当前位置:文档之家› 气体压力及流量的测量

气体压力及流量的测量

气体压力及流量的测量
气体压力及流量的测量

气体压力及流量的测量

压力的表示方法

常用测压仪表

气压计

真空的获得

气体钢瓶减压阀

各种流量计简介

压力是用来描述体系状态的一个重要参数。许多物理、化学性质,例如熔点、沸点、蒸气压几乎都与压力有关。在化学热力学和化学动力学研究中,压力也是一个很重要的因素。因此,压力的测量具有重要的意义。

就物理化学实验来说,压力的应用范围高至气体钢瓶的压力,低至真空系统的真空度。压力通常可分为高压、中压、常压和负压。压力范围不同,测量方法不一样,精确度要求不同,所使用的单位也各有不同的传统习惯。

一、压力的表示方法

压力是指均匀垂直作用于单位面积上的力,也可把它叫作压力强度,或简称压强。国际单位制(SI)用帕斯卡作为通用的压力单位,以Pa或帕表示。当作用于1m2(平方米)面积上的力为1N(牛顿)时就是1Pa(帕斯卡):

但是,原来的许多压力单位,例如,标准大气压(或称物理大气压,简称大气压)、工程大气压(即kg·cm-2)、巴等现在仍然在使用。物理化学实验中还常选用一些标准液体(例如汞)制成液体压力计,压力大小就直接以液体的高度来表示。它的意义是作用在液柱单位底面积上的液体重量与气体的压力相平衡或相等。例如,1atm可以定义为:在0℃、重力加速度等于

9.80665时,760mm高的汞柱垂直作用于底面积上的压力。此时汞的密

度为13.5951g·cm-3。因此,1atm又等于1.03323kg·cm-2。上述压力单位之间的换算关系见表II-2-1。

表Ⅱ-2-1 常用压力单位换算表

除了所用单位不同之外,压力还可用绝对压力、表压和真空度来表示。图Ⅱ-2-1说明三者的关系。显然,在压力高于大气压的时侯:

绝对压=大气压+表压或表压=绝对压-大气压

在压力低于大气压的时候:

绝对压=大气压-真空度或真空度=大气压-绝对压

当然,上述式子等号两端各项都必须采用相同的压力单位。

二、常用测压仪表

1.液柱式压力计

液柱式压力计是物理化学实验中用得最多的压力计。它构造简单、使用方便,能测量微小压力差,测量准确度比较高,且制作容易,价格低廉,但是测量范围不大,示值与工作液密度有关。它的结构不牢固,耐压程度较差。现简单介绍一下U型压力计。

液柱式U型压力计由两端开口的垂直U型玻璃管及垂直放置的刻度标尺所构成。管内下部盛有适量工作液体作为指示液。图II-2-2中U型管的两支管分别连接于两个测压口。因为气体的密度远小于工作液的密度,因此,由液面差Δh及工作液的密度ρ、重力加速度g可以得到下式:

图Ⅱ-2-1绝对压、表压与真空度的关系图II-2-2 U型压力计

U型压力计可用来测量:

(1)两气体压力差;

(2)气体的表压(p

1为测量气压,p

2

为大气压);

(3)气体的绝对压力(令p

2为真空,p

1

所示即为绝对压力);

(4)气体的真空度(p

1通大气,p

2

为负压,可测其真空度)。

图Ⅱ-2-3弹簧管压力计

1.金属弹簧管;

2.指针;3-连杆;4.扇型齿轮;5.弹簧;6-底座;7.测压接头;8.小齿轮;9.外壳。

2.弹性式压力计

利用弹性元件的弹性力来测量压力,是测压仪表中相当重要的一种形式。由于弹性元件的结构和材料不同,它们具有各不相同的弹性位移与被测

压力的关系。物化实验室中接触较多的为单管弹簧管式压力计。这种压力计的压力由弹簧管固定端进入,通过弹簧管自由端的位移带动指针运动,指示压力值。如图Ⅱ-2-3所示。

使用弹性式压力计时应注意以下几点:

(1)合理选择压力表量程。为了保证足够的测量精度,选择的量程应在仪表分度标尺的12~34范围内。

(2)使用时环境温度不得超过35度,如超过应给予温度修正。

(3)测量压力时,压力表指针不应有跳动和停滞现象。

(4)对压力表应定期进行校验。

3.数字式低真空压力测试仪

数字式低真空压力测试仪是运用压阻式压力传感器原理测定实验系统

与大气压之间压差的仪器。它可取代传统的U型水银压力计,无汞污染现象,对环境保护和人类健康有极大的好处。该仪器的测压接口在仪器后的面板上。使用时,先将仪器按要求连接在实验系统上(注意实验系统不能漏气),再打开电源预热10min;然后选择测量单位,调节旋钮,使数字显示为零;最后开动真空泵,仪器上显示的数字即为实验系统与大气压之间的压差值。

三、气压计

测量环境大气压力的仪器称气压计。气压计的种类很多,实验室常用的是福廷式气压计和空盒气压计。

图Ⅱ-2-4福廷式气压计

1.玻璃管;

2.黄铜标尺;3-游标尺;4.调节螺栓;5.黄铜管;6.象牙针;7.汞

槽;8.羚羊皮袋;9.调节汞面的螺栓;10.气孔;11.温度计。

(一)福廷式气压计

福廷式气压计的构造如图Ⅱ-2-4所示。它的外部是一黄铜管,管的顶端有悬环,用以悬挂在实验室的适当位置。气压计内部是一根一端封闭的装有水银的长玻璃管。玻璃管封闭的一端向上,管中汞面的上部为真空,管下端插在水银槽内。水银槽底部是一羚羊皮袋,下端由螺旋支持,转动此螺旋可调节槽内水银面的高低。水银槽的顶盖上有一倒置的象牙针,其针尖是黄铜标尺刻度的零点。此黄铜标尺上附有游标尺,转动游标调节螺旋,可使游标尺上下游动。

1.福廷式气压计的使用方法:

(1)慢慢旋转螺旋,调节水银槽内水银面的高度,使槽内水银面升高。利用水银槽后面磁板的反光,注视水银面与象牙尖的空隙,直至水银面与象牙尖刚刚接触,然后用手轻轻扣一下铜管上面,使玻璃管上部水银面凸面正常。稍等几秒钟,待象牙针尖与水银面的接触无变动为止。

(2)调节游标尺

转动气压计旁的螺旋,使游标尺升起,并使下沿略高于水银面。然后慢慢调节游标,直到游标尺底边及其后边金属片的底边同时与水银面凸面顶端相切。这时观察者眼睛的位置应和游标尺前后两个底边的边缘在同一水平线上。

(3)读取汞柱高度

当游标尺的零线与黄铜标尺中某一刻度线恰好重合时,则黄铜标尺上该刻度的数值便是大气压值,不须使用游标尺。当游标尺的零线不与黄铜标尺上任何一刻度重合时,那么游标尺零线所对标尺上的刻度,则是大气压值的整数部分(mm)。再从游标尺上找出一根恰好与标尺上的刻度相重合的刻度线,则游标尺上刻度线的数值便是气压值的小数部分。

(4)整理工作

记下读数后,将气压计底部螺旋向下移动,使水银面离开象牙针尖。记下气压计的温度及所附卡片上气压计的仪器误差值,然后进行校正。

2.气压计读数的校正

水银气压计的刻度是以温度为0℃,纬度为45°的海平面高度为标准的。若不符合上述规定时,从气压计上直接读出的数值,除进行仪器误差校正外,在精密的工作中还必须进行温度、纬度及海拔高度的校正。

