当前位置:文档之家› 七年级数学上册基础练习题20

七年级数学上册基础练习题20

七年级数学上册基础练习题20
七年级数学上册基础练习题20

1、在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来。1

-—4, -6.5, 0, 3, -3, -1.6, -0.6.

2

2、已知x是正数,并且-3

3、分别写出下列各数的绝对值、相反数和倒数。

1

—-3.5, 7, 0, 3.25, 1.75, 5.4, -4.

7

4、计算。

-550-350 11-(-89) -85+75

45+(-3) -2×(-25) -10+(-17)

4

—×20 -5+(-21) -2÷(-27)

5

3

9×(-—) (-1.4)×(-0.2)+(-0.45)×5 4

-80×0.4×(-2)+(-10) (-3)2÷6-(-1)2÷7

9

1÷(-—)+(-1)×(-3) (5+5)÷43×(5+3) 8

7

(-7)÷9×(-—)×(-9) -(5+3)×22×(0+9) 8

5、用科学记数法表示下列各数。

1300 -6000 3000 -71200000

-8000 3500 9700 -9500000000

6、下列用科学记数法写出的数,原来分别是什么数?

6×1027×106-1.8×106-6.38×105

9.3×108-2.29×108 5.3×1069.69×108

7、对下列各数取近似数。

0.000579(精确到万分位) 390.78(精确到个位)

41.8421(精确到0.001) 0.0604(精确到0.01)

8、计算。

8-|-3| |-1-(-9)| |-3|+(-3)

9、列式表示。

某地冬季一天的温差是10℃,这天最低气温是t℃,最高气温是多少℃?

10、计算。

9x2y-9x2y 10n2-11.5n2

1 1

—a2bc-—cba2-a2b-0.5a2b 3 6

1 1

-—xy-—xy-9 5x2y2-2.5x2y2 2 4

ab-4a2b2+3-9ab2-7a2b2+6-3ab

9x3-6x2-8y2+y-x2+9y-y2

(a2b-3b3)+(9a2b2+7b3)

六年级上册数学 比例的应用题 基础和提高题讲解和练习题 打印版

六年级上册数学比例的应用题基础和提高题讲解和练习题打印版一、把各个物品的在比例中的数值看成是各个物品的份数: 例1、苹果的个数与梨的个数比是3:11。 (1)苹果的个数是梨的个数的()/()。 (2)梨的个数是苹果的个数的()/()。 (3)梨的个数是苹果的个数的()倍。 苹果的份数是3 ,梨的份数是11,所以 苹果的个数是梨的个数的(3/11) 梨的个数是苹果的个数的(11/3) 梨的个数是苹果的个数的(11/3 )倍 练习: 1.小猫的只数是小狗只数的7/8。 (1)小猫的只数与小狗只数的比是()。 (2)小猫的只数与小猫和小狗只数之和的比是()。 2.丽丽看一本书,看完的页数与未看的页数的比是7:5。 (1)看完的页数占未看页数的()。 (2)未看页数占看完页数的() (3)看完的页数占全书页数的()。 (4)未看的页数占全书页数的() 二、己知数量和和比例:比例数字之和就是份数和;物品在比例中的数字,就是该种物品的份数, 数量和÷份数和= 一份的数量 一份的数量× 一种物品的份数=这种物品的数量 例2、要配置一种糖水,水、糖共54克,水和糖的比是7:2,水、糖各是多少克? 份数和:2+7=9 一份的数量:54÷9= 6(克)

糖的量:6×2=12 (克) 水的量:6×7=42 (克) 练习: 1.水泥、沙子和石子的比是3:4:5。要搅拌48吨这样的混凝土,需要水泥、沙子和石子各是多少吨? 2.一个长方形周长是10米,长与宽的比是3:2。长方形的长、宽各是多少米?面积是多少? 3.一批课本有1000本,把其中的1/4 分给一班,余下的按3:2分给二班和三班,一、二、三班各分多少本? 4.王老师、丽丽和红红创建了一家公司,三人分别投资120万元、80万元和60万元。在他们三人的共同努力下,到年末,公司共盈利260万元,你认为该如何合理分配这笔钱,每人分别得多少? 例3、某工厂有180人,分成三个小组,已知第一小组与第二小组的人数的比是4:3;第二小组与和第三小组的人数之比是3:5, 求三个小组的人数分别是多少? 第一小组:4份 第二小组:3份 第三小组:3×5/3 = 5 份 一份的人数:180÷(4+3+ 5)=15(人) 第一组的人数:15×4=60(人) 第二组的人数:15×3=45(人) 第三组的人数:15×5=75(人) 练习: 数学小组与语文小组的人数比是7:10,语文小组与音乐小组的人数是7:4,已知音乐组和数学组共有89个人,音乐组比语文组少多少人? 三、已知一个物品的数量和比例:这个物品在比例中的数字就是这个物品的份数, 已知数量÷这个物品的份数= 一份的数量 一份的数量×另一种物品的份数=另一种物品的数量

