当前位置:文档之家› 药物对结肠癌细胞的应激反应

药物对结肠癌细胞的应激反应

药物对结肠癌细胞的应激反应
药物对结肠癌细胞的应激反应

细胞氧化应激基本概念讲解

1、细胞氧化 细胞生命活动过程中所需的能量约有95%是来自于线粒体,其来源是将细胞内的供能物质氧化、分解、释放能量,并排出CO2和H2O,这一过程称之为细胞氧化(cellular oxidation),又称细胞呼吸(cellular respiration)。其基本步骤有:糖酵乙酰辅酶A(CoA)的形成、进行三羧酸循环及电子传递和化学渗透偶联磷酸化作用。酶能使细胞的氧化过程在此比较低的温度下进行,并释放出仅仅使细胞能够扑获和储存的能量。这个受生物学控制的氧化结果起初就和简单的燃烧现象一样:复杂的分子被降解为水,二氧化碳,并释放能量。这个过程中一些经过交换的电子永久地逃离细胞的呼吸或从呼吸中心遗漏掉并同周围的氧分子相互作用,产生有毒性氧分子—自由基。在细胞呼吸的过程中,估计有2-5%的电子转化为过氧化物分子和其他类型的氧化自由基,自由基的持续增加就对机体组织造成大量的氧化压力。自由基被认为与大约60种(而且至少是60种)疾病的发生有关,科学有证据证实,抗氧化剂能停止甚至逆转(在某些疾病中)由于自由基所导致的损伤。自由基与机体细胞发生作用后,给机体留下了毁灭性的灾难。在细胞膜上留下了许多微笑的孔洞,使细胞的分子结构发生改变,破坏了细胞的蛋白和脂类分子。一旦我们机体细胞内有足够的抗氧化剂储备,我们就能将自由基对机体的损伤程度降到最低。 2、OS 氧化应激(Oxidative Stress,OS)是指体内氧化与抗氧化作用失衡,倾向于氧化,导致中性粒细胞炎性浸润,蛋白酶分泌增加,产生大量氧化中间产物。氧化应激是由自由基在体内产生的一种负面作用,并被认为是导致衰老和疾病的一个重要因素。指机体在内外环境有害刺激的条件下,体内产生活性氧自由基(Reactive Oxygen Species,ROS)和活性氮自由基(Reactive Ntrogen Species,RNS)所引起的细胞和组织的生理和病理反应。ROS有超氧阴离子(.O2-)、羟自由基(.OH-)和过氧化氢(H2O2)等等;RNS有一氧化氮(NO)、二氧化碳(CO2)和过氧亚硝酸盐(.ONOO-)等等。由于它们可以直接或间接氧化或损伤DNA、蛋白质和脂质,可诱发基因的突变、蛋白质变性和脂质过氧化,被认为是人体衰老和各种重要疾病如肿瘤、心脑血管疾病、神经退行性疾病(老年痴呆)、糖尿病-最重要的危氧化应激和抗氧化不单纯是一种生化反应,它更有着极其复杂的细胞和分子机制,包括膜氧化、线粒体代谢、内质网应激、核的重构、DNA损伤修复、基因转录表达、泛素和泛素化、自吞和溶酶体、细胞外基质、信号传递、蛋白折叠等多重的细胞和分子改变。 3、ROS 需氧细胞在代谢过程中产生一系列活性氧簇( reactive oxygen species, ROS),包括:O2 -·、H2O2 及HO2·、·OH 等。 4、细胞凋亡 细胞凋亡(apoptosis )是维持正常组织形态和一定功能的主动自杀过程,是在基因控制下按照一定程序进行的细胞死亡,故又称为程序性细胞死亡( PCD ) 5、SOD 超氧化物歧化酶Orgotein (Superoxide Dismutase, SOD),别名肝蛋白、奥谷蛋白,简称:SOD。SOD 是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。对人体不断地补充SOD 具有抗衰老的特殊效果。是生物体内重要的抗氧化酶,广泛分布于各种生物体内,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体内清除自由基的首要物质。SOD在生物体内的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞,复原因自由基造成的对细胞伤害。

常见细胞株中文名称及缩写

人类组织正常及永生化细胞 英文名中文名称 293E E转化人胚肾293细胞(B类) 293ET ET转化人胚肾293细胞(B类) 293KB KB转化人胚肾293细胞(B类) 293T人胚肾T细胞 A7d野生型人 C-KIT受体细胞株(B类)AMS3(SCF3)人干细胞因子单克隆抗体细胞株(B类) APP-PS1人APP-PS1双基因转染细胞株(HEK293)(B类) FC33ASP2人胚胎肾细胞转化细胞 FIP293FIP293(来源于HEK293)(B类) HEK-293人胚肾细胞 CCC-HPF-1人胚肺二倍体细胞 CCC-ESF-1人胚胎皮肤成纤维细胞HFF(ATCC? SCRC-1041?)人前皮肤成纤维细胞 HFSF人胚胎眼巩膜成纤维细胞 HFTF人胚胎眼Tenon's囊成纤维细胞 HK-2人肾小球上皮细胞 HKC人胚肾上皮细胞 HSF人皮肤成纤维细胞 MRC-5人胚肺成纤维细胞 WISH人羊膜细胞 CCC-HEL-1人胚胎肝正常细胞 CCC-HEK-1人胚胎肾正常细胞 CCC-HHM-2人胚胎心肌组织来源细胞 CCC-HPE-2人胚胎胰腺组织来源细胞 CCC-HB-2人胚胎膀胱组织来源细胞 CCC-HIE-2人胚胎肠粘膜细胞 CCC-HBE-2人胚胎气管细胞 动物组织正常及永生化细胞 3T3swiss swiss鼠胚胎成纤维细胞 3T3L1小鼠胚胎成纤维细胞(前脂肪) 3T6swiss小鼠胚胎成纤维细胞 7WCY1.0人APP-PS1双基因转染细胞株(CHO)(B类) 7WD10人APP基因转染细胞株(CHO)(B类) 7WML6.0人APP-PSI(M146L)双基因转染细胞株(CHO)(B类) 7WPS1APP-PS1双基因转染细胞株(CHO)(B类) BaF3小鼠原B细胞(B类) BHK-21金黄地鼠肾 BS-C-1非注洲绿猴肾 C2C12小鼠成肌细胞 C3H10T1/22A6小鼠成纤维细胞 CH0dhfr二氢叶酸缺陷型中国仓鼠卵巢细胞 CHO-K1中国仓鼠卵巢细胞