(1)仪器误差的校正

由于仪器本身制造的不精确而造成读数上的误差称“仪器误差”。仪器出厂时都附有仪器误差的校正卡片,应首先加上此项校正。

(2)温度影响的校正

由于温度的改变,水银密度也随之改变,因而会影响水银柱的高度。同时由于铜管本身的热胀冷缩,也会影响刻度的准确性。当温度升高时,前者引起偏高,后者引起偏低。由于水银的膨胀系数较铜管的大,因此当温度高于0度时,经仪器校正后的气压值应减去温度校正值;当温度低于0度时,要加上温度校正值。气压计的温度校正公式如下:

式中:

为气压计读数(mmHg);为气压计的温度(度);为水银柱在

0度~35度之间的平均体膨胀系数(=0.0001818);

为黄铜的线膨胀系数(

=0.0000184);p0为读数校正到0度时的气压值(mmHg)。显然,

温度校正值即为

。其数值列有数据表,实际校正时,读取

,后

可查表II-2-2求得。

(3)海拔高度及纬度的校正

重力加速度(g)随海拔高度及纬度不同而异,致使水银的重量受到影响,从而导致气压计读数的误差。其校正办法是:经温度校正后的气压值再

乘以

。式中,

为气压计所在地纬度(度),

为气压计所在地海拔高度(m)。此项校正值很小,在一般实验中可不必考虑。

(4)其它如水银蒸气压的校正、毛细管效应的校正等,因校正值极小,一般都不考虑。

表Ⅱ-2-2 气压计读数的温度校正值

图Ⅱ-2-5 气压计原理示意图

3.使用时注意事项

(1)调节螺旋时动作要缓慢,不可旋转过急。

(2)在调节游标尺与汞柱凸面相切时,应使眼睛的位置与游标尺前后下沿在同一水平线上,然后再调到与水银柱凸面相切。

(3)发现槽内水银不清洁时,要及时更换水银。

福廷式气压计是一种真空压力计,其原理如图Ⅱ-2-5所示:它以汞柱所产生的静压力来平衡大气压力

,汞柱的高度就可以度量大气压力的大小。

在实验室,通常用毫米汞柱(mmHg )作为大气压力的单位。毫米汞柱作为压力单位时,它的定义是:当汞的密度为

(即0度时汞的密度,

通常作为标准密度,用符号

表示),重力加速度为(即纬

度45°的海平面上的重力加速度,通常作为标准重力加速度,用符号

示)时,1mm高的汞柱所产生的静压力为1mmHg。mmHg与Pa单位之间的换算关系为:

(二)空盒气压表

空盒气压表是由随大气压变化而产生轴向移动的空盒组作为感应元件,通过拉杆和传动机构带动指针,指示出大气压值的。

表Ⅱ-2-3仪器刻度校正值(mmHg)

当大气压升高时,空盒组被压缩,通过传动机构使指针顺时针转动一定角度;当大气压降低时,空盒组膨胀,通过传动机构使指针逆向转动一定角度。空

盒气压表测量范围在600mmHg~800mmHg之间,度盘最小分度值为0.5mmHg。测量温度在-10℃~40℃之间。读数经仪器校正和温度校正后,误差不大于1.5mmHg。气压计的仪器校正值为+0.7mmHg。温度每升高1度,气压校正值为-0.05mmHg。仪器刻度校正值见表II-2-3。例如,16.5度时,空盒气压表上的读数为724.2mmHg。仪器校正值为+0.7mmHg,温度校正值为

16.5×(-0.05)=-0.8(mmHg),仪器刻度校正值由表Ⅱ-2-3查得是+0.6mmHg,校正后大气压为:724.2+0.7-0.8+0.6=724.7(mmHg)=9.662×104(Pa)。

空盒气压表体积小、重量轻,不需要固定,只要求仪器工作时水平放置。但其精确度不如福廷式气压计。

在使用空盒气压表时应注意,因每台仪器在鉴定时的环境温度和大气压都不尽相同,所以每台仪器的仪器刻度校正值、温度校正值和仪器校正值也都不相同。应根据每台仪器所提供的校正表格里的数据进行校正。

四、真空的获得

真空是指压力小于一个大气压的气态空间。真空状态下气体的稀薄程度,常以压强值表示。习惯上称作真空度。不同的真空状态,意味着该空间具有不同的分子密度。

在现行的国际单位制(SI)中,真空度的单位与压强的单位均为帕斯卡(Pasca)。简称帕。符号为Pa。

图Ⅱ-2-6 旋片式真空泵

1.进气嘴;

2.旋片弹簧;

3.旋片;

4.转子;

5.泵体;

6.油箱;

7.真空泵油;8-排气嘴。

在物理化学实验中,通常按真空度的获得和测量方法的不同,将真空区域划分为:粗真空(101325Pa~1333Pa);低真空(1333Pa~0.1333Pa);高真空(0.1333Pa~1.333×10-6Pa);超高真空(<1.333×10-6Pa)为了获得真空,就必须设法将气体分子从容器中抽出。凡是能从容器中抽出气体,使气体压力降低的装置,均可称为真空泵。如水流泵、机械真空泵、油泵、扩散泵、吸附泵、钛泵等等。

实验室常用的真空泵为旋片式真空泵,如图Ⅱ-2-6所示。它主要由泵体和偏心转子组成。经过精密加工的偏心转子下面安装有带弹簧的滑片,由电动机带动,偏心转子紧贴泵腔壁旋转。滑片靠弹簧的压力也紧贴泵腔壁。滑片在泵腔中连续运转,使泵腔被滑片分成的两个不同的容积呈周期性的扩大和缩小。气体从进气嘴进入,被压缩后经过排气阀排出泵体外。如此循环往复,将系统内的压力减小。

旋片式机械泵的整个机件浸在真空油中,这种油的蒸气压很低,既可起润滑作用,又可起封闭微小的漏气和冷却机件的作用。

在使用机械泵时应注意以下几点:

1.机械泵不能直接抽含可凝性气体的蒸气、挥发性液体等。因为这些气体进入泵后会破坏泵油的品质,降低了油在泵内的密封和润滑作用,甚至会导致泵的机件生锈。因而必须在可凝气体进泵前先通过纯化装置。例如,用无水氯化钙、五氧化二磷、分子筛等吸收水分;用石蜡吸收有机蒸气;用活性炭或硅胶吸收其它蒸气等。

2.机械泵不能用来抽含腐蚀性成分的气体。如含氯化氢、氯气、二氧化氮等的气体。因这类气体能迅速侵蚀泵中精密加工的机件表面,使泵漏气,不能达到所要求的真空度。遇到这种情况时,应当使气体在进泵前先通过装有氢氧化钠固体的吸收瓶,以除去有害气体。

3.机械泵由电动机带动。使用时应注意马达的电压。若是三相电动机带动的泵,第一次使用时特别要注意三相马达旋转方向是否正确。正常运转时不应有摩擦、金属碰击等异声。运转时电动机温度不能超过50度~60度。

4.机械泵的进气口前应安装一个三通活塞。停止抽气时应使机械泵与抽空系统隔开而与大气相通,然后再关闭电源。这样既可保持系统的真空度,又避免泵油倒吸。

五、气体钢瓶减压阀

在物理化学实验中,经常要用到氧气、氮气、氢气、氩气等气体。这些气体一般都是贮存在专用的高压气体钢瓶中。使用时通过减压阀使气体压力降至实验所需范围,再经过其它控制阀门细调,使气体输入使用系统。最常用的减压阀为氧气减压阀,简称氧气表。

1.氧气减压阀的工作原理

氧气减压阀的外观及工作原理见图Ⅱ-2-7和图II-2-8。

氧气减压阀的高压腔与钢瓶连接,低压腔为气体出口,并通往使用系统。高压表的示值为钢瓶内贮存气体的压力。低压表的出口压力可由调节螺杆控制。

使用时先打开钢瓶总开关,然后顺时针转动低压表压力调节螺杆,使其压缩主弹簧并传动薄膜、弹簧垫块和顶杆而将活门打开。这样进口的高压气体由高压室经节流减压后进入低压室,并经出口通往工作系统。转动调节螺杆,改变活门开启的高度,从而调节高压气体的通过量并达到所需的压力值。