(完整版)人教版七年级数学下册练习题.doc

1 七年级数学第五章《相交线与平行线》 班级 _______ 姓名 ________ 坐号 _______ 成绩 _______ 一、选择题(每小题 3 分,共 30 分) 1、如图所示,∠ 1 和∠ 2 是对顶角的是( ) A 1 2 B 1 C 1 1 D 2 2 2、如图 AB ∥ CD 可以得到( ) A 、∠ 1=∠ 2 B 、∠ 2=∠ 3 C 、∠ 1=∠ 4 D 、∠ 3=∠ 4 3、直线 AB 、 CD 、EF 相交于 O ,则∠ 1+∠ 2+∠ 3=( ) A 、 90° B 、 120 ° C 、 180 ° D 、140 ° 4、如图所示,直线 a 、 b 被直线 c 所截,现给出下列四种条件: ①∠ 2=∠ 6 ②∠ 2=∠ 8 ③∠ 1+∠ 4=180°④∠ 3=∠ 8,其中能判断 是 a ∥ b 的条件的序号是( ) A 、①② B 、①③ C 、①④ D 、③④ 5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐 30°,第二次右拐 30° B 、第一次右拐 50°,第二次左拐 130 ° C 、第一次右拐 50°,第二次右拐 130 ° D 、第一次向左拐 50°,第二次向左拐 130 ° 6、下列哪个图形是由左图平移得到的( ) 2 A 2 D 1 4 3 B (第 2题) C 1 2 3 (第三题) 2 c 1 3 4 b 6 5 7 8 a (第4题) D C A B C D 7、如图,在一个有 4×4 个小正方形组成的正方形网格中,阴影 部分面积与正方形 ABCD 面积的比是( ) A B A 、 3:4 B 、 5:8 C 、 9: 16 D 、 1: 2 (第7题) 8、下列现象属于平移的是( ) ① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车 在一条笔直的马路上行走 A 、③ B 、②③ C 、①②④ D 、①②⑤ 9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直 C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。 D 、在平面内过一点有且只有一条直线与已知直线垂直。 10、直线 AB ∥ CD ,∠ B = 23°,∠ D = 42°,则∠ E =( ) A B E C ( 第10题) D

七年级数学计算测试题

义务教育基础课程初中教学资料 2017年04月12日初中数学的初中数学组卷 一、解答题(共38小题) 1.计算:()()3119+--- 2.计算:()()()()40281924-----+-. 3.计算:()()()743410--+---+- 4.计算:510511 2131713??-+ ??? 5.()()1352119+----. 6.计算:()1541---+. 7.计算13351.7563122848?? ??+-++-+ ? ??? ??. 8.计算:()()25.77.313.77.3+-+-+. 9.()111.54 2.75542?? -+++- ??? 10.计算:()()782-+-- 11.计算:323.7 1.355?? ---- ??? . 12.()12235+-+---. 13.()()()()20357-++---+ 14.()()()()03573-++----- 15.计算:21133838???? ---+- ? ????? . 16.()()32172315-----+- 17.计算:2837352--+. 18.计算:()()()()()201012526++---++-+ 19.计算:1423.8468453???? +-++- ? ????? 20.计算: (1)3 5.37 5.3-++- (2)()()0.350.60.25 5.4+-++- 21.(1)()()82---; (2)()2510+-; (3)()()11.54 3.311.54 3.3+-+-+; (4)21153236????--- ? ????? 22.计算:()()()32875-+----+-. 23.计算()()171318-+--. 24.计算:

六年级数学上册知识点整理归纳

六年级上册数学知识点 第一单元 分数乘法 (一)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。 例如:5 3×7表示: 求7个5 3的和是多少? 或表示:5 3的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。 注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) 例如:5 3×6 1表示: 求5 3的6 1是多少? 9 × 61表示: 求9的61 是多少? A × 61表示: 求a 的6 1 是多少? (二)分数乘法计算法则: 1、分数乘整数的运算法则是:分子与整数相乘,分母不变。 注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分) (2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘, 计算结果必须是最简分数) 2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。 (2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别 在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数) (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分 数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。a ×b=c,当b <1时,c

九年级上册数学知识点总结

九年级上册知识点总结 (数学) 2017年12月

第二十一章 一元二次方程 22.1 一元二次方程 知识点一 一元二次方程的定义 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。 注意一下几点: ① 只含有一个未知数;②未知数的最高次数是2;③是整式方程。 知识点二 一元二次方程的一般形式 一般形式:)0(02≠=++a c bx ax 其中,2ax 是二次项,a 是二次项系数; bx 是一次项,b 是一次项系数;c 是常数项。 知识点三 一元二次方程的根 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定义是解方程过程中验根的依据。 22.2 降次——解一元二次方程 22.2.1 配方法 知识点一 直接开平方法解一元二次方程 (1) 如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。一般地,对于形如)0(2≥=a a x 的方程,根据平方根的定义可解得a x a x -=+=21 (2) 直接开平方法适用于解形如p x =2或 )0(2≠=+m p a mx )(形式的方程, 如果 p≥0,就可以利用直接开平方法。 (3) 用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。 (4) 直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为 1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。 知识点二 配方法解一元二次方程 通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。 配方法的一般步骤可以总结为:一移、二除、三配、四开。 (1) 把常数项移到等号的右边; (2) 方程两边都除以二次项系数;

六年级上册数学全册基础知识

六年级上册基础知识 班级 姓名

基础不牢地动山摇 基础不稳做题不准 夯实基础没商量 第一单元 位置 1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行) 几 列 几 行 ↓ ↓ 竖排叫列 横排叫行 (从左往右看) (从前往后看) 2、 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。 3、 图形左、右平移:行不变 图形上、下平移:列不变 第二单元 分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 例如: 98×5表示求5个9 8的和是多少? 2、分数乘分数是求一个数的几分之几是多少。 例如: 98×43表示求98的4 3是多少? (二)、分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律:( a + b )×c = a c + b c 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图: (1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。 2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面 3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几 几 。 4、写数量关系式技巧: (1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量 三、倒数

(完整版)最新七年级数学·合并同类项专项练习题

合并同类项或按要求计算: 1、(3x-5y)-(6x+7y)+(9x-2y) 2、2a-[3b-5a-(3a-5b)] 3、(6m2n-5mn2)-6(m2n-mn2) 4、m2+(-mn)-n2+(-m2)-(-0.5n2) 5、2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an) 6、(x-y)2- (x-y)2-[(x-y)2-2(x-y)2] 7、(3x2-2xy+7)-(-4x2+5xy+6) 8、3x2-1-2x-5+3x-x2

9、 -0.8a 2b-6ab-1.2a 2b+5ab+a 2b 10、已知a 为3的倒数,b 为最小的正整数,求代数式()()322++-+b a b a 的值。 11、已知:A=3x 2-4xy+2y 2,B=x 2+2xy-5y 2 求:(1)A+B (2)A-B (3)若2A-B+C=0,求C 。 12.已知x+y=6,xy=-4,求: (5x-4y-3xy)-(8x-y+2xy)的值。 13.已知3ab a b =+,试求代数式()52a b ab a b ab +-+的值。

答案: 1: 6x-14y 2: 10a-8b 3: mn2 4: -mn-0.5n2 5: 4-9an 6: (x-y)27:7x2-7xy+1 8:2x2+x-6 9:-a2b-ab 10:19/9 11: (1)4x2-2xy-3y2(2)2x2-6xy+7y2(3)-5x2+10xy-9y2 12: 解:(5x-4y-3xy)-(8x-y+2xy) =5x-4y-3xy-8x+y-2xy =-3x-3y-5xy =-3(x+y)-5xy ∵x+y=6,xy=-4 ∴原式=-3×6-5×(-4)=-18+20=2 13:13/3

最新人教版九年级数学上册重教材基础训练题(含答案)