结肠癌干细胞研究进展

收稿日期:2009-07-13 基金项目:973计划前期预研专项(2008CB517304)作者简介:陈志刚(1984-),男,湖北仙桃人,浙江大学医学院附属第二医院硕士生,从事肿瘤干细胞相关研究. 结肠癌干细胞研究进展 陈志刚 综述,黄 建 审校 (浙江大学医学院附属第二医院肿瘤外科,浙江杭州310009) 摘要:肿瘤干细胞(cancer ste m ce l, l CSC )是一群具有自我更新能力和多向分化潜能的肿瘤细胞,许多研究已证实在包括结肠癌在内的多种实体瘤中存在肿瘤干细胞。虽然CSC 在肿瘤细胞总数中只占很小比例,但是在肿瘤的起源、发展、转移以及复发等方面均有重要的作用,本文为此就其相关进展作一综述。 关键词:结肠肿瘤;肿瘤干细胞;肿瘤标记,生物学;信号传导;肿瘤转移;复发 中图分类号:R 735.3+5 文献标志码:A 文章编号:1001-1692(2010)01-0103-03 自1997年Bonnet 等 [1] 首次通过细胞表面标志CD34+ CD38- 分离出人急性粒细胞白血病干细胞来,人们又相继在乳腺癌 [2] 、脑瘤 [3] 、结肠癌 [4-5] 等实体肿瘤中证实了肿瘤干细胞(cancer ste m cel,l CSC )的存在。CSC 是一群具有自我更新能力和多向分化潜能的细胞,虽然在肿瘤细胞总数中只占很小比例,但与肿瘤复发、转移和治疗失败等密切相关。由于CSC 多处于休眠状态,且存在ABCG2等天然的耐药机制,所以传统抗癌药物难有效杀灭。 结肠癌是西方国家常见的肿瘤,占肿瘤相关死亡的第二位。我国结肠癌发病率以每年4.2%的速度递增,排第三或第四位。如能从研究CSC 角度深入分析结肠癌的临床生物学特性,则为结肠肿瘤的防治提供新线索和思路,为此本文就结肠癌干细胞相关进展作一综述。1 结肠癌发生、发展的干细胞起源 结肠癌干细胞和正常干细胞都具有自我更新能力和多向分化潜能,是否表示结肠癌干细胞起源于正常干细胞?事实上多数结肠上皮细胞存活时间很短,而结肠癌发生、发展则需要累积数年的突变,结肠干细胞寿命较长,其突变可导致肠上皮组织结构功能异常和内环境稳定失调,进而促使肿瘤的发生。 关于正常干细胞发展为结肠癌的潜能,Odoux 等[6] 提供了证据。最近Ver m eulen 等 [7] 又提出结肠癌是 单细胞起源,他们证实起源于单个干细胞克隆球的结肠癌具有相似的异质性。 此外,Bo m an 等 [8] 证明结肠癌干细胞主要通过 对称分裂来进行过度扩增,这种扩增在肿瘤起始与进展中均有着重要作用。为了研究结肠癌干细胞在肿瘤转移中的作用,B rabletz 等 [9] 提出了/迁移的 CSC 0的概念。他们认为静止的CSC 可经过上皮-间质(epithe li a -l m esenchy m al transition ,E MT )转化为 /迁移的CSC 0,从而可以导致肿瘤播散。一旦肿瘤干细胞到达新的部位,可通过间质-上皮转化形成转移灶。但是Odoux 等 [6] 认为并不是每一个CSC 都 能转移,他们提出了一种随机模型,即每一个干细胞获得随机突变,但只有那些适于生存、增殖、侵袭的CSC 才能转移。 2 结肠癌干细胞相关信号通路 E MT 过程涉及多个信号通路,包括W n t 信号途径、PI3K /AKT 途径、受体酪氨酸激酶Ras -MAPK 途径等 [11] ,同时这些通路还与干细胞的增殖和分化相 关。W nt 信号通路(APC /B -caten i n /Tcf4)异常是结肠癌进展过程中最关键的事件之一[10] 。Bo m an 等 [8] 认为:APC 基因突变后,W nt 蛋白与细胞膜表 面的受体结合,APC 蛋白不能与Ax in 形成支架蛋白,导致B -ca ten i n 在胞内大量累积并进入核内,作为转录因子TCF -4的辅助因子,共同激活Survivi n 基因。Survivin 具有抑制细胞凋亡,维护细胞活性和调节细胞有丝分裂的功能。Survivin 高表达导致增殖性细胞数量增多和细胞S 期的调控机制失控,破坏细胞增殖分化之间的平衡,CSC 也因之过度增殖,进而起始结肠癌。且已有证据表明Survi v in 仅在腺泡基底部有表达 [12] 。Chu 等 [13] 也证实结肠癌中 CD44high 细胞核B -caten i n 高表达。此外还有研究 表明,No tch 信号通路与W nt 信号通路有交通,对维持细胞的未分化和增殖状态有重要作用 [14] 。 S MAD /B MP 信号通路可抑制干细胞生长,可与W nt # 103#实用肿瘤杂志2010年 第25卷 第1期

