当前位置:文档之家› 回转器电路设计(完整版,包括pspice仿真电路以及实验大数据)

回转器电路设计(完整版,包括pspice仿真电路以及实验大数据)

回转器电路设计(完整版,包括pspice仿真电路以及实验大数据)
回转器电路设计(完整版,包括pspice仿真电路以及实验大数据)

南京航空航天大学电路实验报告

回转器电路设计

姓名:李根根

学号:031220720

目录

一、实验目

的……………………………………………………………………………………….

2

二、实验仪

器……………………………………………………………………………………….

2

三、实验原

理……………………………………………………………………………………….

2

四、实验要

求……………………………………………………………………………………….

3

五、用pspice软件进行电路仿真并分析……………………………………………..….

5

六、实验内

容………………………………………………………………………………………

9

七、实验心

得………………………………………………………………………….….….…..

11

八、附件(Uc – f

图) (12)

一、实验目的

1.加深对回转器特性的认识,并对其实际应用有所了解。

2.研究如何用运算放大器构成回转器,并学习回转器的测试方法。

二、实验仪器

1.双踪示波器

2.函数信号发生器

3.直流稳压电源

4.数字万用表

5.电阻箱

6.电容箱

7.面包板

8.装有pspice软件的PC一台

三、实验原理

1.回转器是理想回转器的简称。它是一种新型、线性非互易的双端口元件,其电路符号如图所示。其特性表现为它能够将一端口上的电压(或者电流)“回转”成另一端口上的电流(或者电压)。端口变量之间的关系为

I1 = gu2 u1 = -ri2

I2 = gu1 u2 = ri1

式子中,r,g称为回转系数,r称为回转电阻,g称为回转电导。

2.两个负阻抗变换器实现回转器

图中回转电导为 :

四、实验要求

先利用pspice软件进行电路仿真,(提示:仿真时做瞬态分析,信号源用Vsin ,做频率分析时,信号源用VAC)然后在实验室完成硬件测试:

1.用运算放大器构成回转器电路(电路构成见实验教材p216图9-24,其中电阻R的标称值为1000Ω),测量回转器的回转电导。

2.回转器的应用——与电容组合构成模拟电感。

3.用电容模拟电感器,组成一个并联谐振电路,并测出谐振频率以及绘制其Uc~f幅频特性曲线。

具体要求:

1.回转器输入端接信号发生器,调得Us=1.5V(有效值),输出端接负载电阻RL=200Ω,分别测出U1、U2及I1,求出回转电导g。

试回答改变负载电阻以及频率的大小对回转电导有何影响?

2.回转器输出端接电容,C分别取0.1μF和0.22μF,用示波器观察频率为500Hz、1000Hz时U1和I1的相位关系,解释模拟电感是如何实现的。

要求画出测试U1和I1的相位关系的接线图,并用坐标纸分别画出两个不同C值时的U1和I1波形,记录其相位关系。说明模拟电感的实现与频率的大小有何关系。

3.用C1回转后的模拟电感作并联谐振电路,谐振频率f0取1000Hz左右,确定C和C1的大小,信号源输出电压保持Us=1.5V(有效值)不变,改变频率(200Hz~2000Hz)测量Uc的值,同时观察us和 uc的相位关系。(要求串联一取样电阻1kΩ)

预习要求:

1.画出设计任务中完整的电路接线图,明确I1的测量方法,建议取样电阻取1kΩ。

2.电容不要取大于1μF的电解电容,以免误差大。

报告要求:

1.提交一份电路仿真实验报告。

2.现场整理测试数据和图表,与仿真结果比较,给出比较详细的分析和说明。

3.列出RLC并联谐振电路测量的数据,在坐标纸上绘制其Uc~f幅频特性。

3.总结该综合性实验的体会。

五、用pspice软件进行电路仿真并分析

1.测量回转电导g,仿真结果如图所示:

由仿真结果可知

U1 = 1.25V ;

I1 = 250.05uA

U2 = 249.99mV

所以,g = i1 / U2 = 250.05uA / 249.99mV = 1.00×S 2.回转器等效电感电路仿真

U1,i1相位图如下所示:

C=0.1uF f=500Hz

C=0.1uF f=1000Hz

C=0.22uF f=500Hz

3.并联谐振电路仿真

Uc – f 幅频特性曲线

Us – Uc 相位关系图

六、实验内容

1.测量回转器的回转电导。

通过实验测得:U1 = 1.2V ;

I1 = 246.0uA

U2 = 243.2mV

所以,g = i1 / U2 = 246.0uA / 243.2mV = 1.01×S 可见实验值与理论值相符。

当负载电阻变化或者频率变化时,对回转电导没有影响。

2.测量回转器的输入伏安特性

由图像可知,当频率f分别取500Hz和1000Hz,电容C分别取0.1uF和0.22uF时,等效电感的感抗XL>>Ro,故从电路输入端口看,电路近于纯电感,其端口电压与电流间的相位差约为90度。

回转电感 L=C/g^2 ,在电容C一定的情况下,g与频率大小无关,所以回转电感的大小与频率无关。

3.用电容模拟电感器,组成一个RLC并联谐振电路,并测出谐振频率。

七、实验心得

通过完成本次综合性实验的过程,我发现了自己在以前学习中的不扎实地方,本来以为自己会的地方,在真正运用的时候才发现掌握的并不是自己想的那样好。

比如pspice软件的使用,本来以为按书上的步骤一步一步来就做好了,也以为自己掌握了它的使用方法,但到了真正运用该软件去解决问题是才发现事实并非如此,面对pspice时,大脑一片茫然,只得翻书重新认真学习使用方法,最终才灵活运用该软件得到自己想要的结果。

并且通过本实验的不断出错及改错,巩固了我的理论知识,也增强了我面对元器件或实验仪器出现问题时的判断调试及解决问题的能力,不再像刚开始时仪器一有问题便问老师了。

本实验加深了我对运算放大器的使用的更深理解,也知道了可以用回转器来模拟电感元件,使得实验电路的搭建更加简便。

八、附件(Uc – f 图)