第21章 一元二次方程(基础训练) 一、选择题(每题4分,共20分) 1、下列方程是一元二次方程的是( ) A. 02=++c bx ax B. 24)32)(12(2+=+-x x x C. 128)4(+=+x x x D. 04232=-+y x 2、一元二次方程012222=+-x x 的根的情况是( ) A. 有两个不等的实数根 B. 有两个相等的实数根 C. 没有实数根 D. 无法确定 3、用配方法将方程0142=--x x 变形为m x =-2)2(的过程中,其中m 的值正确的是( ) A. 4B. 5 C. 6 D. 7 4、下列一元二次方程中两根之和等于6的是( ) A.01562=-+x x B.01562=++x x C.01562=+-x x D.01562=--x x 5、参加一次聚会的每两人都握了一次手,所有人共握手10次,设有x 人参加聚会,则根据题意所列方程正确的是( ) A.10)1(21=-x x B.10)1(21 =+x x C.10)1(=-x x D.10)1(=+x x 二、填空题(每题5分,共20分) 6、将方程38)1)(23(-=+-x x x 化成一元二次方程的一般形式后,其二次项系数是______________,一次项系数是____________,常数项是______________。 7、如果2是方程02=-c x 的一个根,那么常数c 的值是_______,该方程的另一个根是_________。 8、一元二次方程01322=--x x 的解是______________________。 9、一个矩形的长和宽相差3cm ,面积是4cm 2,则这个矩形的长是________,宽为_______。 三、简答题 10、选择合适的方法解下列方程:(每题5分,共30分) (1)0182=+-x x (2)0742=--x x (3)02632=--x x (4)016102=++x x (5)010522=++x x (6)x x x 8216812-=+-

北师大版小学六年级上册数学基础训练

基础训练 1、填一填。 (1)小明2小时行5千米,小华3小时行7千米,小明和小华所行时间的比是( ):( ),小明和小华所行路程的比是( ):( ) (2)六(1)班有男生25人,女生20人,男生和女生人数的最简整数比是( ):( ),女生和全班人数的比是( ):( ) (3)( ):6=0.75 6:( )=0.75 (4)9÷( )=0.6=( ):20=()30 (5)一项工程,甲队单独做5天完成,乙队单独做7天完成,甲乙两队单独完成这项工程的时间比是( ):( ),每天完成的工作量的比是( ):( ) (6)甲乙两数的比是4:5,如果甲乙两数的和是45,甲数是( );如果和是81,甲数是( )。 2、化简下面各比,并求出比值。 3、下面的说法对吗?对的在( )画“√”,错的画“×” (1)苹果和梨的质量比是8:5,苹果的质量是梨的8 5。( ) (2)一场足球比赛的比分是2:0,因此,比的后项可以是0。( ) (3)小强身高1米,爸爸身高170厘米,爸爸和小强身高的比是17:10。

() (4)六(1)班男生是女生的1.2倍,男生和女生的比是6:5。()(5)0.8:0.4化简比的结果是2。() 4、解决问题。 (1)水是由氢和氧按1:8的质量比化合而成的,7.2千克水中,含氢和氧各多少千克? (2)用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3:4:5。这个三角形的三条边各是多少厘米? (3)小明和小华存钱数的比是3:5,如果小明再存入不敷出00元,就和小华的存钱一样多。小明原来存了多少钱?

(4)一种什锦糖按2份奶糖、5份水果糖和3份软糖混合成的。要配制这样的什锦糖40千克,需要水果糖多少千克? (5)一个长方形的长和宽的比是5:4,这个长方形的周长是36厘米。它的长和宽分别是多少?