结肠癌

结肠癌 1、恶性息肉 定义:息肉中有癌细胞浸润穿透粘膜肌层到达粘膜下层(pT1),pTis不属于恶性息肉。 预后良好组织学特征:1或2级分化,无血管、淋巴管浸润,切缘阴性。 如果带蒂或广基息肉,镜下切除后标本破碎或切缘未能评估或具有预后不良的组织学特征,建议行结肠切除和区域淋巴清扫。 2、AJCC建议至少需检出12枚淋巴结才能准确判断为II期结肠癌。可切除的结肠癌首选的手术方式是结肠切除加区域淋巴结整块清扫。 3、KRAS第2外显子的12(最常见)和13密码子突变者不能从EGFR抗体靶向治疗中获 益,即野生型使用靶向治疗。KRAS突变为结直肠癌发生中的早期事件,故其突变状态在原发灶与转移灶表现出高度的一致性。所有诊断为IV期的转移性患者均应行肿瘤组织基因测序。 4、如KARS无突变,检测BRAF(PCR扩增或直接DNA测序分析)。BRAF V600E突变者预后差,野生型OS20+个月,突变者10+个月,不能从EGFR抗体靶向治疗中获益。 5、可切除原发灶与肝、肺转移灶应行根治性切除,可同期或分期切除,可分次切除。 6、FOLFOX或CapeOX治疗3个月后或出现严重的神经毒性(>3度)时应考虑停用OXA,并用5-FU类+贝伐维持至肿瘤进展,可再用OXA。 7、初始治疗使用西妥昔单抗或帕尼单抗治疗,二线不应再用;两药一种治疗失败后不建议使用另一种。 8、西妥昔单抗适于与含伊立替康的方案联用,若不能耐受伊立替康可单药西妥昔单抗。 9、II期中高危及III期需行辅化,除非临床试验贝伐、C225、帕尼单抗或伊立替康不应用。 10、术后辅化:身体允许情况下越早越好,超过3个月不再行放化疗 高危II期(T3-4N0M0)及III期(T1-4N1-2M0)应予术后辅化。 高危因素:具有不良预后因素包括T4、组织学分化差(3或4级)、血管淋巴管浸润、肠梗阻、局部穿孔的T3、肿瘤太近切缘、切缘不可评价或切缘阳性、标本检出淋巴结过少(少于12枚)。 II期高危可选5-Fu/LV、卡培他滨、5-Fu/LV/OXA 如考虑5-Fu单药辅化的II期患者应行MMR检测(DNA错配修复蛋白,mismatch repair),具有MSI-H(微卫星不稳定性,microsatellite instability)的II期患者预后好,不会从辅化中获益。在进行MSI检测的同时检测18qLOH(18q杂合性缺失)为不良预后因素。 建议在所有50岁以下结肠癌患者中开展MMR蛋白检测,由于该群体患HNPCC 可能性增加。 III期推荐6个月辅化,共8-12周期,FOLFOX为1类证据并作为首选标准治疗方案(FOLFOX4与m FOLFOX6),CapeOX为2A类;不适合OXA可选单药卡培他滨或5-Fu/LV (单药卡培他滨疗效至少与5-Fu/LV相当) 如T4肿瘤浸润周围固定结构,或肿瘤复发时应考虑给予放疗同期辅助5-Fu为基础的化疗 11、MSI通常由MMR基因或MLH1启动子甲基化导致重复序列的插入或缺失,从而产生DNA微卫星长度的变化。 12、晚期或转移性疾病 原发灶未处理的同时性转移患者,如未发生急性梗阻或穿孔,全身化疗首选 结直肠癌肝转移瘤的部分切除或减瘤手术对生存无益 对初始不可切除的转移性疾病,在术前化疗开始后2个月要重新评估手术切除性,对继续接受术前化疗的患者也应每2个月重新评估一次手术的可能性。