基于pspice的电路仿真实验设计

目录 第一章pspice简介 (4) 1.1 PSPICE的起源与发展 (4) 1.2 PSPICE仿真软件的优越性 (6) 1.3 PSPICE的组成 (7) 第二章pspice中的电路元器件介绍 (9) 2.1. 电阻、电容和电感 (11) 2.2 有源器件 (11) 2.3 信号源及电源 (11) 第三章pspice的仿真 (12) 3.1 pspice的仿真功能 (12) 3.2 pspice软件的仿真步骤 (15) 3.3 pspice仿真使用中应主义的问题 (15) 第四章实验设计 (16) 4.1 实验一:二极管整流电路仿真 (16) 4.2 实验二:555定时器组成的单稳态触发器 (18) 第五章结束语及感想 (21) 参考文献 (22)

摘要: 在众多的仿真软件中,PSpice软件以其强大的仿真设计应用功能,在电子电路的仿真和设计中得到了较广泛的使用。PSpice及其相关库包的应用对提高学生的仿真设计能力,更新设计理念有较大的好处。本论文首先简要介绍了PSpice软件的基本功能和特点以及软件的基本操作方法,然后从电路分析的具体实验给出了的PSpice具体操作步骤,接着进行了电子电路应用系统的设计与仿真,并通过精确的仿真结果进一步体现了仿真PSpice软件的优越性,同时也反映了仿真实验在当今电路设计中的重要意义。 第一章 Pspice简介 1.1 Pspice简介 Pspice是由Spice发展而来的用于微机系列的通用电路分析软件。 Spice(Simulation Program with Integrated Circuit Emphasis)是由美国加州大学伯克利分校开发的电路仿真程序。随后,版本不断更新,功能不断完善。目前广泛使用的Pspice(P:Popular)软件是美国Microsim公司于1996年开发的基于Windows环境的仿真程序。它主要用于电子电路的仿真,以图形方式输入,自动进行电路检查,生成网表,模拟和计算电路的功能,不仅可以对模拟电子线路进行不同输入状态的时间响应、频率响应、噪声和其他性能的分析优化,以使设计电路达到最优的性能指标,还可以分析数字电子线路和模数混合电路,被公认是通用电路模拟程序中最优秀的软件,具有广阔的应用前景。 1.2 PSPICE的起源与发展 用于模拟电路仿真的SPICE(Simulation Program with Integrated Circuit Emphasis)软件于1972年由美国加州大学伯克利分校的计算机辅助设计小组利用FORTR AN语言开发而成,主要用于大规模集成电路的计算机辅助设计。SPICE的正式版SPICE 2G在1975年正式推出,但是该程序的运行环境至少为小型机。1985年,加州大学伯克利分校用C语言对SPICE 软件进行了改写,并由MICROSIM公司推出。1988年SPICE被定为美国国家工业标准。与此同时,各种以SPICE为核心的商用模拟电路仿真软件,在SPICE的基础上做了大量实用化工作,从而使SPICE成为最为流行的电子电路仿真软件。

传感器实验报告.doc

实验一金属箔式应变片性能—单臂电桥 1、实验目的了解金属箔式应变片,单臂单桥的工作原理和工作情况。 2、实验方法在CSY-998传感器实验仪上验证应变片单臂单桥的工作原理 3、实验仪器CSY-998传感器实验仪 4、实验操作方法 所需单元及部件:直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、F/V表、主、副电源。 旋钮初始位置:直流稳压电源打倒±2V档,F/V表打到2V档,差动放大增益最大。 实验步骤: (1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。上下二片梁的外表面各贴二片受力应变片。 (2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。 (3)根据图1接线R1、R2、R3为电桥单元的固定电阻。R4为应变片;将稳压电源的切换开关置±4V 档,F/V表置20V档。开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,等待数分钟后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。 (4) 将测微头转动到10㎜刻度附近,安装到双平行梁的右端即自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使V/F表显示值最小,再旋动测微头,使V/F表显示为零(细调零),这时的测微头刻度为零位的相应刻度。 (5) 往下或往上旋动测微头,使梁的自由端产生位移记下V/F表显示的值,每旋动测微头一周即 压值的相应变化。

回转器

回转器 实验目的 实验原理 实验仪器 实验步骤 实验报告要求 实验现象 实验结果分析 实验相关知识 实验标准报告 实验目的 ? 学习和了解回转器的特性。 ? 研究如何用运算放大器构成回转器,学习回转器的测试方法。 ? 学习用回转器和电容,来替代电感的方法。 实验原理 ? 回转器是理想回转器的简称。它是一种新型的双 口元件,其符号如图5.16.1所示。其特性表现为它能 将一端口上的电压(或电流)?°回转?±为另一端口上 的电流(或电压)。端口量之间的关系为: 或 上式中,回转系数g 具有电导的量纲,称为回转 电导,α=1/g 称为回转比。 ? 回转器可以由晶体管或运算放大器等有源器件 构成。图5.16.2所示电路是一种用两个负阻抗变换器 12 21 i gu i gu =??=-? 1221 u i u i αα=-??=?