七年级数学基础测试题

七年级数学基础测试题 一、选择题(本大题共12小题, 每小题3分, 共36分, 在每小题给出的四个选项中, 只有一项是符合 题目要求的) 1.若火箭发射点火前5秒记为-5秒,那么火箭发射点火后10秒应记为( ) A.-10秒 B.-5秒 C.+5秒 D.+10秒 2. 武汉市冬季某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是( ) A.-2℃ B.8℃ C.-8℃ D.2℃ 3.如图,数轴上A 、B 两点所表示的两数的( ) A.和为正数 B.和为负数 C.积为负数 D.积为正数 4.截至2008年7月27日《赤壁(上)》累计内地票房已达2.63亿元人民币,这使得它成为史上吸金最快的华语片.票房数字保留两个有效数字取近似值为( ) A.82.610? B.72610? C.82.6310? D.2.6 5. 单项式233xy z π-的系数和次数分别是( ) A.-π,5 B.-1,6 C.-3π,6 D.-3,7 6.化简()m n m n +--的结果为 ( ) A.2n B.2n - C.2m D.2m - 7.已知关于x 的方程432x m -=的解是x m =,则m 的值是( ) A.-2 B.2 C.27 D.27 - 8.小方准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是( ) A.10x+20=100 B.10x-20=100 C.20-10x=100 D.20x+10=100 9.下列由等式的性质进行的变形,错误.. 的是( ) A.如果a =b ,那么a +2=b+2 B.如果 a =b ,那么a -2=b -2 C.如果a =2,那么22a a = D.如果22a a =,那么a =2 10. 形如 d c b a 的式子叫做二阶行列式,它的运算法则用公式表示为d c b a =ad -bc ,依此法则计算4132 -的结果为( ) A.5 B.-11 C.-2 D.11 11.有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠 部分的宽都为10厘米,那么n(n 为正整数)块石棉瓦覆盖的宽度为( ) A.60n 厘米 B.50n 厘米 C.(50n+10)厘米 D.(60n-10)厘米 12.已知多项式2346x x -+的值为9,则多项式2463 x x -+的值为( ) A.7 B.9 C.12 D.18 二、填空题(本大题共4小题, 每小题3分, 共12分) 13.写出232a b -的一个同类项 .

人教版九年级上册数学公式汇总完整版

人教版九年级上册数学 公式汇总 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第二十一章 二次根式 1、一个正数有两个平方根;在实数范围内,负数没有平方根。 2、一般地,我们把形如 (a ≥0)的式子叫做二次根式,“ ”称为二次根号。 3、a (a ≥0)是一个非负数.当a 为带分数是,要把a 改写成假分数,即53 22要写成53 8 4、二次根式的性质:(a )2=a (a ≥0), 2a =a (a ≥0) 5、用基本运算符号(基本运算符号包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式。 6、二次根式的乘法规定:a ×b =ab (a ≥0,b ≥0) 7、二次根式的除法规定:b a =b a (a ≥0, b >0) 8、最简二次根式条件:①被开方数不含字母;②被开方数中不含能开得尽方的因数或因式。 9、二次根式加减法法则:先将二次根式化成最简二次根式,再合并同类二次根式 10、同类二次根式即指被开方数相同的最简二次根式 11、平方差公式:a 2-b 2=(a+b)(a-b) 完全平方公式:(a ±b )2=a 2±2ab+b 2 12、二次根式除法没有分配率,任何非零数的零次幂都是1,(ab )m =a m b m 第二十三章 旋转 1、 旋转性质:(1)只改变位置,不改变图形的大小及形状;(2)任意一对对应点与旋转中心所连线段的夹角都相等;(3)对应点到旋转中心的距离相等;(4)图形上的每一个点都沿相同的方向旋转相同都角度。 2、 把一个图形绕着某一点旋转180度,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称, 3、 全等的图形不一定是中心对称,而中心对称的两个图形一定全等。中心对称有一个对称中心,绕中心旋转180度,旋转后与另一个图形重合;轴对称有一条对称轴,图形对称折叠,折叠后与另一个图形重合。 4、 中心对称性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形。 5、 把一个图形绕着某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。线段、平行四边形是中心对称图形。 (1)既是轴对称又是中心对称图形的有:长方形、正方形、圆、菱形等 (2)只是轴对称的有:角、五角星、等腰三角形、等边三边形、等腰梯形等 (3)只是中心对称的有:平行四边形等 (4)既不是轴对称又不是中心对称图形的有:不等边三角形、非等腰梯形等。 两个点关于原点对称时,它们的坐标符号相反,即P (x,y )关于原点的对称点为P '(-x,-y)

人教版数学七年级上册 第1---2章基础测试题含答案

人教版数学七年级上册第1章基础测试题含答案 1.1正数和负数 一.选择题 1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示() A.收入50元B.收入30元C.支出50元D.支出30元2.质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是() A.﹣2B.﹣1C.0.5D.1.3 3.某种食品保存的温度是﹣10±2℃,以下几个温度中,不适合储存这种食品的是() A.﹣6℃B.﹣8℃C.﹣10℃D.﹣12℃4.大米包装袋上(25±0.1)kg的标识表示此袋大米的重量为()A.24.9kg﹣25.1kg B.24.9kg C.25.1kg D.25kg 5.向东行进﹣100m表示的意义是() A.向东行进100m B.向南行进100m C.向北行进100m D.向西行进100m 6.下列各数是负整数的是() A.﹣1B.2C.5D.