氧化应激与心肌

氧化应激与心肌 1957年美国克里夫兰临床中心,首先将大隐静脉搭桥术应用于冠心病病人,此后冠状动脉粥样硬化性心脏病血运重建治疗快速发展。冠状动脉溶栓术、经皮冠状动脉成形术、冠状动脉支架植入术、冠状动脉旁路手术已成为挽救缺血心肌的重要治疗方式。但血流恢复本身也会引起显著的损伤,部分患者在血供恢复后,出现细胞超微结构变化、细胞代谢障碍、细胞内外环境改变,导致缺血再灌注损伤(ischemia/reperfusion-associated tissue injury,IRI),临床表现为心律失常、心力衰竭等。IRI也出现在心脏手术、心脏移植、心肺复苏等临床情况后。目前研究表明细胞IRI的机制主要包括:氧自由基含量增多、细胞内钙超载、线粒体膜去极化等。氧化还原失衡是IRI发生的重要起始因素,但其机制和细胞中存在的保护机制尚不完全明确,本文重点对氧化应激与心肌IRI的研究进展做一综述。 1.氧化应激和ROS 氧化应激(oxidative stress,OS)主要是由于内源性和(或)外源性刺激引起机体代谢异常而骤然产生大量活性氧簇(ROS)。ROS是指在外层电子轨道含有一个或多个不配对电子的原子、原子团或分子,包括超氧阴离子(O2- ·)、过氧化氢(H2O2)、过氧亚硝酸盐(ONOO-)和羟基自由基(·OH)。ROS作为第二信使介导了许多生理性与病理性细胞事件,包括细胞分化、过度生长、增殖及凋亡。超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶作为体内清除自由基的重要物质,在维持体内氧化还原平衡方面发挥重要的作用。但在IRI过程中,参与合成ROS的酶体系增多,且活性更强,如NADPH氧化酶、线粒体黄素酶、黄嘌呤氧化酶、未偶联的一氧化氮合酶、细胞色素P450、脂氧合酶、环氧合酶和过氧化物酶体,ROS的生成量明显高于细胞内的清除能力,导致氧化还原失衡。ROS虽然半衰期很短,但具有极强的氧化活性,与细胞内脂质、蛋白质、核酸等生物大分子发生过氧化反应,造成细胞结构损伤和代谢障碍。 2.ROS的主要来源 NADPH氧化酶是细胞内ROS的最主要来源,是由催化亚基gp91phox或其同系物,即非吞噬细胞氧化酶1~4(NOX1~4) 、双功能氧化酶1~2(Duox1~2) ,跨膜亚基p22phox,胞浆亚基p47phox、p67phox等蛋白分子共同组成的多亚基蛋白复合体。NOX家族蛋白亚型与跨膜亚基、胞浆亚基结合并组装成有活性的复合体后发挥其生物学功能。活化的NADPH氧化酶复合物与NADPH结合并释放2个电子,通过黄素腺嘌呤二核苷(FAD)传递给亚铁血红素,与细胞膜的外侧的2个氧分子结合生成O2-,最后生成H2O2、过氧化硝酸盐(ONOO-) 、羟基团(-OH) 及其它基团[1,2]。NOX源性的ROS在维持机体稳态中是把双刃剑,NOX源性ROS 一方面在氧化还原信号通路中起到了第二信使作用,参与多种细胞生理功能;另一方面,在高血压、动脉粥样硬化以及心肌IRI的病程中发挥了重要作用,因此单一抑制NOX活性对治疗心肌IRI并不是最好的选择。Vincent等[3]研究发现在30分钟缺血-24小时再灌注小鼠模型中,NOX4基因敲除组与NOX1和NOX2敲除组相比,表现出更大面积的心肌梗死,提示内源性NOX4 在H/R损伤中可能发挥着心肌细胞保护作用。 黄嘌呤氧化酶(XO)是IRI中ROS产生的另一重要来源,与合成抗氧化剂尿酸的黄嘌呤还原酶(XDH)作用相反。XDH/XO活力受细胞因子、细胞内化学物质及激素的调节。细胞缺血时XO活力升高,并且A TP分解产物次黄嘌呤积聚,再灌注时O2大量介入,次黄嘌呤和氧在XO作用下反应生成O2- ·和H2O2。有研究指出,XO不仅通过合成ROS参与心肌缺血再灌注损伤,XO本身可以与白细胞产生相互作用,造成微循环阻塞,导致再灌注的无复流现象。此外,XO可以直接损伤血管内皮细胞(EC)或通过ROS间接损害EC,影响心肌血流再灌注[4]。 3.ROS与细胞损伤

中药单体华蟾素抗人结肠癌细胞作用和机制研究

中药单体华蟾素抗人结肠癌细胞作用和机制研究 研究目标:观察中药单体华蟾素(Cinobufagin,简称为CBG)抗结肠癌(Colon cancer)细胞作用,明确其作用机制。研究方法和内容:四甲基偶氮唑蓝(MTT)比色法、细胞集落试验(Clonogenicity assay)、Brd U酶联免疫吸附测定(ELISA)检测华蟾素处理不同时间后,对结肠癌细胞存活及细胞增殖的影响;TUNEL细胞核 染色方法、Annexin V-碘化丙啶(PI)流式细胞仪(FACS)法,及Histone-DNA ELISA 法、检测华蟾素对结肠癌细胞凋亡的作用;碘化吡啶(PI)流式细胞仪法观察CBG 干预后结肠癌细胞周期的变化;运用免疫印迹(Western blot)方法检测CBG干预后结肠癌细胞内质网应激(ER应激)、m TOR复合物1(m TORC1)等信号通路水平 的活化水平;导入持续活化的S6K1质粒(CA-S6K1),观察药物干预后CBG体外抗结肠癌细胞活性的变化;建立裸鼠荷瘤模型,观察CBG在体抗结肠癌细胞的活性。 研究结果:CBG显著抑制人结肠癌细胞及原代人结肠癌细胞的存活和增殖。 CBG对正常人结肠上皮细胞无显著毒性作用。 CBG诱导结人结肠癌细胞凋亡,并导致结肠癌细胞周期G2-M期阻滞。CBG激活结肠癌细胞内ER应激通路。 使用内质网应激抑制剂(Salubrina),caspase-12抑制剂(z ATADfmk)或CHOP 沉默(通过目的性sh RNAs)的方法能够明显的减弱CBG诱导的结肠癌细胞的死亡 和凋亡。CBG抑制结肠癌细胞内m T ORC1的活化,而导入持续活化的S6K1质粒抑制CBG诱导的抗增殖作用。 CBG腹腔注射抑制裸鼠中HCT-116皮下移植瘤生长。分析肿瘤组织发现,CBG 干预的瘤组织中存在CHOP上调和m TORC1失活。 研究结论:CBG具有显著的体外及在体抗结肠癌细胞作用,其作用机制可能