减压阀都装有安全阀。它是保护减压阀并使之安全使用的装置,也是减压阀出现故障的信号装置。如果由于活门垫、活门损坏或由于其它原因,导致出口压力自行上升并超过一定许可值时,安全阀会自动打开排气。

2.氧气减压阀的使用方法

(1)按使用要求的不同,氧气减压阀有许多规格。最高进口压力大多为

,最低进口压力不小于出口压力的2.5倍。出口压

力规格较多,一般为,最高出口压力为

(2)安装减压阀时应确定其连接规格是否与钢瓶和使用系统的接头相一致。减压阀与钢瓶采用半球面连接,靠旋紧螺母使二者完全吻合。因此,在使用时应保持两个半球面的光洁,以确保良好的气密效果。安装前可用高压气体吹除灰尘。必要时也可用聚四氟乙烯等材料作垫圈。

(3)氧气减压阀应严禁接触油脂,以免发生火警事故。

(4)停止工作时,应将减压阀中余气放净,然后拧松调节螺杆以免弹性元件长久受压变形。

(5)减压阀应避免撞击振动,不可与腐蚀性物质相接触。

3.其它气体减压阀

有些气体,例如氮气、空气、氩气等永久性气体,可以采用氧气减压阀。但还有一些气体,如氨等腐蚀性气体,则需要专用减压阀。市面上常见的有氮气、空气、氢气、氨、乙炔、丙烷、水蒸气等专用减压阀。

这些减压阀的使用方法及注意事项与氧气减压阀基本相同。但是,还应该指出:专用减压阀一般不用于其它气体。为了防止误用,有些专用减压阀与钢瓶之间采用特殊连接口。例如氢气和丙烷均采用左牙螺纹,也称反向螺纹,安装时应特别注意。

图Ⅱ-2-7 安装在气体钢瓶上的氧气减压阀示意图图II-2-8 氧气减压阀工作原理示意图

1.钢瓶;

2.钢瓶开关;

3.钢瓶与减压表连接螺母 1.弹簧垫块;2.传动

薄膜;

4.高压表;

5.低压表;

6.低压表压力调节螺杆; 3.安全阀 5.高压表;

7.出口;8.安全阀 4.进口(接气体钢

瓶);

6.低压表;

7.压缩弹

簧;

8.出口(接使用系统); 9.高

压气室; 10.活

门;12.顶杆

11.低压气

室;13.主弹簧

14.低压表压力调节螺杆。

六、各种流量计简介

1.转子流量计

转子流量计又称浮子流量计,是目前工业上或实验室常用的一种流量计。其结构如图Ⅱ-2-9所示。它是由一根锥形的玻璃管和一个能上下移动的浮子所组成。当气体自下而上流经锥形管时,被浮子节流,在浮子上下端之间产生一个压差。浮子在压差作用下上升,当浮子上、下压差与其所受的粘性力之和等于浮子所受的重力时,浮子就处于某一高度的平衡位置,当流量增大时,浮子上升,浮子与锥形管间的环隙面积也随之增大,则浮子在更高位置上重新达到受力平衡。因此流体的流量可用浮子升起的高度表示。

图Ⅱ-2-9转子流量计

这种流量计很少自制,市售的标准系列产品,规格型号很多,测量范围也很广,流量每分钟几毫升至几十毫升。这些流量计用于测量哪一种流体,如气体或液体,是氮气或氢气,市售产品均有说明,并附有某流体的浮子高度与流量的关系曲线。若改变所测流体的种类,可用皂膜流量计或湿式流量计另行标定。

使用转子流量计需注意几点:

(1)流量计应垂直安装;(2)要缓慢开启控制阀;(3)待浮子稳定后再读取

流量;(4)避免被测流体的温度、压力突然急剧变化;(5)为确保计量的

准确、可靠,使用前均需进行校正。

图Ⅱ-2-10毛细管流量计

2.毛细管流量计

毛细管流量计的外表形式很多,图Ⅱ-2-10所示是其中的一种。它是根据流体力学原理制成的。当气体通过毛细管时,阻力增大,线速度(即动能)增大,而压力降低(即位能减小),这样气体在毛细管前后就产生压差,借流量计中两液面高度差(Δh)显示出来。当毛细管长度L与其半径之比等于或大于100时,气体流量V与毛细管两端压差存在线性关系:

式中,为毛细管特征系数;r为毛细管半径;ρ为流量计所盛液体

的密度;η为气体粘度系数。当流量计的毛细管和所盛液体一定时,气体流量V和压差Δh成直线关系。对不同的气体,V和Δh有不同的直线关系;对同一气体,更换毛细管后,V和Δh的直线关系也与原来不同。而流量与压差这一直线关系不是由计算得来的,而是通过实验标定,绘制出V~Δh的关系曲线。因此,绘制出的这一关系曲线,必须说明使用的气体种类和对

应的毛细管规格。

这种流量计多为自行装配,根据测量流速的范围,选用不同孔径的毛细管。流量计所盛的液体可以是水,液体石腊或水银等。在选择液体时,要考虑被测气体与该液体不互溶,也不起化学反应,同时对速度小的气体采用比重小的液体,对流速大的采用比重大的液体,在使用和标定过程中要保持流量计的清洁与干澡。

3.皂膜流量计

这是实验室常用的构造十分简单的一种流量计,它可用滴定管改制而成。如图Ⅱ-2-11所示。橡皮头内装有肥皂水,当待测气体经侧管流入后,用手将橡皮头一捏,气体就把肥皂水吹成一圈圈的薄膜,并沿管上升,用停

表记录某一皂膜移动一定体积所需的时间,即可求出流量(体积·时间-1)。这种流量计的测量是间断式的,宜用于尾气流量的测定,标定测量范围较小的流量计(约100ml·min-1以下),而且只限于对气体流量的测定。

4.湿式流量计

湿式流量计也是实验室常用的一种流量计。它的构造主要由圆鼓形壳体、转鼓及传动计数装置所组成。如图Ⅱ-2-12所示。转动鼓是圆筒及四个变曲形状的叶片所构成。四个叶片构成A,B,C,D四个体积相等的小室。鼓的下半部浸在水中,水位高低由水位器指示。气体从背部中间的进气管依次进入各室,并不断地由顶部排出,迫使转鼓不停地转动。气体流经流量计的体积由盘上的计数装置和指针显示,用停表记录流经某一体积所需的时间,便可求得气体流量。图Ⅱ 2 12中所示位置,表示A室开始进气,B 室正在进气,C室正在排气,D室排气将完毕。湿式流量计的测量是累积式的,它用于测量气体流量和标定流量计。湿式流量计事先应经标准容量瓶进行校准。

使用时注意:(1)先调整湿式流量计的水平,使水平仪内气泡居中;(2)

流量计内注入蒸馏水,其水位高低应使水位器中液面与针尖接触;(3)被测气体应不溶于水且不腐蚀流量计;(4)使用时,应记录流量计的温度。

图Ⅱ-2-11皂膜流量计图II-2-12湿

式流量计

1.压差计;

2.水平仪;

3.排气管;

4.转鼓;

5.壳体;

6.水位器;

7.支脚;