来实现的回转器电路。 其端口特性: 根据回转器定义式,可得 g =1/R 。 图2.16.2 回转器电路图 ? 在输入为正弦电压,负载阻抗是一个电容C 时, 输入阻抗为: 因此,在回转器输出端接入一个电容元件,从输入 端看入时可等效为一电感元件,等效电感L =C /g 2。 所以,回转器也是一个阻抗变换器,它可以使容性 负载变换为感性负载。 12 2111i u R i u R ? =??? ?=-??L in 2 2 2 111L j C Z j L g Z g g j C ωωω= == =

? 如图5.16.4(a )所示,用模拟电感器可以组成 一个RLC 并联谐振电路,图5.16.4(b )是其等效电 路。 图5.16.4(a ) RLC 并联谐振电路图 图5.16.4(b ) RLC 并联谐振电路等效电路图 图5.16.4(a ) 图5.16.4(b ) 此并联谐振电路的幅频特性为: 2 C U L U ()U ω= =

PSpice 92电子电路设计与仿真

电子线路实验报告

Pspice 9.2 电子电路设计与仿真 实验报告 学号:080105011128 专业:光信 班级:081班 姓名:李萍

一、启动PSpice 9.2—Capture CLS Lite Edition 在主页下创建一个工程项目lp 二、画电路图 1.打开库浏览器选择菜单Place/Part—Add Liabray, 提取:三极管Q2N2222、电阻R、电容C、电源VDC、模拟地0/Source、信号源VSIN。 2.移动元件、器件。鼠标选中该元、器件并单击,然后压住鼠标左键拖到合适位置,放开鼠标即可。 3.翻转某一元、器件符号。 4.画电路线 选择菜单中Place/wire,此时将鼠标箭头变成一支笔。 5.为了突出输出端,需要键入标注V o字符,选择菜单Place/Net Alias—Vo OK! 6.将建立的文件(wfh.sch)存盘。 三、修改元件、器件的标号和参数

1、用鼠标箭头双击该元件符号(R或C),此时出现修改框,即可进入标号和参数的设置 2、VSIN信号电源的设置:①鼠标选中VSIN信号电源的FREQ用鼠标箭头单击(符号变为红色),然后双击,键入FREQ=1KHz、同样方法即键入VoEF=0V、VAMPL=30mv。②鼠标选中VSIN 信号电源并单击(符号变为红色)然后用鼠标箭头双击该元件符号,此时出现修改框,即可进入参数的设置,AC=30mv,鼠标选中Apply并单击,退出 3、三极管参数设置:鼠标选中三极管并单击(符号变为红色)然后,选择菜单中的Edit/Pspice Model。打开模型编辑框Edit/Pspice Model 修改Bf为50,保存,即设置Q2N2222-X的放大系数为50。 4、说明:输入信号源和输出信号源的习惯标法。 Vs、Vi、Vo(鼠标选中Place/Net Alias) 单级共射放大电路 四、设置分析功能 1、静态

霍尔传感器制作实训报告

佛山职业技术学院 实训报告 课程名称传感器及应用 报告内容霍尔传感器制作与调试 专业电气自动化技术 班级08152 姓名陈红杰‘’‘’‘’‘’‘’‘’‘’‘ 学号31 二0一0年六月 佛山职业技术学院

《传感器及应用》 霍尔传感器制作实训报告 班级08152学号31 姓名陈红杰时间2009-2010第二学期项目名称霍尔传感器电路制作与 指导老师张教雄谢应然调试 一、实验目的与要求: 1.对霍尔传感器的实物(电路部分)进行一个基本的了解。 2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。 二、实验仪器、设备与材料: 1.认识霍尔传感器(电路部分)的元件(附图如下): 2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。 3.对霍尔传感器的电路原理图进行基本的分析(附图如下):

实验开始,每组会得到分发的元件,我先由霍尔传感器的电路原理图开始分析,将每个元件插放好位置,这点很重要,如果出了问题那么会使电路不能正常工作,严重的还有可能导致电路元件受损而无法恢复。所以我先由霍尔传感器的电路原理图开始着手,分析清楚每个元件的指定位置,插放好了之后再由焊接,最后要把多余的脚剪掉。 整个电路的元件除了THS119是长脚直插式元件之外,其余的元件均为低位直插或者贴板直插。 焊接的过程中,所需要注意的事情就是不能出现虚焊脱焊或者更严重的烙铁烫坏元件的表壳封装损坏印制电路板等。这些都是在焊接的整个过程中要注意的事情。 比如,焊接三端稳压管7812时,要考虑到电路板的外壳封装和三端稳压管7812的散热问题,如果直插焊接的话那么就会放不进塑料外壳里,还有直插没有折引脚的话对三端稳压管7812的散热影响很大。综合这些因素再去插放焊接元件,效果会好很多。 又比如,焊接THS119的时,原本PCB板在设计的时已经排好版了,就是在TL082的背面插放THS119。这样的设计很巧妙,能够保证每一个THS119插进去焊接完了之后都能很好地与塑料外壳严密配合安放进去。因为这是利用了IC引脚与PCB板的间距来实现定距离的,绝不会给焊接带来任何麻烦。 最后,顺便提及一下,在保证能将每一个元件正确地焊接在印制电路板上的前提条件下要尽量将元件插放焊接得美观。 五、实验心得体会 (1)首先,从整个霍尔传感器来看,设计的电路的合理性,元件的选用,还有焊接的制作工艺是保证整个电路能正常工作前提。 (2)在学习电子电路的过程中,急需有一个过度期,焊接霍尔传感器电路的过程当中就会得到一个这样的练习。 (3)简单的说就是,拿到一张电路原理图未必做得出一个比较好的产品,这里需要对整个电路设计的元件参数的考虑和排版,元件插放等等。只有将这些问题逐一解决了,才能做好一个电路,也只有这样才能做好一个产品。 (4)霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。 六、实验收获 从拿到第一个元件开始,我仍然没有太多的收获,直到开始分析整个电路原理图的时候才慢慢开始了解到一些确实精巧的设计,可以说是独具匠心,到整个霍尔传感器电路完成之后才算是明白了一二。 在此,我具体地说说。首先,为什么不用一个普通的稳压管替代Z2这个精密稳压集成电路TL431呢?我查阅相关资料知道它的温度范围宽能在 区间工作。将其的R、C脚并焊再串上一个电阻来等效代替电

Pspice仿真

PSPICE实验报告 完成实验共7个 第四章二个,第三章二个,第五章一个, 第六章一个,第二章一个 (部分图片由于修改了扫描速率,导致绿线变为了灰色线)姓名:张熙童 班级:智能二班 学号:201208070225