内质网应激的信号通路及其与细胞凋亡相关疾病关系的研究进展

山东医药2019年第59卷第17期 内质网应激的信号通路及其与细胞凋亡 相关疾病关系的研究进展 叶勇1,赵海霞2,张长城2 (1三峡大学第一临床医学院,湖北宜昌443000;2三峡大学医学院) 摘要:细胞凋亡是指生理性或者病理性因素触发细胞内预存的死亡程序,内质网应激(ERS)在细胞凋亡过程中发挥着重要作用。氧化应激、Ca"稳态失衡及缺氧等可引起蛋白质在内质网内的折叠受到抑制,促使未折叠蛋白聚集,引起ERS,激活未折叠蛋白反应,若此反应持续存在,则可诱发细胞凋亡。ERS包括PERK、IRE1、ATF6三条经典的信号通路,由PERK介导的信号通路能快速减少蛋白质的合成,减轻内质网的负荷;IRE1和ATF6介导的信号通路能增加内质网分子伴侣蛋白的合成,增加内质网蛋白的折叠、转运和降解的能力,减轻内质网的负荷。 ERS参与了心肌缺血再灌注损伤、衰老、骨质疏松、肝硬化、肿瘤等疾病的发生发展男十对ERS进行干预有望成为治疗凋亡相关疾病的重要靶点。 关键词:内质网应激;细胞凋亡;凋亡相关疾病 doi:10.3969/j.issn.1002-266X.2019.17.028 中图分类号:R329.2文献标志码:A文章编号:1002-266X(2019)174098-04 细胞凋亡又称为程序性死亡,是指生理性或者病理性因素触发细胞内预存的死亡程序,导致细胞自主有序的死亡。与坏死不同,凋亡是主动过程,涉及一系列信号通路的激活与调控,与细胞增殖共同 维持体内细胞数量的动态平衡。研究表明,内质网 应激(ERS)、线粒体通路、死亡受体通路及氧化应激等均参与了细胞凋亡的发生发展,其中ERS是目前的研究热点[1>2]o内质网是由细胞内膜构成的封闭网状管道系统,是真核细胞内重要的细胞器,主要负 通信作者:张长城(E-mail:greatwall@https://www.doczj.com/doc/4716455370.html,) [21]Su V,Lau AF.Connexins:Mechanisms regulating protein levels and intercellular communication[J].FEBS Lett,2014,88(8): 1212-1220. [22]Liu P,Xia L,Zhang WL,et al.Identification of serum microR- NAs as diagnostic and prognostic biomarkers for acute pancreatitis [J].Pancreatology,2014,14(3):159-166. [23]Bi Y,Wang G,Liu X,et al.Low-after-high glucose down-regula- ted Cx43in H9c2cells by autophagy activation via cross-regulation by the PI3K/Akt/mTOR and MEK/ERK(1/2)signal pathways [J].Endocrine,2017,56(2):336-345. [24]李靖华,张涛,张胜逆,等.水通道蛋白-1及核因子k B在大鼠 重症急性胰腺炎肺损伤中的表达及意义[J].中华消化外科杂 志,2016,15(8):830-835. [25]刘多谋,黄鹤光,周武汉,等.白细胞介素-1|3对人脐静脉内皮 细胞结构及水通道蛋白-1的影响[].中华肝胆外科杂志, 2014,20(2):142-145.责分泌型蛋白和膜蛋白的合成、折叠、修饰及运输,同时也是细胞内Ca2+的主要储存库。在某些生理和病理条件下(如氧化应激、Ca2+稳态失衡及缺氧等)可引起蛋白质在内质网内的折叠受到抑制,促使未折叠蛋白聚集,激活未折叠蛋白反应,引起ERS o ERS包括未折叠蛋白反应、内质网相关性死亡和整合应激反应三个相互联系的动态过程,其中未折叠蛋白反应起重要作用[]。一定程度的ERS 有利于激活细胞的保护性适应机制,而ERS过强或持续时间过长,导致内质网的内稳态严重失衡,无法修复,则引起细胞凋亡[,]。因此,受损细胞往往会 [26]Zhang Z,Chen Z,Song Y,et al.Expression of aquaporin5in- creases proliferation and metastasis potential of lung cancer[J].J Pathol,2010,221(2):210-220. [27]Cao C,Sun Y,Healey S,et al.EGFR-mediated expression of aquaporin-3is involved in human skin fibroblast migration[J]. Biochem J,2006,400(2):225-234. [28]Crockett SD,Wani S,Gardner TB,et al.American gastroenter- ological association institute guideline on initial management of a-cute pancreatitis[J].Gastroenterology,2018,154(4):1096-1101. [29]陈康部?乌司他汀治疗急性重症胰腺炎疗效观察[]?中国误 诊学杂志,011,1(30):7353-7353. [30]Xie Z,Chan E,Long LM,et al.High dose intravenous immuno- globulin therapy of the Systemic Capillary Leak Syndrome( Clark-son disease)J] .Am J Med,2015,128(1):91-95. (收稿日期:2019-01-21) 98