7.某药品包装盒上标注着“贮藏温度:1℃±2℃”,以下是几个保存柜的温度,适合贮藏这种药品的温度是() A.﹣4℃B.0℃C.4℃D.5℃ 8.如果收入25元记作+25元,那么支出30元记作()元.A.+5B.+30C.﹣5D.﹣30 9.宁波市江北区慈城的年糕闻名遐迩.若每包标准质量定为300g,实际质量与标准质量相比,超出部分记作正数,不足部分记作负数.则下面4个包装中,实际质量最接近标准质量的是()A.B.C.D. 10.某年,一些国家的服务出口额比上年的增长率如表:美国德国英国中国 ﹣3.4%﹣0.9%﹣5.3% 2.8% 上述四国中哪国增长率最低?() A.美国B.德国C.英国D.中国 二.填空题 11.如表列出了国外两个城市与北京的时差,如果现在是北京时间是上午10:00,那么现在的巴黎时间是. 城市时差/h 巴黎﹣7 东京+1 12.若节约9m3水记作+9m3,则浪费6m3水记作m3.

六年级数学上册基础知识与必背知识全

六年级数学上册基础知识与必背知识全【小雅为你整理的精品文档,希望对你有所帮助,欢迎你的阅读下载。】内容如下-六年级数学上册基础知识与必背知识全 六年级数学上册基础知识 1、圆是轴对称图形,有无数条对称轴。圆的所有对称轴都相交于圆中心的一点。圆中心的这一点叫做圆心。用字母O表示。 2、通过圆心并且两端都在圆上的线段叫做直径。用字母d表示 3、连接圆心和圆上任意一点的线段叫做半径。用字母r表示 4、一个圆有无数条直径、无数条半径。 5、同一个圆的直径是半径的2倍,同一个圆半径是直径的二分之一。d=2r 或 r= 6、直径是圆内最长的线段。 7、画圆时,先确定圆的半径,再确定圆心。 8、圆心决定圆的位置,半径决定圆的大小。 9、画圆时圆规两脚之间的距离就是圆的半径。 10、扇形都有一个角,角的顶点在圆心。 11、扇形是由两条半径和圆上的一段曲线围成的。 12、比表示两个数相除。两个数相除的结果,叫做比值。 13、表示两个比相等的式子叫做比例。比例尺表示图上距离和实际距离的比。

14、组成比例的四个数叫做比例的项。两端的两项叫做比例的外向,中间的两项叫做比例的内向。 15、、比的前项相当于除法里的被除数、相当于分数的分子;比的后项相当于除法里的除数、相当于分数的分母;比值相当于除法里的商、相当于分数的值;比号相当于除法里的除号、相当于分数的分数线。 16、比的前项、后项同时乘或除以相同的数(0)除外,比值不变。这叫做比的基本性质。应用比的性质可以把比化成最简单的整数比。 17、在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。应用比例的性质可以解比例。还也可以判断两个比能不能组成比例。 18、如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘,他们的积相等。 19、判断两个比能不能组成比例的方法:⑴计算两个比的比值是否相等。 ⑵看计算两个外项积是否等于两个内项积。⑶如果两个比写成分数形式就把分子和分母交叉相乘是否相等。 20、表示一个数是另一个数的百分之几的数,叫做百分数。百分数又叫百分比或百分率。 21、两位小数化成百分数只要把小数点去掉,在后面添上百分号就可以了。