8.进气管;9.温度计。

天然河流在线流量监测系统方案

天然河流在线流量监测系统方案 1. 在线监测系统概述 1.1 基本情况 流量站实时测流系统的建立。 随着国家工业发展水资源越来越紧,同时水污染加重可利用水源越发稀缺。中小河流在线流量监测重要性更显突出。 河流在线流量监测,可实时掌握可用水资源。 河流在线流量监测,可通过水闸等调配县市级流域水量。 河流在线流量监测,可了解污水走向,提供决策依据。 河流在线流量监测,在山洪和台风期间掌握各河道流量防范“天灾”。 省市县镇交界河道流量在线流量监测,可为相互“水权”提供依据。 1.2 设计目标 流量站新建全自动的流量实时在线监测方式,实现对河段断面流量流速的实时在线监测,并且将流量计算的水位信息等数据通过无线传输方式传送到水文站房。 1.3 设计原则 (1)实时性、容错性 实时采集现场中的流速、水文等信息,会同断面数据能及时获得流量信息,并将其存在业务数据库中。具有较强的实时性和较高的处理效率,对访问的响应时间要短;采集接口的实时性好,能满足其应用的需要;采集接口的采集周期在5秒到5分钟之间(可根据需要进行设定);采集接口的实时性不能影响控制系统的性能。采集通信方式在具备条件的场合,实现冗余;采集软件要有容错处理机制;实时数据库系统具有容错能力,根据具体的硬件条件实现冗余。 (3)完整性、标准化 信息的传输与处理遵循标准化的协议,以保证信息的相对完整性与一致性。对采集方式、采集设备尽量采用统一标准和型号, 坚持系统的开放性和可扩展性。建立一个开放的、标准的、可扩充、易管理、升级的实时数据库系统。不仅仅要做到配置上的先进,更主要的是开发上和应用上的先进。

(5)安全性、可靠性 在操作上严格权限管理。系统应提供审计跟踪功能,记录所有用户操作过程,对出现的系统安全问题提供调查的依据和手段;系统应具备事务日志功能。保证在恶劣天气条件下能正常运行,确保采集通信信道畅通。 1.4 系统功能 (1)能对断面流速、水温、流向、水位等进行24小时连续在线监测。 (2)能根据实时采集的流速、水位,计算断面流量。 (3)能实现水量数据采集、流量计算、存储、传输的功能。 (4)能将采集的水位、流速、流量和测站状态信息通过通讯网络传输到接收中心。 (5)可人工设定和修改断面平均流速关系线。 2. 流量方案比选 监测方法 主要断面流量监测方法 2.1 主要断面流量 目前进行流量自动测量的方式有以下6种:缆道测流、声学多普勒流速(ADCP)、超声波时差法测流、水工建筑物(涵闸)推算流量、水位比降法推算流量、雷达水表面波流速测量再推算流量。 缆道自动测流 1、缆道自动测流 缆道测流是适合我国国情的一种测流方式,经 50多年发展,技术设备较为成熟,其中全自动缆道测流系统测流精度可达到95~98%。该方法由人工一次性启动缆道测流装置后,可自动测量全断面测点流速和垂线水深,并自动计算出断面面积和流量。由于缆道测流的测量精度较高,且不需要进行率定,在系统工程中主要是用于不规则断面的流量测量,实现对主要测流断面的流量控制。 超声波时差法测流 2、超声波时差法测流 超声波时差法测量流速国内外均有定型产品用于管道和渠道,但国内没有定型生产用于天然河流的产品。本方法能方便地解决断面不同水层的平均流速测量,充分利用电脑技术将超声波时差法测流、超声或压力水位计和预置河床断面等技术集于一体后,可构建实时在线的流量测量系统,该方法适用于断面较稳定,

流量与管径压力流速之间关系计算公式

流量与管径、压力、流速的一般关系一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 这里: Q???——断面水流量(m3/s) C???——Chezy糙率系数(m1/2/s) A???——断面面积(m2) R???——水力半径(m) S???——水力坡度(m/m) 根据需要也可以变换为其它表示方法:

Darcy-Weisbach公式 由于 这里: h f??——沿程水头损失(mm3/s) f ???——Darcy-Weisbach水头损失系数(无量纲) l????——管道长度(m) d????——管道内径(mm) v ????——管道流速(m/s) g ????——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件

管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1 阻力特征 区 适用条件水力公式、摩阻系数符号意义 水力光滑 区>10 雷诺数 h:管道沿程水头损 失 v:平均流速 紊流过渡 区10<<500 (1) (2)

气体流量测定与流量计标定

实验二气体流量测定与流量计标定 一、实验目的 气体属于可压缩流体。气体流量的测量,虽然有一些与用于不可压缩流体相同的测量仪表但也有不少专用于气体的测量仪表,在测量方法和检定方法上也有一些特殊之处。显然,气体流量的测量与液体一样,在工业生产上和科学研究中,都是十分重要的。尤其是在近代,工业生产规摸的大型化和科学实验的微型化,往往这些流量、温度、压力等的检测仪表就成为关键问题。 目前,工业用有LZB系列转子流量计,实验室用有LZW系列微型转子流量计,可供选用。对于市售定型仪表,若流体种类和使用条件都按照规格规定,则读出刻度就能知道流量。但从精度上考虑,仍有必要重新进行校正。转子流量计自制是有困难的,因锥形玻璃管的锥度手工难于制作。但是,在科学研究中或其它某种场合,有时,不免还要根据某种特殊需要,创制一些新型测量仪表和自制一些简易的流量计。不论是市售的标准系列产品还是自制的简易仪表,使用前,尤其是使用一段时间后,都需要进行校正,这样才能保证计量的准确、可靠。 气体流量计的标定,一般采用容积法,用标准容量瓶量体积,或者用校准过的流量计作比较标定。在实验室里,一般采用湿式气体流量计作为标准计量器。它属于容积式仪表,事先应经标准容量瓶校准。实验用的湿式流量计的额定流量,一般有 0.2m3·h—1和0.5m3·h—1两种。若要标定更大流量的仪表,一般采用气柜计量体积。实验室往往又需用微型流量计,现时一般采用皂膜流量计来标定。 本实验采用标准系列中的转子流量计和自制的毛细管流量计来测量空气流量。并用经标准容量瓶直接校准好的湿式流量作为标准,用比较法对上述两种流量计进行检定,标定出流量曲线.,对毛细管流量计标定。通过本实验学习气体流量的测量方法,以及气体流量计的原理、使用方法和检定方法。同时,这些知识和实验方法对学习者在进行以下各项实验时,肯定会有帮助,尤其时对今后所从事的各种实验研究工作,也是有益处的。 二、实验原理 1.湿式气体流量计 该仪器属于容积式流量计。它是实验室常用的一种仪器,其构造主要由圆鼓形壳

气体质量流量控制器原理

LINE-TECH(莱因泰可)北京 LINE TECH自1997年成立后迈进了气体控制相关技术工程, 终于诞生出今天的M系列,MFC/MFM产品。 LINE TECH气体质量流量控制器和流量计广泛应用于:真空镀膜设备、光电产业到工业工具的表面镀膜、SPUTTER磁控溅射台、PVD、CVD、MOCVD、氧化、等离子刻蚀、离子注入,直拉式晶炉,精密半导体、燃料电池、气调储存保鲜相关设备、生物反应器、生物过程控制器、大学实验室、研究所、食品及制药产业、医疗设备、气相色谱仪等相关行业。 LINE-TECH致力于为客户提供专业的仪器仪表及精密稳定的过程控制设备。公司自成立以来,以灵活的经营机制,以“质量第一、服务第一、客户第一”的信念,为客户提供更加专业化的、优质的服务,深受各界用户的欢迎,并且在石油、化工、电力等重点行业做出了突出成绩。如今产品远销美国,澳大利亚,日本,台湾,伊朗,中国,印度等...我们将一如既往的为所有的客户提供更优质、高效的服务。属性特征 ?质量流量检测 ?不因温度和压力的波动 而失准 ?方便型的流量控制系统 ?高准确度 ?拒绝漏气 ?耐高压(90bar) ?快速的响应时间 ?高重复精度 ?性能稳定 ?宽量程比 ?高性价比 ?ce认证 ?ISO9001:2008/KS Q9001;2009 ?完善的AS售后服务

