力为 Δp=4γ/r =4×58.91×10-3 N·m-1/(0.1×10-6m)Pa =2.356×103kPa 10.4 在293.15K时,将直径为0.1mm 的玻璃毛细管插入乙醇中。问需要在管内加多大的压力才能阻止液面上升?若不加任何压力,平衡后毛细管内液面的高度为多少?已知该温度下乙醇的表面张力为 22.3×10-3 N.m-1,密度为789.4 kg.m-3,重力加速度为9.8 m.s-2。设乙醇能很好的润湿玻璃。 解:为防止毛细管内液面上升,需抵抗掉压力Δp的作用,故需加的压力大小等于附加压力 Δp=2γ/r =(2×22.3×10-3)/ (0.05×10-3)Pa=892 Pa

界面现象与分散系统

第八章界面现象与分散系统 教学目的: 通过本章学习,使学生了解物质高度分散后的性质及不同物质的界面现象,了解表面活性物质的一些基本性质。 基本要求: 明确表面吉布斯自由能、表面张力的概念,了解表面张力与温度的关系。明确弯曲表面的附加压力产生的原因及与曲率半径的关系,了解弯曲表面上的蒸汽压与平面相比有何不同。学会使用拉普拉斯公式和开尔文公式。 理解吉布斯吸附公式的表示形式,各项的物理意义并能用来作简单计算。了解什么叫表面活性物质,了解表面活性剂的分类及几种重要作用。 了解液- 液、液- 固界面的铺展与润湿情况,理解气 - 固表面的吸附本质及吸附等温线的主要类型。 重点和难点: 拉普拉斯公式和开尔文公式 , 以及兰缪尔吸附等温式是本章的重点难点。 教学内容: 表面现象(通常将气一液、气一固界面现象称为表面现象)所讨认的都是在相的界面上发生的一些行为。物质表面层的分子与内部分子周围的环境不同。内部分子所受四周邻近相同分子作用力是对称的,各个方向的力彼此抵销;但是表面层的分子,一方面受到本相内物质分子的作用;另一方面又受到性质不同的另一相中物质分子的作用,因此表面层的性质与内部不同。最简单的情况是液体及其蒸气所成的体系(见图12-1 ),在气液界面上的分子受到指向液体内部的拉力,所以液体表面都有自动缩成最小的趋势。在任何两相界面上的表面层都具有某些特殊性质。对于单组分体系,这种特性主要来自于同一物质在不同相中的密度不同;而对于多组分体系,这种特性则来自于表面层的组成和任一相的组成均不相同。 物质表面的特性对于物质其他方面的性质也会有所影响。随着体系分散程度的增加,其影响更为显著。因此当研究在表面层上发生的行为或者研究多相的高分散体系的性质时,就必须考虑到表面的特性。通常用表面( A0)表示多相分散体系的分散程度,其定义为 :A0=A/V 式中A代表体积为V的物质具有的表面积。所以比表面A0就是单位体积(也有用单位质量者)的物质所具有的表面积,其数值随着分散粒子的变小而迅速增加。分散粒子分割得愈细比表面积就愈大。在胶体体系中粒子的大小约在1nm—100 nm之间,它具有很大的表面积,突出地表现出表面效应。此外某此多孔性物

界面物理化学 习题

一、 选择题 1. 在相同的温度及压力下,把一定体积的水分散成许多小水滴经这一变化过程,以下性质保持不变的是(d ) (a )总表面能 (b )比表面 (c )液面下的附加压力 (d )表面张力 2. 直径为1×10-2m 的球形肥皂泡所受的附加压力为(已知表面张力为m -1)(d ) (a )5 Pa (b )10 Pa (c )15 Pa (d )20 Pa 思路:因为肥皂泡有内、外两个表面,内面的附加压力是负值,外面的附加压力是正值,故 4' s p R γ=,答案选d 。 3. 已知水溶解某物质以后,其表面张力γ与溶质的活度a 呈如下关系: ()0ln 1A Ba γγ=-+ 式中γ0为纯水的表面张力,A ,B 为常数,则溶液表面过剩Γ2为(c ) (a )()21Aa RT Ba Γ=-+ (b )() 21ABa RT Ba Γ=-+ (c )()21ABa RT Ba Γ=+ (d )() 21Ba RT Ba Γ=-+ 思路:() 211a d a B ABa A RT da RT Ba RT Ba γ??Γ=-=--= ?++??,答案选c 。 4. 298K 时,苯蒸汽在石墨上的吸附符合Langmuir 吸附等温式,在苯蒸汽压力为40Pa 时,覆盖率θ=,当θ=时,苯蒸汽的平衡压力为(b ) (a )400 Pa (b )760 Pa (c )1000 Pa (d )200 Pa 思路:Langmuir 公式1ap ap θ=+ 将已知条件的压强和覆盖率代入公式,计算得到a 的值,然后根据新的覆盖度和a ,计算出平衡压力。答案为b 。(要求能够自己推导Langmuir 公式) 5. 在298K 时,已知A 液的表面张力是B 液的一半,其密度是B 液的两倍。如果A ,B 液分别用相同的毛细管产生大小相同的气泡时,A 液的最大气泡压力差等于B 液的(a ) (a )倍 (b )1倍 (c )2倍 (d )4倍 思路:2' s p R γ=,代入该公式计算比值,答案选a 。 6. 将一毛细管插入水中,毛细管中水面上升5cm ,在3cm 处将毛细管折断,这时毛细管上端(c ) (a )水从上端溢出 (b )水面呈凸面 (c )水面呈凹形弯月面 (d )水面呈水平面 思路:液体具有流动性,Yang-Laplace 公式中的半径是可以变化的,不可能出现“井喷”的情

相关主题
文本预览
相关文档 最新文档