第四章基本共射极放大电路 实验背景 BJT的重要特性之一是具有电流控制(即电流放大)作用,利用这一特性可以组成各种放大电路,单管放大电路是复杂放大电路的基本单元。这里以基本共射极放大电路为例,显然放大电路中可能会交、直流共存。分析放大电路的工作情况的基本方法有图解分析法和小信号模型分析法。这里用到了图解分析法,这种方法特别适用于分析信号幅度较大而工作频率不太高的情况,它直观、形象,有助于理解正确选择电路参数、合理设置静态工作点的重要性。 实验目标 1.静态工作点的计算 2.通过仿真实验理解基本共射极放大电路的基本原理. SPE4.9.1 题目简述: 共射极放大电路分别为下图a与图b所示。设两图中BJT均为NPN型硅管,型号 为Q2N3904,Bf=50(Bf为共射极放大系数)。图中的C e 是R e 的旁路电容。试用 Pspice程序分析: 分别求两路电路的Q点; 作温度特性分析,观察当温度在-30度~ +70度范围变化时,比较两电路BJT的集电极电流I c 的相对变化量; 是否可将图a与图b放在同一个窗口执行仿真并进行比较? 共射极放大电路有两种,两图的BJT均为PNP管,型号为2N3904,放大系数为50。 BJT参数: 书图4.4.1共射极放大电路如图基极分压射极偏置电路:

书图4.3.7共射极放大电路如图固定偏置电路: 数据记录: 图4.4.1 静态工作点:

PSPICE仿真

目录 介绍: (2) 新建PSpice仿真 (3) 新建项目 (3) 放置元器件并连接 (3) 生成网表 (5) 指定分析和仿真类型 (5) Simulation Profile设置: (6) 开始仿真 (7) 参量扫描 (9) Pspice模型相关 (11) PSpice模型选择 (11) 查看PSpice模型 (11) PSpice模型的建立 (12)

介绍: PSpice是一种强大的通用模拟混合模式电路仿真器,可以用于验证电路设计并且预知电路行为,这对于集成电路特别重要。 PSpice可以进行各种类型的电路分析。最重要的有: ●非线性直流分析:计算直流传递曲线。 ●非线性瞬态和傅里叶分析:在打信号时计算作为时间函数的电压和电流;傅里叶分 析给出频谱。 ●线性交流分析:计算作为频率函数的输出,并产生波特图。 ●噪声分析 ●参量分析 ●蒙特卡洛分析 PSpice有标准元件的模拟和数字电路库(例如:NAND,NOR,触发器,多选器,FPGA,PLDs和许多数字元件) 分析都可以在不同温度下进行。默认温度为300K 电路可以包含下面的元件: ●Independent and dependent voltage and current sources 独立和非独立的电压、电流 源 ●Resistors 电阻 ●Capacitors 电容 ●Inductors 电感 ●Mutual inductors 互感器 ●Transmission lines 传输线 ●Operational amplifiers 运算放大器 ●Switches 开关 ●Diodes 二极管 ●Bipolar transistors 双极型晶体管 ●MOS transistors 金属氧化物场效应晶体管 ●JFET 结型场效应晶体管 ●MESFET 金属半导体场效应晶体管 ●Digital gates 数字门 ●其他元件(见用户手册)。

PSpice电路仿真报告

PSpice 电路仿真报告 ——11351003 陈纪凯 一、 实验目的 1. 学会Pspice 电路仿真软件的基本使用 2. 掌握直流电路分析、瞬态电路分析等仿真分析方法 二、 实验准备 1. 阅读PSpice 软件的使用说明 2. 掌握节点法和网孔法来分析直流电路中各元件的电流和电压 3. 掌握用函数式表示一阶、二队电路中某些元件的电流和电压 三、 实验原理 用PSpice 仿真电路中各元件属性并与计算理论值比较,得出结论。 四、 实验内容 A. P113 3.38 1. 该测试电路如图a-1所示。输入该电路图,设置好元件属性和合适的分析方法,按 Analysis/Simulate 仿真该电路。 图a -1 图a-2 2. 仿真结果如图a-2所示。 3. 比较图a-2中仿真出来的数据与理论计算出来的数据。 计算值为: 1.731i A =,153.076V V =,262.885V V = 仿真值为: 1.731i A =,153.08V V =,262.89V V = 经比较,发现计算值与仿真值只是精确度不一样,精确值相等。 B. P116 3.57 1. 该测试电路图如图b-1如示。设置好元件属性及仿真方法。

图b- 1图b- 2 2.仿真出来的电路中各支路电流值如图b-2所示。 3.比较仿真值与理论计算值。 计算值:用网孔分析法得到线性方程组如下: 用matlab解上述方程得 i=1.5835A, i=1.0938A, i=1.2426A, i=-0.8787A 即 1234 i=1.584A, i=1.094A, i=1.243A, i=-0.87872A 从图b-2可以读出仿真值: 1234把计算值当作真实值,把仿真值当作测量值,计算相对误差如下表

传感器实训心得体会.doc

传感器实训心得体会 篇一:传感器实训心得 实训报告 学了一学期的传感器实训心得体会)传感器,在最后期末的时候我们也参加了传感器这一学科的实训,收获还是颇多。 在做测试技术的实验前,我以为不会难做,就像以前做物理实验一样,做完实验,然后两下子就将实验报告做完.直到做完测试实验后,才知道其实并不容易做,但学到的知识与难度成正比,使我们受益匪浅.做实验时,最重要的是一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白,这样,也会有事半功倍的效果。 实验就是使我们加深理解所学基础知识,掌握各类典型传感器、记录仪器的基本原理和适用范围;具有测试系统的选择及应用能力;具有实验数据处理和误差分析能力;得到基本实验技能的训练与分析能力的训练,使我们初步掌握测试技术的基本方法,具有初步独立进行机械工程测试的能力,对各门知识得到融会贯通的认识和掌握,加深对理论知识的理解。更重要的是能够提高我们的动手能力。 这次实习的却让我加深了对各种传感器的了解和它们各自的原理,而且还培养我们分析和解决实际问题的能力。 在做实验的时候,连接电路是必须有的程序,也是最重要的,而连接电路时最重要的就是细心。我们俩最开始做实验的时候,并没有多注意,还是比较细心,但当我们把电路连接好通电后发现我们并不能得到数据,不管怎么调节都不对,后来才知道是我们电路连接错了,然