关于MFC和MFM 1.质量流量计,质量流量控制器的概念 质量流量计,即Mass Flow Meter(MFM),是一种精确测量气体流量的仪表,其测量值不因温度或压力的波动而失准,不需要温度压力补偿。 质量流量控制器,即Mass Flow Controller(MFC),不但具有质量流量计的功能,更重要的是,它能自动控制气体流量,即用户可根据需要进行流量设定,MFC自动地将流量恒定在设定值上,即使系统压力有波动或环境温度有变化,也不会使其偏离设定值。 2.质量流量计,质量流量控制器的流量单位 气体质量流量单位一般以SCCM(Standard Cubic Centimeter per Minute)和SLM(Standard Liter per Minute)来表示,亦即每分钟标准毫升、每分钟标准升。这意味着,这种仪表在不同的使用条件下,指示的流量均是标准状态下的流量。这是这种仪表和其它流量计的重要区别,也是SCCM、SLM不同于Ml/min、L/min之处。 如果需要单位时间内流过的质量(如g/min),可以查阅标准状态下的气体密度,然后作乘法就可以了。3.质量流量计/质量流量控制器的主要的优点 (1)直接测量气体的质量流量 热式质量流量计直接测量流体质量流量,输出质量流量信号,无需其他设备,如温度测试仪和压力表,也无需进行换算。 (2)无可移动部分 本身无类似转轴等的移动部件,增加了本身的可靠性,无需机械维护。 (3)可以精确的测量微小流量,采用分流装置,又可以测量大流量,而且温度,压力范围很大。 (4)测量控制的自动化 质量流量计/质量流量控制器可以将流量测量值以输出标准电信号输出。这样很容易实现对流量的数字显示,流量自动计量,数据自动记录,计算机管理等。对质量流量控制器而言,还可以实现流量的自动控制。(5)精确地定量控制流量 质量流量控制器可以精确地控制气体的给定量,这对很多工艺过程的流量控制,是用于对于不同气体的比例控制等。 (6)准确度高,重复性好 我们的产品准确度可达+-1%F.S(full scale)重复性为+-0.25%F.S(full scale) (7)体积小巧,安装方便,操作简单 (8)技术先进,符合发展潮流 4.使用流量计/质量流量控制器应注意的问题 (1)被测气体需要清洁。 注意不要造成气路堵塞,当质量流量控制器出现某些故障,或气源不洁导致传感器或分流器堵塞,或因操作失误,均有可能造成堵塞。对于的用户而言,应当特别给以注意,既要选择合适的型号,又要正确进行系统设计和正确使用。 (2)我公司产品以氮气(N2)来标定,如用其他气体时需要进行换算 5.区分使用质量流量计和质量流量控制器的场合 一般而言,仅对流量进行计量或监测时,用质量流量计;需要对流量进行控制时,用质量流量控制器。某些测量场合,用二者皆可,但质量流量控制器更好用。 6.不同气体的质量流量的换算 产品出厂一般是按氮气标定、按氮气流量确定流量规格。用同一规格的MFM/MFC测量不同的气体,当流量检测值相同时,实际的流量值可能不同。我们在说明书中给出了不同气体相对于标定气体(氮气)的质量流量转换系数。如果您使用的产品是标准出厂产品(按氮气标定显示),而需要知道实际使用气体的质量流量时,先在产品说明书中找到实际使用气体的转换系数。在测量过程中,在此系数乘以流量显示值即是实际使用气体的质量流量;反之,在确定所购产品的量程时,以实际使用气体的最大期望流量值除以转换系数,即是相应的氮气标定产品的流量值。

几种常用流量计的基础知识和比较

流量测量是四大重要过程参数之一(其他的是温度、压力和物位)。闭合管道流量计以其采用的技术分类,如下: 差压流量计(DP) 这是最普通的流量技术,包括孔板、文丘里管和音速喷嘴。DP流量计可用于测量大多数液体、气体和蒸汽的流速。DP流量计没有移动部分,应用广泛,易于使用。但堵塞后,它会产生压力损失,影响精确度。流量测量的精确度取决于压力表的精确度。 容积流量计(PD) PD流量计用于测量液体或气体的体积流速,它将流体引入计量空间内,并计算转动次数。叶轮、齿轮、活塞或孔板等用以分流流体。PD流量计的精确度较高,是测量粘性液体的几种方法之一。但是它也会产生不可恢复的压力误差,以及需装有移动部件。 涡轮流量计 当流体流经涡轮流量计时,流体使转子旋转。转子的旋转速度与流体的速度相关。通过转子感受到的流体平均流速,推导出流量或总量。涡轮流量计可精确地测量洁净的液体和气体。像PD流量计,涡轮流量计也会产生不可恢复的压力误差,也需要移动部件。 电磁流量计 具有传导性的流体在流经电磁场时,通过测量电压可得到流体的速度。电磁流量计没有移动部件,不受流体的影响。在满管时测量导电性液体精确度很高。电磁流量计可用于测量浆状流体的流速。 超声流量计 传播时间法和多普勒效应法是超声流量计常采用的方法,用以测量流体的平均速度。像其他速度测量计一样,是测量体积流量的仪表。它是无阻碍流量计,如果超声变送器安装在管道外测,就无须插入。它适用于几乎所有的液体,包括浆体,精确度高。但管道的污浊会影响精确度。 涡街流量计 涡街流量计是在流体中安放一根非流线型游涡发生体,游涡的速度与流体的速度成一定比例,从而计算出体积流量。涡街流量计适用与测量液体、气体或蒸汽。它没有移动部件,也没有污垢问题。涡街流量计会产生噪音,而且要求流体具有较高的流速,以产生旋涡。 热质量流量计 通过测量流体的温度的升高或热传感器降低来测量流体速度。热式质量流量计没有移动部件或孔,能精确测量气体的流量。热质量流量计是少数能测量质量流量的技术之一,也是少数用于测量大口径气体流量的技术。 科里奥利流量计 这种流量计利用振动流体管产生与质量流量相应的偏转来进行测量。科里奥利流量计可用于液体、浆体、气体或蒸汽的质量流量的测量。精确度高。但要对管道壁进行定期的维护,防止腐蚀。 电磁流量计 测量原理:法拉第电磁感应定律证明一个导体在磁场中运动将感应生成一个电势。采用电磁测量原理,流体就是运动中的导体。感应电势相对于流速成正比并被两个测量电极所检测,然后变送器将它进行放大,根据管道横截面积计算出流量。 恒定的磁场由极性交替变化的开关直流电流而产生。 测量系统包括一个变送器和一个传感器组成。 它又有两种型号:一体化型,变送器和传感器组成一个整体的机械单元;分离型,变送器和传感器被分开安装。 变送器:Promag50(用按钮操作,两行显示)传感器:PromagW(DN25……2000)