二甲双胍对大鼠脊髓损伤后内质网应激和细胞凋亡的影响

— 161 —CHINESE JOURNAL OF ANATOMY V ol.42 No.2 2019 解剖学杂志 2019年第42卷第2期二甲双胍对大鼠脊髓损伤后内质网应激和细胞凋亡的影响* 郭卫东1,2 李 刚3 范仲凯1△ (1 锦州医科大学附属第一医院骨科, 锦州 121001;2 空军军医大学唐都医院骨科, 西安 710000; 3 同济大学附属上海第十人民医院骨科, 上海 200072) 摘要 目的:研究二甲双胍(MET )对大鼠脊髓损伤(SCI )后内质网应激(ERS )和细胞凋亡的影响,探讨二 甲双胍对SCI 的保护作用及机制。方法: 成年雌性SD 大鼠随机分为3组,分别是假手术组(Sham 组)、单纯脊髓损伤组(SCI 组)和二甲双胍干预组(MET 组)。采用Allen 方法制备大鼠SCI 模型,MET 组和SCI 组大鼠建模后,立即腹腔注射MET (50 mg ·kg -1·d -1)或等量生理盐水,连续处理7天后,取脊髓组织,用实时定量PCR 检测各组脊髓组织中葡萄糖调节蛋白78 ( GRP78),CCAAT/增强子结合蛋白同源蛋白(CHOP ) 和半胱氨酸的天冬氨酸蛋白水解酶-12(caspase-12)的mRNA 水平,免疫印迹检测各组脊髓组织中GRP78、CHOP 、caspase-12和active caspase-3的蛋白水平,免疫荧光染色检测各组脊髓组织中GRP78、CHOP 和caspase-12的蛋白水平,TUNEL 染色法检测各组脊髓组织中细胞凋亡水平,BBB 评分检测大鼠SCI 后运动功能情况。结果:与Sham 组相比,SCI 组中GRP78、CHOP 和caspase-12的mRNA 和蛋白水平明显升高,active caspase-3蛋白表达和细胞凋亡数目明显增加,BBB 评分明显降低;与SCI 组相比,MET 组中GRP78、CHOP 和caspase-12的mRNA 和蛋白水平明显降低,active caspase-3蛋白表达和细胞凋亡数目明显减少,BBB 运动评分明显升高。结论:二甲双胍可以抑制大鼠SCI 后细胞凋亡,促进后肢运动功能恢复,其机制可能与抑制ERS 有关。 关键词 脊髓损伤;二甲双胍;内质网应激;细胞凋亡;大鼠 Effects of metformin on endoplasmic reticulum stress and apoptosis after spinal cord injury in rats * Guo Weidong 1, 2, Li Gang 3, Fan Zhongkai 1△ (1. Department of Orthopedics , First Affiliated Hospital of Jinzhou Medical College , Jinzhou 121001; 2. Department of Orthopedics , Tangdu Hospital of Fourth Military Medical University , Xi'an 710000; 3. Department of Orthopedic , No.10 Affiliated Shanghai People's Hospital of Tongji University , Shanghai 200072, China )Abstract Objective : To detect the effects of metformin (MET) on ER stress and apoptosis after spinal cord injury (SCI) in rats. Methods :Adult female SD rats were randomly divided into three groups : sham group (Sham group), spinal cord injury group (SCI group) and MET intervention group (50 mg/kg/day). SCI rat model was established at T10 section by Allen's weight drop method. Spinal cord tissues were harvested 7 days after spinal cord injury. Real-time quantitative PCR was used to detect the expressions of GRP78, CHOP , and caspase-12 mRNA. The expression of GRP78, CHOP , caspase-12, and active caspase-3 was detected by Western blotting and immunofluorescence labeling technique. The fluorescent TUNEL staining was used to detect apoptosis. The BBB score was used to detect the recovery of hindlimb motor function in rats. Results :Compared with sham group , the mRNA and protein levels of GRP78, CHOP , and caspase-12 were significantly increased and so were the protein levels of active caspase-3 and the number of apoptosic cells , while the BBB scores were decreased significantly in SCI group. Compared with SCI group , the mRNA and protein levels GRP78, CHOP , and caspase-12, and the protein levels of active caspase-3 were significantly reduced , and the apoptosis had the same trend ; however , BBB scores were increased significantly in MET group. Conclusion : Metformin may inhibit the apoptosis , and promote the recovery of hindlimb motor function by inhibiting endoplasmic reticulum stress after spinal cord injury in rats. Key words spinal cord injury ; metformin ; endoplasmic reticulum stress ; apoptosis ; rat * 辽宁省自然科学基金(201602277);辽宁省高等学校优秀人才支持计 划项目(LJQ2014091) 第1作者 E-mail :guoweidonggwd@https://www.doczj.com/doc/4716455370.html, △ 通信作者,E-mail :fanzk_ln@https://www.doczj.com/doc/4716455370.html, 收稿日期:2018-10-08;修回日期:2019-01-12doi : 10.3969/j.issn.1001-1633.2019.02.012·论?著· 脊髓损伤(spinal cord injury ,SCI ) 是脊柱外科常见疾病,由于人们尚未透彻地认识到SCI 的机 制,导致至今仍未发现治疗SCI 的特效药物。大量