人教版七年级下数学基础练习题

人教版七年级下数学基础练习题 一、选择题 1、下列现象中,不.属于.. 旋转的是( ). A .汽车在笔直的公路上行驶 B .大风车的转动 C .电风扇叶片的转动 D .时针的转动 2、若a b <,则下列不等式中不正确... 的是( ). A .33a b +<+ B .22a b -<- C .77a b -<- D . 55a b < 3、下列各组中,不是.. 二元一次方程25x y +=的解的是( ). A .12x y =??=? B .2 1.5x y =??=? C .61x y =??=-? D .92x y =??=-? 4、下列正多边形的组合中,能够.. 铺满地面的是( ). A .正三角形和正五边形 B .正方形和正六边形 C .正三角形和正六边形 D .正五边形和正八边形 5、如果不等式组???≤->m x x 2 的整数解共有3个,则m 的取值范围是( ). A .21<

8、如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为() A.34° B.56° C.66° D.54° 9、如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于() A.132° B.134° C.136° D.138° 10、若方程组的解满足x+y=0,则a的取值是() A.a=﹣1 B.a=1 C.a=0 D.a不能确定 11、若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD的度数为() A.30° B.40° C.50° D.60° 12、观察下列各式及其展开式: (a+b)2=a2+2ab+b2 (a+b)3=a3+3a2b+3ab2+b3 (a+b)4=a4+4a3b+6a2b2+4ab3+b4 (a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 … 请你猜想(a+b)10的展开式第三项的系数是() A.36 B.45 C.55 D.66 13、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为() A.﹣ B. C. D.﹣

人教版 数学 九年级上册 全册 基础练习

基础知识反馈卡·21.1 时间:10分钟满分:25分 一、选择题(每小题3分,共6分) 1.若(a-1)x2+bx+c=0是关于x的一元二次方程,则() A.a≠0 B.a≠1 C.a=1 D.a≠-1 2.一元二次方程2x2-(m+1)x+1=x(x-1)化成一般形式后二次项的系数为1,一次项的系数为-1,则m的值为() A.-1 B.1 C.-2 D.2 二、填空题(每小题4分,共12分) 3.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m =_______________. 4.若关于x的方程mx2+(m-1)x+5=0有一个解为2,则m的值是______. 5.把一元二次方程(x-3)2=5化为一般形式为________________,二次项为________,一次项系数为__________,常数项为________. 三、解答题(共7分) 6.已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,求m的值. 基础知识反馈卡·21.2.1

时间:10分钟 满分:25分 一、选择题(每小题3分,共6分) 1.用配方法解方程x 2 -23x -1=0,正确的配方为( ) A.? ????x -132=89 B.? ????x -232=59 C.? ????x -132+109=0 D.? ? ???x -132 =109 2.一元二次方程x 2+x +1 4=0的根的情况是( ) A .有两个不等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 二、填空题(每小题4分,共12分) 3.方程x 2-4x -12=0的解x 1=________,x 2=________. 4.x 2+2x -5=0配方后的方程为____________. 5.用公式法解方程4x 2-12x =3,得到x =________. 三、解答题(共7分) 6.已知关于x 的一元二次方程x 2-mx -2=0. (1)对于任意实数m ,判断此方程根的情况,并说明理由; (2)当m =2时,求方程的根. 基础知识反馈卡·21.2.2

人教版七年级数学下册第一章测考试试题

七年级数学下册第一章测试题 数 学(整式的运算) 班级____________学号_____________姓名_____________ (时间90分钟,满分100分,不得使用计算器) 一、 选择题(2'×10=20',每题只有一个选项是正确的,将正确选项的字母填入 下表中) 1. 在代数式 211,3.5,41,2,,2,,,2412 b a b x y x yz x x a mn xy a bc +-+-+-中,下列说法正确的是( )。 (A )有4个单项式和2个多项式, (B )有4个单项式和3个多项式; (C )有5个单项式和2个多项式, (D )有5个单项式和4个多项式。 2. 减去-3x 得632+-x x 的式子是( )。 (A )62+x (B )632++x x (C )x x 62- (D )662+-x x 3. 如果一个多项式的次数是6,则这个多项式的任何一项的次数都 ( ) (A )等于6 (B )不大于6 (C )小于6 (D )不小于6 4. 下列式子可用平方差公式计算的是: (A ) (a -b )(b -a ); (B ) (-x+1)(x -1); (C ) (-a -b )(-a+b ); (D ) (-x -1)(x+1); 5. 下列多项式中是完全平方式的是 ( ) (A )142++x x (B )1222+-y x (C )2222y xy y x ++ (D )41292+-a a 6. 计算=-?- 20052005)5 22()125(( ) (A )-1 (B )1 (C )0 (D )1997 7. (5×3-30÷2)0=( ) (A )0 (B )1 (C )无意义(D )15 8. 若要使4 192++my y 是完全平方式,则m 的值应为( ) (A )3± (B )3- (C )31± (D )3 1- 9. 若x 2-x -m =(x -m )(x +1)且x ≠0,则m =( ) (A )0 (B )-1 (C )1 (D )2 10. 已知 |x|=1, y=4 1, 则 (x 20)3-x 3y 的值等于( )