气体流量和流速及与压力的关系

气体流量和流速及与压力的关系 流量以流量公式或者计量单位划分有三种形式: 体积流量:以体积/时间或者容积/时间表示的流量。如:m3/h ,l/h 体积流量(Q)=平均流速(v)×管道截面积(A) 质量流量:以质量/时间表示的流量。如:kg/h 质量流量(M)=介质密度(ρ)×体积流量(Q) =介质密度(ρ)×平均流速(v)×管道截面积(A) 重量流量:以力/时间表示的流量。如kgf/h 重量流量(G)=介质重度(γ)×体积流量(Q) =介质密度(ρ)×重力加速度(g)×体积流量(Q) =重力加速度(g)×质量流量(M) 气体流量与压力的关系 气体流量和压力是没有关系的。 所谓压力实际应该是节流装置或者流量测量元件得出的差压,而不是流体介质对于管道的静压。这点一定要弄清楚。举个最简单的反例:一根管道,彻底堵塞了,流量是0 ,那么压力能是0吗?好的,那么我们将这个堵塞部位开1个小孔,产生很小的流量,(孔很小啊),流量不是0了。然后我们加大入口压力使得管道压力保持原有量,此刻就矛盾了,压力还是那么多,但是流量已经不是0了。因此,气体流量和压力是没有关系的。 流体(包括气体和液体)的流量与压力的关系可以用流体力学里的-伯努利方程-来表达: p+ρgz+(1/2)*ρv^2=C 式中p、ρ、v分别为流体的压强、密度和速度.z 为垂直方向高度;g为重力加速度,C是不变的常数。 对于气体,可忽略重力,方程简化为: p+(1/2)*ρv ^2=C 那么对于你的问题,同一个管道水和水银,要求重量相同,那么水的重量是G1=Q1 *v1,Q1是水流量,v1是水速. 所以G1=G2 ->Q1*v1=Q2*v2->v1/v2=Q2/Q1 p1+(1 /2)*ρ1*v1 ^2=C p2+(1/2)*ρ2*v2 ^2=C ->(C-p1)/(C-p2)=ρ1*v1/ρ2*v2 -> (C-p1)/(C-p2)=ρ1*v1/ρ2*v2=Q2/Q1 ->(C-p1)/(C-p2)=Q2/Q1 因此对于你的问题要求最后流出的重量相同,根据推导可以发现这种情况下,流量是由压力决定的,因为p1如果很大的话,那么Q1可以很小,p1如果很小的话Q1就必须大.

气体体积流量测量的温度压力补偿公式及相对误差计算

流量计示值修正(补偿)公式 我公司能源计量的流量计示值单位规定为20℃,101.325kPa 标准状态的流量,如设计选型使用了不同流量计示值单位,则根据设计的流量单位(质量流量kg/h 、0℃,101.325kPa 及20℃,101.325kPa 标准状态或工作状态)选用对应的温度、压力修正(补偿)公式;不同测量原理的流量计,应根据其流量计流量方程(公式)选用对应的温度、压力修正(补偿)公式。 1. 气体流量测量的温度、压力修正(补偿)公式: 1.1 差压式流量计的温度、压力修正(补偿)实用公式: 一般气体体积流量(标准状态20℃,101.325kPa ),根据差压式流量计流量方程,可得干气体在标准状态(20℃,101.325kPa )的积流流量: )()()()(15.273T 325.101p 15.273T 325.101p q q vN vN +'?++?+'=' (1) 式中: q'vN ——标准状态下气体实际体积流量; q vN ——标准状态下气体设计体积流量; p' ——气体实际压力,kPa ; p ——气体设计压力,kPa ; T'——气体实际温度,℃; T ——气体设计温度,20℃。 1.2 一般气体质量流量的温度、压力修正(补偿)公式:

T p T p q q m m ''=' (2) 式中: q'vN ——标准状态下气体实际体积流量; q vN ——标准状态下气体设计体积流量; p' ——气体实际压力,绝对压力; p ——气体设计压力,绝对压力; T'——气体实际温度,绝对温度; T ——气体设计温度,绝对温度。 1.3 蒸汽的温度、压力修正(补偿)公式: 根据差压式流量计流量方程,可得蒸汽的质量流量: ρρ' ='m m q q (3) 式中: q'm ——蒸汽实际质量流量; q m ——蒸汽设计质量流量; ρ' ——蒸汽实测时密度; ρ ——蒸汽设计时密度; 依据水和水蒸汽热力性质IAPWS-IF97公式其密度计算模型,工业常用范围内水蒸汽的密度为: )(1000 10 ππγγνρ+==RT

水流量与压强差的准确计算公式

水流量与压强差的准确 计算公式 -CAL-FENGHAI.-(YICAI)-Company One1

水流量与压强差的准确计算公式 最佳答案 对于有压管流,水流量与压强差的准确计算公式和计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=d^ 或用s=d^计算(n为管内壁糙率,d为管内径,m),或查有关表格; 2、确定管道两端的作用水头差ΔH=ΔP/(ρg),),H 以m为单位;ΔP为管道两端的压强差(不是某一断面的压强),ΔP以Pa为单位,ρ——水的密度, ρ=1000kg/m^3;g=kg 3、计算流量Q: Q = (ΔH/sL)^(1/2) 4、流速V=4Q/^2) 式中: Q——流量,以m^3/s为单位; H——管道起端与末端的水头差,以m 为单位;L——管道起端至末端的长度,以 m为单位。^表示乘方运算,d^2 表示管径的平方;d^表示管径的方。是圆周率取至小数点后第4位。 或者先求管道断面平均流速,再求流量: 管道流速:V=C√(RJ)= C√(RΔP/L) 确定 流量: Q=^2/4)V 式中:V——管道断面平均流速;C——谢才系数,C=R^(1/6)/n,n管道糙率;R——水力半径;对于圆管R=d/4,d为管内径;J——水力坡降,即单位长度的水头损失,当管道水平布置时,也就是单位长度的压力损失,J=ΔP/L;ΔP——长为L 的管道上的压力损失;L——管道长度。 总公式:Q=√(ΔP/9800)x (d^)x3600 m^3/h 多晶炉:d=40,压差=4x10^5,L=200m 流量^3/h 单晶炉: d=94,压差=^5,L=200m 流量^3/h 如果流量为15 m^3/h 侧要求L=100,d= mm 侧要求L=200,d=60.7 mm 如果流量为 m^3/h 侧要求L=200,d=68 mm 2

几种常见的流量测量方法 气体

流量计常用的几种测量方法简述点击次数:179 发布时间:2010-8-31 15:48:15 为了满足各种测量的需要,几百年来人们根据不同的测量原理,研究开发制造出了数十种不同类型的流量计,大致分为容积式、速度式、差压式、面积式、质量式等。各种类型的流量计量原理、结构不同既有独到之处又存在局限性。为达到较好的测量效果,需要针对不同的测量领域,不同的测量介质、不同的工作范围,选择不同种类、不同型号的流量计。工业计量中常用的几种气体流量计有: (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为:

式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=3.1794×10-6;c为流出系数;E为渐近速度系数;d 为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 (2)速度式流量计

压缩空气流量如何测量

压缩空气流量如何测量 压缩空气是企事业单位重要的二次能源大多数电能或热能经压缩机转化而来。当空气压力值要求较低时,则由鼓风机产生。在化工等生产过程中,有一种重要的工艺过程——氧化反应,它是以空气作原料,和另外某种原料在规定的条件下进行化学反应。空气质量流量过大和过小,都会对安全生产、产品质量和贵重原料的消耗产生关键影响。在这种情况下,空气流量测量精确度要求特别高,多半还配有自动调节。锅炉和各种工业炉窑中的燃烧过程,其本质也是氧化反应,对助燃空气流量的测量,虽然准确度要求不像化工生产中的氧化反应那样高,但对环境保护和经济燃烧、节约燃料也有重要意义。 1、压缩空气流量测量的特点 (1)振动大。安装在压缩厂房和鼓风机房的空气流量计都得考虑振动问题。这种振动主要来自压缩机和鼓风机,机器的振动通过空气管道或风管可以传到很远的地方。其中振动最大的要数往复式压缩机,大型往复式压缩机运行时产生的振动往往带动厂房和周围地面一起振动,对相关空气流量计的准确度带来威胁。它引发杠杆式差压变送器支点移动而使仪表产生示值漂移。振动导致涡街流量计传感器产生同振动频率相对于的干扰信号,引起流量示值大幅度偏高。 (2)气体带水。压缩空气取自大气,而大气中总是含有一定数量的水蒸气。在雨天和雾天,室外大气中的水蒸气分压达到饱和程度,即相对湿度达到100%,这时将大气压缩就如同压迫吸足水的海绵,随