后我们心里也难免有点失落,因为毕竟是辛辛苦苦连了这么久的电路居然是错了,最后我们就只有在认真检查一次,看错啊你处在哪里。有了这次的经验下次就更加细心了。以上就是我们组两人对这次实训最大的感触,下次实训虽然不是一样的学科,但实验中的经验和感受或许会有相似的,我们会将这次的经验用到下次,经验不断积累就是我们实训最大的收获。 篇二:传感器实训报告 上海第二工业大学 传感器与测试技术技能实习 专业:机械电子工程 班级:10机工A2 姓名: 学号: 指导老师:杨淑珍 日期:2013年6月24日~7月7日 项目五:转子台转速测量及振动监控系统。 (一)内容 设计一个转子台的振动检测系统,能实时测量转子台工作时的振动信号(振幅)并实时显示转速,当振幅超过规定值时,报警。具体要求: 1.能测量振动信号并显示波形,若振动超过限值,报警(软硬件报警); 2.能测量并显示转子的转速; 3.限值均由用户可设定(最好以对话框方式设置,软件重新打开后,能记住上次的设置结果);

PSpice仿真实验报告

实验七:使用PSpice软件对混频电路仿真 一.实验目的 1. 掌握PSpice软件的基本操作(包括设计绘制电路、仿真调测、时域频域分析)。 2.掌握如何使用PSpice仿真软件研究分析三极管混频器和乘法器混频器工作原理。 3.通过实验中波形和频谱,研究三极管混频与乘法器混频的区别。 二.实验仪器 1.计算机2.PSpice8.0软件 三.实验内容 1.在PSpice原理图编辑环境下分别完成三极管混频和乘法器混频的电路绘制; 2.对以上两种电路分别进行仿真,显示时域波形图(参与混频的两个频率为1kHz和10kHz); 3.对以上两种电路的输出波形分别进行FFT(频域分析),指出二者的频谱差别。四.实验步骤 1.实验准备 在计算机上安装PSpice8.0软件包(安装过程中如有提示,选默认即可)。 2.原理图的绘制方法 安装成功后,选择Windows程序->DesignLab Eval 8->Schematics即可打开原理图编辑界面。然后按如下操作: (1)选择与布放元器件:菜单 -> Draw -> Get New Part…选择所需电路元器件 -> Place&Close (2)连接元器件:把所需元器件布放完毕后,可点击菜单栏下方的快捷图标按钮“”将各元器件按照下图提示连接起来。 图1 三极管混频原理图

图1提示:图中Vcc与VBB选择元件库中的“VDC”元件,分别双击它们,按照图中标记设定好直流电压(DC)参数。V1与V2选择元件库中的“VSIN”元件。双击这些元件可以改变这些电压的参数,将V1和V2的振幅(VAMPL)参数都设置为0.01V,频率(FREQ)参数按上图标记设定好。“地”选择库中的“AGND”元件。 图2 乘法器混频原理图 图2提示:图中的乘法器直接使用库中的“MULT”元件。V1与V2选择元件库中的“VSIN”元件。振幅都设为0.01V,频率分别为1kHz和10kHz。 3.时域仿真及频域分析 ⑴实验步骤 ①在电脑D:\盘上创建pspice目录。将电路图按上面提示画好,并将各参数按上述提示要求设好,点击File -> Save把文件保存在D:\pspice目录下。 ②选择菜单–> analysis -> Setup 将Transient选项左侧选上对钩(其他项均不选),如下图所示

传感器实验报告

传感器实验报告(二) 自动化1204班蔡华轩 U2 吴昊 U5 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔 记下位移X 与输出电压值,填入表7-1。

5、根据表7-1 数据计算电容传感器的系统灵敏度S 和非线性误差δf。 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S= 非线性误差δf=353=% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理

回转器电路设计实验

南京航空航天大学 实验报告 实验课程:电路实验与实践 实验名称:回转器电路设计 班级:0312302 学号: 姓名: 实验日期:2013-12-19

一、实验目的 1.加深对回转器特性的认识,并对实际应用有所了解; 2.研究如何运用运算放大器构成回转器,并学习回转器的测试方法。 二、实验原理 回转器是理想回转器的简称,它能将一端口上的电压(电流)“回转”成 另一端口上的电流(电压)。端口之间的关系为: I1=gU2 或u1=-ri2 I2=-gU1 或u2=ri1 式中:r、g 为回转系数,r为回转电阻,g 为回转电导。 三、实验步骤 1. 测回转电导g: 回转器输入端接信号发生器,调得US=1.5V(有效值),输出端接负载电 阻RL=200Ω,分别测U1,U2,I1,求g。 2. 记录不同频率下U1、I1的相位关系: 回转器输出端接电容,C分别取0.1μF、0.22μF,用示波器观察f 分别为500Hz、1000HZ时U1和I1的相位关系。 3. 测由模拟电感组成的并联谐振电路的Uc~f幅频特性: 取C1=0.1μF经回转器成为模拟电感,另取C=0.22μF,则f0=1.073kHz, 符合要求。 信号源输出电压有效值保持为 1.5V 不变,改变频率(200Hz~2000Hz),测Uc 的值,同时观察US和UC的相位关系。(串联一取样电阻,阻值1k Ω) 四、仿真实验电路图及数据 1.测量回转电导g,仿真结果如下图所示 实验数据:U1=250mV U2=244.99mV I1=U1/1000 g=I1/U2=U1/(1000*U2)=1.00 X 10-3s