氧化应激心肌细胞prohibitin表达与分布变化及其生物学意义

3基金项目:国家自然科学基金资助课题(30570753) 收稿日期:2006203231;修回日期:2006212228作者简介:任 哲(19792),女,内蒙古包头人,硕士在读,从 事应激医学研究。△ 通讯作者 氧化应激心肌细胞prohibitin 表达与 分布变化及其生物学意义3 任 哲,钱令嘉△,杨志华 (军事医学科学院卫生学环境医学研究所,天津300050) 摘要 目的:探讨prohibitin 在氧化应激心肌细胞中的表达与分布变化的特点及其在心肌细胞损伤中的意义。方法:H 2O 2干预体外培养乳鼠心肌细胞,建立氧化应激心肌细胞损伤模型;采用生物化学法检测细胞培养液中LDH 活性及M TT 实验观察心肌细胞损伤程度;以Western 印迹法检测氧化应激时prohibitin 蛋白表达变化与分布变化;线粒体H +2A TPase 合成活力实验检测线粒体氧化磷酸化功能;流式细胞术检测线粒体跨膜电位。结果:氧化应激组LDH 活性显著高于对照组,而细胞存活率低于对照组34151%~6515%;线粒体H +2A TPase 合成活力降低 60%;氧化应激组线粒体跨膜电位显著低于对照组;心肌细胞prohibitin 表达水平在H 2O 2处理3h 出现升高然后 回落到正常水平,线粒体prohibitin 表达水平高于对照组。结论:氧化应激心肌细胞prohibitin 表达水平代偿性增加并有向线粒体移位的趋势,氧化应激导致心肌细胞线粒体功能障碍。关键词: prohibitin ; 氧化应激; 线粒体; 心肌损伤中图分类号:R363 文献标识码:A 文章编号:100026834(2007)022******* 在一些损伤因素的作用下,细胞内的氧化代谢 物增加,或细胞中抗氧化机制不足时,促使活性氧堆积,对细胞产生毒性,这种氧化和抗氧化的不平衡就是氧化应激[1]。近年来的研究表明,氧化应激是多种不利因素,如运动、心理应激、缺血、缺氧等造成心肌细胞损伤的共同机制。对氧化应激致心肌损伤发生的规律及其分子基础已进行了大量的研究,发现线粒体作为氧化应激的主要靶标,活性氧可引起线粒体结构和功能损伤,但对其损伤机制仍不明确。本实验室前期对应激心肌细胞线粒体蛋白质组学研究,发现慢性束缚应激大鼠心肌细胞线粒体pro 2hibitin 表达水平明显升高[2]。近来有研究发现,prohibitin 可以定位于线粒体并且有分子伴侣的功 能[3,4],从而保持线粒体内膜的完整性。但有关prohibitin 在氧化应激心肌细胞中的表达变化规律 及其对线粒体的影响,目前尚未见报道。本实验拟通过研究氧化应激时心肌细胞prohibitin 表达特点及其与线粒体损伤发生的相关性,为认识氧化应激致心肌细胞损伤机制提供实验依据。 1 材料与方法 111 实验动物与试剂 Wistar 乳鼠,体重10~14g ,40只(军事医学科 学院卫生学环境医学研究所实验动物房提供,Ⅱ级)。乳酸脱氢酶(LDH )试剂盒购自中生北控公司。prohibitin 单抗,购自Neomarkers 公司,Cox Ⅱ单抗,购自Molecular Probes 公司,辣根过氧化物酶 标记羊抗鼠二抗,购自中杉公司。Hoechst 33258、32 (4,52二甲基噻唑22)22,52二苯基四氮唑嗅盐(M TT )、罗丹明123(Rh123)购自Sigma 公司。112 氧化应激心肌细胞模型建立11211 心肌细胞培养 参照Paul Simpson 方法,开 胸取乳鼠心脏,剪碎,用0125%胰酶消化法分离心肌细胞,细胞贴壁培养于10%胎牛血清M EM 培养液,37℃,5%CO 2培养箱。选自律性搏动>100b ?min -1的心肌细胞用于实验。 11212 过氧化物诱导氧化应激模型建立 将培养3~4d 的心肌细胞培养液,换成含200μmol ?L -1 H 2O 2,10%胎牛血清的M EM 培养液,37℃、5%CO 2 培养箱,继续培养24h 。113 细胞凋亡检测方法 心肌细胞接种于011%多聚赖氨酸包被的盖玻片上,按照氧化应激模型建立方法处理细胞。吸尽培养液,加入4%多聚甲醛固定液,固定30min ,去除固定液,PBS 晃动清洗5min ×3次。加入浓度为1mg ?ml -1Hoechst33258染色液至终浓度1μg ?ml -1,染色15min ,PBS 晃动清洗5min ×3次,50% 甘油封片,荧光倒置显微镜观察。在显微镜同一视野下观察计数出现凋亡小体的细胞与全部细胞数