着体积的缩小,就有相应数量的水析出。这是压缩空气所以带水的简单原理。在晴好的天气,大气湿度相对较低,但随着其被压缩,体积缩小到原来的几分之一后,水蒸气分压相应升高,也有可能进入饱和状态而析出水滴。 用来测量压缩空气流量的较大口径孔板流量计,孔板前常有积水,影响测量准确度。引压管线中常有一段水,导致差压变送器测到的差压同节流装置所产生的差压不一致。这些都是空气带水所引起误差的常见原因。除此之外,由于城区大气中氮氧化物含量较高,使得压缩空气所含水滴呈酸性,引起环室表面腐蚀、管道内壁腐蚀、使其表面变得粗糙。腐蚀产生的氧化铁在一定条件下变干燥时,很容易从管内脱落而被气流带到孔板前,这也会对流量示值产生影响。所以在停车检修时,应将这些粉状和块状的垃圾予以清除。 (3)脉动流。压缩机和鼓风机出口流体多数包含一定的脉动。例如往复式压缩机,表现为半波脉动,在现场可观察到压缩机和鼓风机的出口压力有明显摆动。流动脉动引起差压流量计、涡街流量计等多种流量计示值偏高,引起浮子式流量计的浮子上下跳动。消除和减弱流动脉动对流量计示值影响的常见方法有两个:一是在压缩机出口设置一只缓冲罐滤除脉动,而将流量计安装在缓冲器后面;二是将流量计安装在远离脉动源的地方。 2、仪表选型 能够用来测量空气流量的仪表有很多种,但是在现场实际使用的空气

附录二气体压力及流量测定

附录二气体压力及流量测定 气压计 测量工作环境大气压力的仪器称气压计。气压计的种类很多,实验室最常用的是福廷式(Fortin)气压计。 1.福廷式气压计的构造如附图2-1所示,它的外部是一黄铜管,管的顶端有悬环,用 以悬挂在实验室内的适当位置。气压计内部是一根一端封闭的装有水银的长玻璃管(1),封闭的一端向上,管中汞面的上部为真空,玻璃管下端插在水银槽(7)内。水银槽底部是一羚羊皮袋(8),下端由螺旋(9)支持,转动此螺旋可调节槽内水银面的高低,水银槽的顶盖上有一倒置的象牙针(6),其针尖是黄铜标尺刻度的零点。此黄铜标尺上附有游标尺(3),转动游标调节螺旋(4),可使游标尺上下移动。 附图 2-1 福廷式气压计 构造图 1-封闭的玻璃罩;2-黄铜标尺;3-游标尺;4-游标尺调节螺旋;5-黄铜管;6-零点象牙针;7-汞槽;8-羚羊皮袋;9-调节槽内汞面升降的螺旋;10-汞槽与外界大气压相通孔盖;11-温度计 2.福廷式气压计的使用方法 (1)调节水银槽内水银面的高度,慢慢旋转螺旋(9), 使槽内水银面升高,利用水银槽后面的磁板的反光,注视水银 面与象牙尖的空隙,直至水银面与象牙尖刚刚接触,然后用手 轻轻扣一下铜管上面,使玻璃上部水银面凸面正常,稍等几秒 钟,待象牙针尖与水银面的接触无变动为止。 (2)调节游标尺 转动气压计旁的螺旋(4),使游标尺(3)升起,并使 下沿略高于水银面,然后慢慢调节游标,直到游标尺底边及其 后边金属片的底边,同时与水银面凸面顶端相切,这时观察者 眼睛的位置应和游标尺前后两个底边的边缘在同一水平线上。 (3)读取汞柱高度 当游标尺的零线与黄铜标尺中某一刻度线恰好重合,则 黄铜标尺上该刻度的数值便是气压值,不须使用游标尺,当游 标尺的零线不与黄铜标尺上任何一刻度重合时,则按着游标尺 零线所对应标尺上的刻度,从标尺上读取气压值的整数部分 (毫米),再从游标尺上找出一根恰好与标尺上的刻度相重合 的刻度线,则游标尺上刻度线的数值便是气压的小数部分。 (4)整理工作 记下读数后,将气压计底部螺旋(9)向下移动,使水银面离开象牙针尖,并记下气压计的温度及从所附卡片上记下气压计的仪器误差,然后再进行其它校正。 3.使用时注意事项 (1)调节螺旋时,动作要缓慢,不可旋转过急。 (2)在旋转使游标与汞柱凸面相切时,应使眼睛的位置与游标尺前后下沿在同一水

节流式流量测量原理及系统总体设计

目录 引 言 .................................................................. 1 第一章 节流式流量测量原理及系统总体设计 .. (2) 1.1 节流件测量原理 ................................................. 2 1.2 系统总体设计 ................................................... 2 第二章 标准节流件差压计及取压装置 .. (4) 2.1 标准节流件 ..................................................... 4 2.2 差压计 ......................................................... 5 2.3 取压装置 ...................................... 错误!未定义书签。 第三章 关键参数计算及检验计算 (7) 3.1已知条件 ........................................................ 7 3.2 准备计算 . (7) 3.2.1 求介质密度1 ρ、介质动力粘度及η管道材料膨胀系数D λ (7) 3.2.3 计算正常流量Re Dch 和最小流量下的雷诺数Re DMIN (8) 3.2.4 确定差压计类型及量程范围 ................ 错误!未定义书签。 第四章 重要参数的计算及校验 (8) 4.1 确定β值及节流件开孔直径 (8) 4.1.1 常用流量下的差压值ch P ? ................................... 8 4.1.2 迭代计算β值和d 值 (9) 4.1.3 迭代计算 ................................................. 9 4.2 确定压损 ...................................................... 11 4.3 确定节流件的开孔直径20d ....................................... 12 4.4 确定直管段长度对管道粗糙度的要求: ............................. 12 4.5 标准节流装置流量结果不确定度 .................................. 12 第五章 系统的安装及使用说明 . (14) 5.1流量装置和差压计的安装连接系统图 ............................... 14 5.2 元件的安装 .................................................... 14 5.3 使用说明 ...................................................... 14 结 论 ................................................................ 15 参考文献 .. (16)

压力与流量计算公式

压力与公式: 的Kv ,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv 的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的系数Kv 值。调节阀额定流量系数Kv 的定义是:在规定条件下,即阀的两端压差为 10Pa,流体的密度为lg/cm ,额定行程时流经调节阀以m/h 或t/h 的流量数。 1.一般液体的Kv 值计算 a.非阻塞流 :△ P时 当P2≤时 式中:Qg -下气体流量Nm/h Pm-(P1+P2)/2(P1 、P2 为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN> 10MPa) 当P2>时 当P2≤时 式中:Z-系数,可查GB/T 2624-81 《的设计安装和使用》 3.低修正(高液体KV 值的计算) 液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在