基于PSpice软件的二极管电路仿真

基于PSpice软件的二极管电路仿真 一、实验目的 1.掌握PSPICE软件中工程的建立方法。 2.掌握PSPICE软件中电路图的输入和编辑方法。 3.简单学习PSPICE软件中DC扫描的设置、仿真和波形查看方法。 二、实验工具 1.PC机 2.OrCAD 16.5软件 三、实验要求 1.熟悉PSPICE软件的安装及操作界面。 2.学会使用PSPICE软件对二极管进行简单的DC扫描仿真。 四、实验步骤 1.打开PSPICE软件,界面如下图1.1所示。 图1.1 软件界面 2.新建一个Diode工程,如下图1.2所示. 图1.2 新建工程

工程名为Diode,在Create a New Project Using中选择Analog or Mixed A/D项,该项表示模拟或数字混合仿真,其余三项不能用于模拟仿真。 然后,点击OK进行下一步。 3.下一步会弹出图1.3的对话框,新建一个为空的工程。 图1.3 空的工程 4.点击OK,即进入电路图编辑的界面,如图1.4所示。 图1.4 电路图编辑界面 在界面中,包含了绘图窗口、信息查看窗口和项目管理视图,项目管理视图如图1.5所示。 图1.5 项目管理视图

在该界面中,我们可以进行各种电路图的编辑。 5.在编辑电路图之前,我们需要添加器件库。在Capture中鼠标点击绘图窗口,点击绘图窗口的图标,即会弹出加载器件库的对话框,如图1.6所示。 图1.6 器件加载 在器件加载对话框中,我们选中所有器件库,即可添加各种元器件。 6.进行简单的电路图绘制及编辑,绘制、编辑后的电路图如下图1.7所示。 图1.7 电路图 电路图中,电源V1电压为0V,电阻R1阻值为10欧姆,D1为一个二极管。器件的使用情况如下表1.1所示。

模电PSPICE仿真实验报告

实验一晶体三极管共射放大电路 实验目的 1、 学习共射放大电路的参数选取方法。 2、 学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。 3、 学习放大电路的电压放大倍数和最大不失真输出电压的分析方法 4、 学习放大电路数输入、输出电阻的测试方法以及频率特性的分析方法。 、实验内容 确定并调整放大电路的静态工作点。 为了稳定静态工作点,必须满足的两个条件 条件一: 条件二: I 1>>I BQ V>>V BE I I =(5~10)I B V B =3~5V R E 由 V B V BE V B 再选定 I EQ I CQ 计算出Re R b2 I I ,由 V B V B I I (5~10)I B Q 计算出 m - Vcc V B R b1 再由 V CC V B (5~10)I BQ 计算出 Ri

Time 从输出波形可以看出没有出现失真,故静态工作点设置的合适。 改变电路参数: V1 12Vdc Rc 此时得到波形为: 400mV 200mV 0V -200mV 450us 500us 75k 3k 4.372V R2 50k Q1 Q2N2222 Re 2.2k C2 T 一 6.984V 10uF 彳Ce 100uF

2.0 V -4.0V 0s 50us 100us 口V(C2:2) V(C1:1) 150us 200us 250us 300us 350us 400us 450us 500us Time 此时出现饱和失真。 当RL开路时(设RL=1MEG Q)时: V1 输出波形为:

4.0V -4.0V 出现饱和失真 二、实验心得 这个实验我做了很长时间,主要是耗在静态工作点的调试上面。按照估计算出的Rb1、Rb2、Re的值带入电路进行分析时,电路出现失真,根据其失真的情况需要不停的调 节Rb1、Rb2和Re的值是电路输出不失真。 实验二差分放大电路 -、实验目的 1、学习差分放大电路的设计方法 2、学习差分放大电路静态工作的测试和调整方法 3、学习差分放大电路差模和共模性能指标的测试方法 二、实验内容 1. 测量差分放大电路的静态工作点,并调整到合适的数值。

电子秤课程设计实验报告

电 子 设 计 实 验 报 告 电子科技大学 设计题目:电子称姓名:

学生姓名 任务与要求 一、任务 使用电阻应变片称重传感器,实现电子秤。用砝码作称重比对。 二、要求 准确、稳定称重; 称重传感器的非线性校正,提高称重精度; 实现“去皮”、计价功能; 具备“休眠”与“唤醒”功能,以降低功耗。

电子秤 第一节绪论 摘要:随着科技的进步,在日常生活以及工业运用上,对电子秤的要求越来越高。常规的测试仪器仪表和控制装置被更先进的智能仪器所取代,使得传统的电子测量仪器在远离、功能、精度及自动化水平定方面发生了巨大变化,并相应的出现了各种各样的智能仪器控制系统,使得科学实验和应用工程的自动化程度得以显著提高。影响其精度的因素主要有:机械结构、传感器和数显仪表。在机械结构方面,因材料结构强度和刚度的限制,会使力的传递出现误差,而传感器输出特性存在非线性,加上信号放大、模数转换等环节存在的非线性,使得整个系统的非线性误差变得不容忽视。因此,在高精度的称重场合,迫切需要电子秤能自动校正系统的非线性。此外,为了保证准确、稳定地显示,要求所采用的ADC具有足够的转换位数,而采用高精度的ADC,自然增加了系统的成本。基于电子秤的现状,本文提出了一种简单实用并且精度高的智能电子秤设计方案。通过运用很好的集成电路,使测量精度得到了大大提高,由于采用数字滤波技术,使稳态测量的稳定性和动态测量的跟随性都相当好。并取得了令人满意的效果。 关键词:压力传感器,AD620N放大电路,ADC模数转换,STM32单片机,OLED 显示屏,矩阵键盘,电子秤。 1.1引言 本课程设计的电子秤以单片机为主要部件,利用全桥测量原理,通过对电路输出电压和标准重量的线性关系,建立具体的数学模型,将电压量纲(V)改为重量纲(g)即成为一台原始电子秤。其中测量电路中最主要的元器件就是电阻应变式传感器。电阻应变式传感器是传感器中应用最多的一种,本设计采用全桥测量电路,是系统产生的误差更小。输出的数据更精确。而AD620N放大电路的作用就是把传感器输出的微弱的模拟信号进行一定倍数的放大,以满足A/D 转换器对输入信号电平的要求。A/D转换的作用是把模拟信号转变成数字信号,进行模拟量转数字量转换,然后把数字信号输送到显示电路中去,最后由OLED