与细胞中(p)ppGpp相关的环境胁迫信号感知和应激反应

与细胞中(p)ppGpp相关的环境胁迫信号感知和应激反应 2120141293 王德美 摘要 (p)ppGpp,即鸟苷五磷酸或鸟苷四磷酸盐,是细菌细胞内的一种小分子信号物质,其合成和分解均由RelA/SpoT蛋白家族或Rel/Spo双功能蛋白调控。RelA/SpoT蛋白家族或Rel/Spo双功能蛋白可感知环境胁迫条件并通过(p)ppGpp 代谢调控诱导细胞发生应激反应,如DNA 复制受阻、rRNA合成抑制及降解、基因的差别表达以及代谢酶的激活或抑制。 关键词环境胁迫信号;互惠调控;应激反应;转录抑制及激活 正文 一、(p)ppGpp催化活性蛋白 1.(p)ppGpp催化活性蛋白的功能 在大肠杆菌和其他变形菌纲细菌细胞,RelA和SpoT酶家族严谨调控(p)ppGpp 代谢。RelA 为核糖体蛋白,催化合成pppGpp或ppGpp合成。SpoT为胞质蛋白,在有Mn2+存在时,具有(p)ppGpp 水解酶活性和微弱的合成酶活性。而在一些革兰氏阳性菌以及蓝细菌细胞,染色体上含有Rel/spo同源基因,可编码具有(p)ppGpp 合成酶和水解酶双重功能的Rel/Spo同源蛋白(RSH)。胞内(p)ppGpp合成酶活性蛋白通过对环境胁迫的感知和催化调控信号分子(p)ppGpp合成的引发细胞应激反应的发生【1】。 2.(p)ppGpp催化活性蛋白对环境胁迫信号的感知 2.1 RelA/SpoT酶家族对环境胁迫信号的感知 2.1.1感知氨基酸饥饿的机制 在大肠杆菌中,当氨基酸缺乏时,非氨酰基化的tRNA 结合于核糖体的A 位点阻滞蛋白质的合成,多肽延伸时核糖体空置反应诱导RelA 合成(p)ppGpp。 2.1.2感知脂肪酸饥饿的机制 酰基载体蛋白(ACP)结合于SpoT 的TGS 结构域(可能具有调控与核苷类配体结合的功能),细胞中非酰基化ACP和酰基化ACP的比率可能影响这种结合。

在细胞应激反应中HSP70的保护与调节作用

在细胞应激反应中HSP70的保护与调节作用 【摘要】HSP70是HSP家族的重要成员,由于其在应激反应中的敏感性以及临床实践中的重要作用而成为研究的热点。当进入应激状态时,机体通过对HSP70mRNA的优先翻译和增强其稳定性等调控机制的变化以适应需要,对细胞具有保护作用。可以缓解细胞损伤,增强机体对应激的抵抗力,并能在抗细胞凋亡、抗氧化和免疫等反应中起着重要作用。 【关键词】HSP70;应激反应; 保护; 调节 细胞在受热和其他理化因素(如缺血、缺氧、重金属离子、病毒感染、DNA 损伤等)作用后发生热休克反应(Heat shock response,HSR),抑制一些正常蛋白质的合成,同时启动一类新的蛋白合成基因热休克蛋白基因,合成热休克蛋白(heat shock protein,HSP)。细胞应激反应中能起保护作用的应激蛋白主要是热休克蛋白家族,其中以HSP70最重要。 1 HSP家族及生物学特性 1.1 HSP家族成员及其胞内定位 HSP包括一个庞大的糖蛋白超家族,分子量在6000~170 000。现已发现30余种,根据同源程度及分子量大小分为HSP90、HSP70、HSP60、小分子HSP及泛素4组,分子量大小为110 000的HSP,位于细胞质或细胞核中;分子量为90 000的HSP家族,包括HSP90和GRP94,前者位于细胞质,后者位于内质网(ER);HSP90家族常见有HSP90、gp96(葡萄糖缺乏时诱导合成的一类蛋白)等。其中HSP90指HSP90 和gp96,这两种蛋白具有相似或相同的功能,都是细胞正常生长所必需的蛋白;分子量在70 000左右的HSP家族,包括HSC70,GRP78(Bip)和GRP75,分别位于细胞质、内质网和线粒体;分子量在60 000的HSP位于线粒体;低分子量HSP,分子量为20 000~30 000,位于细胞质或细胞核中;分子量为10 000的HSP位于线粒体;泛素(ubiquitin)分子量为8000,位于细胞质或细胞核。HSP家族中,分子量70 000的HSP在正常细胞中较少,但在应激状态下显著升高,对其有关的研究也较多。 1.2 HSP70的类型与基本结构按表达情况将HSP70分为诱导型HSP70和结构型HSP70两类。正常细胞可表达结构型HSP70在应激情况下略增加,而诱导型HSP70仅在细胞应激时出现。 HSP70在进化上具有高度的保守性,其N端有ATP结合区并具有ATP酶活性,较C端具有更高的保守性,而C端是结合多肽或特殊蛋白的部位,具有相对易变性。HSP70存在于细胞内,并在细胞内发挥作用。应激时,大部分诱导型HSP70位于细胞核内并包围核仁,恢复后则移人胞质,再次应激又重回胞核[1]。 1.3 HSP70的生物学意义热休克蛋白的生物学功能十分广泛,不仅表现为在应激条件下维持细胞必需的蛋白质空间构象,保护细胞生命活动,以确保细胞生存,而且在未折叠新生多肽链、多蛋白复合物的组装和跨膜运输、转位、蛋白质降解,细胞内蛋白质合成后的加工过程,细胞骨架和核骨架稳定等基本功能方面发挥重要作用。它们调节这些蛋白质的活性,而本身并不参与大分子蛋白质的组成,故称

相关主题
文本预览
相关文档 最新文档