Rev<2300 时流体处于低速层流,这样按原来公式计算出的KV 值,误差较大,必须进行修正。此时计算公式应为: 式中:Φ―粘度,由Rev 查FR-Rev 曲线求得;QL-液体流量m/h 对于单座阀、阀、等只有一个流路的阀 对于双座阀、等具有二个平行流路的阀 式中:Kv′―不考虑粘度修正时计算的流量系 ν ―流体mm/s FR -Rev 关系曲线 FR-Rev 关系图 4.水蒸气的Kv 值的计算 a. 当P2>时 当P2≤时 式中:G―kg/h ,P1、P2 含义及单位同前,K-修正系数,部分蒸汽的K 值如下::K =;氨蒸汽:K=25;11:K=;、蒸汽:K =37;、蒸汽:K=;、蒸汽:K=。 b.过热水蒸汽 当P2>时 当P2≤时 式中:△ t ―水蒸汽℃,Gs、P1、P2含义及单位同前。那么如何计算选择电动水阀口径?工程上我们常用的是通过计算的流量系数(Kv/Cv )值来推导电动水阀口径,因为流量系数和水阀口径是成对应关系的,换句话说,流量系数定了,水阀口径大小也就确定了。水阀流量系数(Kv/Cv )采用以下公式计算:Cv=Q/ΔP1/2 其中Q-设备(/)的冷量/热量或风量ΔP- 为调节阀前后压差比理论上讲,在不同的空调回路中,ΔP值是不同的,是一个动态变化的值,取值范围一般在1-7 之间。但由于在流量系数的计算过程中ΔP 是开取值,所以对Cv 计算影响并不是很大。因此,在工程设计中一般选ΔP值为4。举例来说,假设1 台技术指标值如下:风量:8000 M3/H 冷量:KW 热量:KW 余压:410 PA 功率:2KW 如何选用调节水阀?首先,我们计算流量系数Kv/ Cv 值Cv=Q/ Δ P1/2=*2= Kv=Cv/== 然后计算出来的流量系数Kv/ Cv 选用与其相适应口径的调节水阀。 与流速的关系:气体的流速越大,越小。 1 压力 根据原理,Pc与进口压力P1(绝压)的比值称为临界压力比pβ,即β=Pc /P1 从此式可看出气体的临界压力比β 只与气体的比热比n 有关,气体的比热比可看作为一,不同类型气体的n 值如下: 对单气体,取n=1.67,则β=0.487,即Pc=0.487P1;

压力和流速与流量的关系如何计算

压力和流速的关系如何计算 两管道之间的压差=a*l*p*u*u/2d 单位为pa a 为管道的摩擦系数,与管道的新旧和材质有关系。 l为你所取两点之间的距离单位为米 p为流体的密度 kg/m3 u为管内流体的流速,单位为米/秒 d为管子的管径,单位为米 请教:已知管道直径D,管道内压力P,能否求管道中流体的流速和流量?怎么求 已知管道直径D,管道内压力P,还不能求管道中流体的流速和流量。你设想管道末端有一阀门,并关闭的管内有压力P,可管内流量为零。管内流量不是由管内压力决定,而是由管内沿途压力下降坡度决定的。所以一定要说明管道的长度和管道两端的压力差是多少才能求管道的流速和流量。 对于有压管流,计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=0.001736/d^5.3 或用s=10.3n2/d^5.33计算,或查有关表格; 2、确定管道两端的作用水头差H=P/(ρg),),H 以m为单位;P为管道两端的压强差(不是某一断面的压强),P以Pa为单位; 3、计算流量Q:Q = (H/sL)^(1/2) 4、流速V=4Q/(3.1416d^2) 式中:Q―― 流量,以m^3/s为单位;H――管道起端与末端的水头差,以m^为单位;L――管道起端至末端的长度,以m为单位。

管道中流量与压力的关系 管道中流速、流量与压力的关系 流速:V=C√(RJ)=C√[PR/(ρgL)] 流量:Q=CA√(RJ)=√[P/(ρgSL)] 式中:C――管道的谢才系数;L――管道长度;P――管道两端的压力差;R――管道的水力半径;ρ――液体密度;g――重力加速度;S――管道的摩阻。 管道的内径和压力流量的关系 似呼题目表达的意思是:压力损失与管道内径、流量之间的关系,如果是这个问题,则正确的答案应该是:压力损失与流量的平方成正比,与内径5.33方成反比,即流量越大压力损失越大,管径越大压力损失越小,其定量关系可用下式表示: 压力损失(水头损失)公式(阻力平方区) h=10.3*n^2 * L* Q^2/d^5.33 上式严格说是水头损失公式,水头损失乘以流体重度后才是压力损失。式中n――管内壁粗糙度;L――管长;Q――流量;d――管内径

气体质量流量控制器和流量计工作原理

气体质量流量控制器和流量计工作原理 流量传感器采用毛细管传热温差量热法原理测量气体的质量流量(无需温度和压力补偿)。将传感器加热电桥测得的流量信号送入放大器放大,放大后的流量测量电压与设定电压进行比较,再将差值信号放大后去控制调节阀,通过闭环控制来控制通过的流量,并使之与设定的流量相等。分流器决定主通道的流量。 左图为MFC和流量显示仪连接后的工作原理图: (将该地址复制粘贴到网叶地址栏里) 控制器输出的流量检测到的电压与流过通道的气体质量成正比。满量程检测输出电压为5VDC。气体质量流量控制器的检测范围为2~100%满刻度(量程比为50:1),流量分辨率为 0.1%满刻度。 注意: 气体质量流量控制器的“阀控”线置于“清洗”位时也可以当成气体质量流量计使用。这时,流量检测输出电压的输出值可能达到10VDC以上。需要注意的是,一旦输出电压超过5VDC,流量检测电压和实际通过的流量不成线性对应关系。清洗时,流量显示是不准确的,而且还可能出现流量增大、显示减小的现象,但这些不会损坏质量流量控制器。 2、气体质量流量计和气体质量流量控制器结构 (将该地址复制粘贴到网叶地址栏里) 气体质量流量计含流量传感器、分流器通道和流量放大、线性化及温度补偿电路组成。增加电磁阀和PID控制电路就构成了流量控制器。 3、气体质量流量控制器和气体质量流量计的应用范围 MFC和MFM可广泛地应用于石油化工、半导体和集成电路、特种材料学科、医药、环保和真空等多种领域的科学研究和生产中,其典型应用有:

电子工艺设备,如氧化、CV D、扩散、外延、等离子蚀刻、离子注入和溅射,以及微反应装置、配气和混气系统、镀膜设备、光纤熔炼、气相色谱仪以及其它分析仪器。 应用对象: 质量流量控制器应用系统集成商、特殊气体厂商、真空元件供应商、真空系统集成商、特殊气体厂商、真空元件供应商、真空系统集成商、电池系统集成商、生化系统集成商、气体装配流水线集成商、大学实验室、气体公司、研

流量检测-装置系统设计课程设计

专业综合课程设计 课题:流量计检测装置设计 学院:城南学院 班级:机电0701班 指导老师:陈书涵 学号:2007 学生:邹娟 一检测系统背景介绍 流量计广泛应用于工业生产和人民生活当中,但大都存在体积大、精度低、价格贵等缺点.本文设计的电子巴(靶式)智能流量计,于六十年代开始应用于工业流量测量,主要用于解决高粘度、低雷诺数流体的流量测量,先后经历了气动表和电动表两大发展阶段,SBL系列智能靶式流量计是在原有应变片式靶式流量计测量原理的基础上,采用了最新型电容力传感器作为测量和敏感传递元件,同时利用了现代数字智能处理技术而研制的一种新式流量计量仪 表。其主要由测量管、受力元件(靶片)、感应元件(电容式力传感器,压力传感器,温度传感器)、传递部件、微控制器及其显示和输出部分组成.由于采用了压力工作温度补偿,大大提高了测量精度。

二检测系统设计方案 本作品是一款基于C8051F系列单片机为核心的流量计,给出了硬件组成和软件设计.设计以C8051F单片机为控制模块,选用电子靶式流量传感器,信号调理电路、通信电路、LCD显示等电路.在软件上进行了压力和温度补偿.设计的流量计精度高,抗干扰能力强,使用方便. 三检测系统硬件结构 系统的硬件电路以C8051F206单片机为控制核心,主要有信号的输入通道、微控制器及外围电路、红外通信接口和RS一485通信接口和人机交互界面等部分组成,如图1所示. 图1 以C8051F206单片机为核心的硬件框图 ① C8051F206的A/D转换模块 C8051F206的A/D转换模块是利用C8051F206的片内12位分 辨率的ADC转换模块和可编程增益放大器.当工作在100ksps 的最大采样速率时,提供真正的12位精度和±2 L SB的模数

流量与管径、力、流速之间关系计算公式

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2)

R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s)

g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做

相关主题
文本预览
相关文档 最新文档