回转器电路设计(完整版,包括pspice仿真电路以及实验数据)

南京航空航天大学电路实验报告 回转器电路设计 姓名:李根根 学号:031220720 指导老师:王芸

目录 一、实验目的 (2) 二、实验仪器 (2) 三、实验原理 (2) 四、实验要求 (3) 五、用pspice软件进行电路仿真并分析 (5) 六、实验内容 (9) 七、实验心得 (11) 八、附件(Uc – f 图) (12)

一、实验目的 1.加深对回转器特性的认识,并对其实际应用有所了解。 2.研究如何用运算放大器构成回转器,并学习回转器的测试方法。 二、实验仪器 1.双踪示波器 2.函数信号发生器 3.直流稳压电源 4.数字万用表 5.电阻箱 6.电容箱 7.面包板 8.装有pspice软件的PC一台 三、实验原理 1.回转器是理想回转器的简称。它是一种新型、线性非互易的双端口元件,其电路符号如图所示。其特性表现为它能够将一端口上的电压(或者电流)“回转”成另一端口上的电流(或者电压)。端口变量之间的关系为 I1 = gu2 u1 = -ri2 I2 = gu1 u2 = ri1

式子中,r,g称为回转系数,r称为回转电阻,g称为回转电导。 2.两个负阻抗变换器实现回转器 图中回转电导为: 四、实验要求 先利用pspice软件进行电路仿真,(提示:仿真时做瞬态分析,信号源用Vsin ,做频率分析时,信号源用VAC)然后在实验室完成硬件测试: 1.用运算放大器构成回转器电路(电路构成见实验教材p216图9-24,其中电阻R的标称值为1000Ω),测量回转器的回转电导。 2.回转器的应用——与电容组合构成模拟电感。

3.用电容模拟电感器,组成一个并联谐振电路,并测出谐振频率以及绘制其Uc~f幅频特性曲线。 具体要求: 1.回转器输入端接信号发生器,调得Us=1.5V(有效值),输出端接负载电阻RL=200Ω,分别测出U1、U2及I1,求出回转电导g。 试回答改变负载电阻以及频率的大小对回转电导有何影响? 2.回转器输出端接电容,C分别取0.1μF和0.22μF,用示波器观察频率为500Hz、1000Hz 时U1和I1的相位关系,解释模拟电感是如何实现的。 要求画出测试U1和I1的相位关系的接线图,并用坐标纸分别画出两个不同C值时的U1和I1波形,记录其相位关系。说明模拟电感的实现与频率的大小有何关系。 3.用C1回转后的模拟电感作并联谐振电路,谐振频率f0取1000Hz左右,确定C和C1的大小,信号源输出电压保持Us=1.5V(有效值)不变,改变频率(200Hz~2000Hz)测量Uc的值,同时观察us和uc的相位关系。(要求串联一取样电阻1kΩ) 预习要求: 1.画出设计任务中完整的电路接线图,明确I1的测量方法,建议取样电阻取1kΩ。2.电容不要取大于1μF的电解电容,以免误差大。 报告要求: 1.提交一份电路仿真实验报告。 2.现场整理测试数据和图表,与仿真结果比较,给出比较详细的分析和说明。

PSPICE仿真流程

PSPICE仿真流程 (2013-03-18 23:32:19) 采用HSPICE 软件可以在直流到高于100MHz 的微波频率范围内对电路作精确的仿真、分析和优化。 在实际应用中,HSPICE能提供关键性的电路模拟和设计方案,并且应用HSPICE进行电路模拟时, 其电路规模仅取决于用户计算机的实际存储器容量。 二、新建设计工程 在对应的界面下打开新建工程: 2)在出现的页面中要注意对应的选择 3)在进行对应的选择后进入仿真电路的设计:将生成的对应的库放置在CADENCE常用的目录

中,在仿真电路的工程中放置对应的库文件。 这个地方要注意放置的.olb库应该是PSPICE文件夹下面对应的文件,在该文件的上层中library 中 的.olb中的文件是不能进行仿真的,因为这些元件只有.olb,而无网表.lib。 4)放置对应的元件: 对于项目设计中用到的有源器件,需要按照上面的操作方式放置对应的器件,对于电容, 电阻电感等分离器件,可以在libraries中选中所有的库,然后在滤波器中键入对应的元件 就可以选中对应的器件,点击后进行放置。 对分离元件的修改直接在对应的元件上面进行修改:电阻的单位分别为:k m; 电容的单位分别为:P n u ;电感的单位分别为:n 及上面的单位只写量级不写单位。 5)放置对应的激励源: 在LIBRARIES中选中所有的库,然后键入S就可以选中以S开头的库。然后在对应的 库中选中需要的激励源。 激励源有两种一种是自己进行编辑、手工绘制的这个对应在库中选择: 另外一种是不需要自己进行编辑:

该参数的修改可以直接的在需要修改的数值上面就行修改,也可以选定电源然后点击右键后进行对应的修改。 6)放置地符号: 地符号就是在对应的source里面选择0的对应的标号。 7)直流电源的放置: 电源的选择里面应该注意到选择source 然后再选定VDC或者是其它的对应的参考。 8)放置探头: 点击对应的探头放置在感兴趣的位置处。

OrCAD-PSpice电路仿真综合实验

课程名称:电路实验实验名称:PSpice 仿真综合实验实验学时:3学时 仪器设备:计算机、模块化电路实验装 置 实验平台:PSpice 仿真软件、硬件实验系统 课程目标:学习运用PSpice 仿真软件求解直流电路。掌握直流工作点及直流扫描分析方法,学习用Capture软件绘制电路图、进行直流工作点及直流扫描分析的设置和观察仿真输出结果。 一、实验任务 1.检测与作业 (1)查看自己家里的总电源是空气开关还是刀闸开关,其规格参数的额定电流是(63A )。(2)视频2中电路实验室的总电源正常供电,如果实验台的直流电压源没电,可能产生故障的原因有 哪些? 直流电压源发生接地短路,直流电压源内部发生故障开路,总电源到实验台之间的线路断路。 (3)绘制仿真电路图时,有关输入电路图名称说明正确的是:A A. 电路图名称可由英文字符串或数字组成,不能存在汉字。 B. 电路图名称可由英文字符串或数字组成,可以存在汉字。 C. 电路图名称可由英文字符串或数字或汉字组成。 (4)绘制仿真电路图时,必须要有一个电位为零的接地符号,否则被认为出错。接地符号为:B A. B. (5)填空题:PSpice在绘制电路图时可以放置波形显示标示符Marker(又称探针),以便在分析之 后直接确定要显示的信号曲线,以下波形显示标示符的功能是: A. : 显示电压/电平波形曲线。 B. : 显示电位差波形曲线。 C. : 显示电流波形曲线。 (6)下图所示受控源的符号中,1、2两接线端为控制端,应按照参考方向 1 2 接入电路,3、4两接线端为输出端,控制系数为 2 。 1 23 4 (7)下图所示电压探针测量的是节点n1和n2之间电压。

负阻抗变换器和回转器的设计

负阻抗变换器和回转器的设计 摘要 本文简要介绍了负阻抗变换器(NIC )和回转器的原理,通过实验研究NIC 的性能,并应用NIC 性能作为负内阻电源研究其输出特性,还将这负电阻应用到R LC 串联电路中, 从中观察到除过阻尼、临界阻尼、负阻尼外的无阻尼等幅振荡和总电阻小于零的负阻尼发散震荡;并且利用负阻抗变换器实现回转器,进而利用回转器将电容回转成模拟纯电感,还利用模拟的电感组成RLC 并联谐振电路。 关键字 负阻抗变换器 运算放大器 二端口网络 回转器 回转电导 模拟电感 并联谐振 1.负阻抗变换器的原理 负转换器是一种二端口网络,通常,把一端口处的U 1和I 1称为输入电压和输入电流,而把另一端口’处的U 2和-I 2称为输出电压和输出电流。U 1、I 1和U 2、I 2的指定参考方向如下图中所示。根据输入电压和电流与输出电压和电流的相互关系,负阻抗变换器可分为电流反向型(INIC)和电压反向型(VNIC)两种, 电路图分别如下图的(a )(b )所示: 图中U 1和I 1称为输入电压和输入电流, U 2和-I 2称为输出电压和输出电流。U 1、I 1和U 2、I 2的指定参考方向如图1-1、1-2中所示。根据输入电压和电流与输出电压和电流的相互关系,负阻抗变换器可分为电流反向型(INIC)和电压反向型(VNIC)两种,对于INIC ,有U 1 =U 2 ;I 1=( 1K -)(2I -)式中K 1为正的实常数,称为电流增益。由上式可见,输出电压与输入电压相同,但实际输出电流-I 2不仅大小与输入电流I 1不同(为I 1的1/ K 1倍)而且方向也相反。换言之,当输入电流的实际方向与它的参考方向一致时,输出电流的实际方向与它的参考方向

无线传感器网络实验报告

无线传感器网络实验报告 Contiki mac协议与xmac协议的比较 1.简介 无线传感器网络(wireless sensor networks, WSN)节点由电池供电,其能力非常有限,同时由于工作环境恶劣以及其他各种因素,节点能源一般不可补充。因而降低能耗、延长节点使用寿命是所有无线传感器网络研究的重点。 WSN中的能量能耗主要包括通信能耗、感知能耗和计算能耗,其中通信能耗所占的比重最大,因此,减少通信能耗是延长网络生存时间的有效手段。同时,研究表明节点通信时Radio 模块在数据收发和空闲侦听时的能耗几乎相同,所以要想节能就需要最大限度地减少Radio 模块的侦听时间(收发时间不能减少),及减小占空比。 传统的无线网络中,主要考虑到问题是高吞吐量、低延时等,不需要考虑能量消耗,Radio 模块不需要关闭,所以传统无线网络MAC协议无法直接应用于WSN,各种针对传感器网络特点的MAC协议相继提出。现有的WSN MAC协议按照不同的分类方式可以 分成许多类型,其中根据信道访问策略的不同可以分为: X-MAC协议 X-MAC协议也基于B-MAC协议的改进,改进了其前导序列过长的问题,将前导序列分割成许多频闪前导(strobed preamble),在每个频闪前导中嵌入目的地址信息,非接收节点尽早丢弃分组并睡眠。 X-MAC在发送两个相邻的频闪序列之间插入一个侦听信道间隔,用以侦听接收节点的唤醒标识。接收节点利用频闪前导之间的时间间隔,向发送节点发送早期确认,发送节点收到早

期确认后立即发送数据分组,避免发送节点过度前导和接收节点过度侦听。 X-MAC还设计了一种自适应算法,根据网络流量变化动态调整节点的占空比,以减少单跳延时。 优点: X-MAC最大的优点是不再需要发送一个完整长度的前导序列来唤醒接收节点,因而发送延时和收发能耗都比较小;节点只需监听一个频闪前导就能转入睡眠。 缺点: 节点每次醒来探测信道的时间有所增加,这使得协议在低负载网络中能耗性比较差。而且分组长度、数据发送速率等协议参数还需进一步确定 X-MAC原理图如图3所示: ContikiMAC协议 一.ContikiMAC协议中使用的主要机制: 1.时间划分

相关主题
文本预览
相关文档 最新文档