七年级数学练习题及答案

七年级数学练习题及答案 1.1 正数和负数 基础检测621.?1,0,2.5,?,?1.732,?3.14,106,?,?1中,正数有,负数375 有。 2.如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作m,水位不升不降时水位变化记作 m。 3.在同一个问题中,分别用正数与负数表示的量具有的意义。 4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。用正数和负数表示这三年我国全年平均降水量比上年的增长量。 拓展提高 5.下列说法正确的是 A.零是正数不是负数 B.零既不是正数也不是负数 C.零既是正数也是负数 D.不是正数的数一定是负数,不是负数的数一定是正数 6.向东行进-30米表示的意义是 A.向东行进30米 B.向东行进-30米 C.向西行进30米 D.向西行进-30米 7.甲、乙两人同时从A地出发,如果向南走48m,记作+48m,则乙向北走32m,记为这时甲乙两人相距m.

8.某种药品的说明书上标明保存温度是℃,由此可知在℃至℃范围内保存才合适。 9.如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远? 1.2.1有理数测试 基础检测 1、______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数. 2、下列不是正有理数的是 A、-3.1 B、0 C、7 D、3 3、既是分数又是正数的是 A、+ B、-4 C、0 D、2.1 3 拓展提高 4、下列说法正确的是 A、正数、0、负数统称为有理数 B、分数和整数统称为有理数 C、正有理数、负有理数统称为有理数 D、以上都不对 5、-a一定是 A、正数 B、负数 C、正数或负数 D、正数或零或负

新整理-浙教版-九年级上册数学基础知识归纳

2017新整理-浙教版-九年级上册数学基础知 识归纳 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

浙教版九年级上册数学基础知识集锦 第一章 二次函数 1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.抛物线的三要素:开口方向、对称轴、顶点. ①a 的符号决定抛物线的开口方向: 当0>a 时,开口向上; 当0

(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称 图形,对称轴与抛物线的交点是顶点。 例:若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称 轴方程可以表示为:12 2 x x x += 4.抛物线c bx ax y ++=2中,c b a ,,的作用 (1)a 决定开口方向及开口大小,与2ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置. 由于抛物线c bx ax y ++=2的对称轴是直线: 故: ①0=b 时,对称轴为y 轴; ②0000<<>>b a b a ,或者,(即a 、b 同号)时,对称轴在y 轴左侧; ③0000><<>b a b a ,或者,(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置. 当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0

六年级数学上册基础训练

六年级数学上册基础训练( ) 一、甲是100元,求乙?只列式不计算 1、 甲比乙多60%________________________. 2、 乙比甲多60%________________________. 3、 甲是乙的60%________________________. 4、 乙是甲的60%________________________. 5、 甲是总数的60%______________________. 6、 乙是总数的60%______________________. 二、甲与乙的比是3:2 1、甲是90元求乙 ( ) 2、乙是80元求甲( ) 3、甲比乙多40元,求甲( ) 4、甲乙共300元,求乙( ) 5、乙与丙的比是5:6 ,求甲,乙,丙三个数的连比( ) 6、乙与丙的比是3:4甲乙丙的和是115元,分别求甲乙丙( )( )( ) 三、甲与乙的比是3:5 1、甲比乙少(-----) 2、乙比甲多(-----) 3、甲比总数少(-----) 4、乙比总数少(------) 5、总数比甲多(-----) 6、总数比乙多(-----) 7、甲占乙的(-----) 8、乙占甲的(-----) 9、甲占总数的(-----) 10、乙占总数的(-----) 11、总数占甲的(----) 12、总数占乙的(-----) 四、根据题意计算 1、甲与乙的和是220元,已知甲比乙多34 ,求甲,乙各是多少? 2、甲比乙是8:5,如果乙比甲少75元,求甲,乙各是多少? 3、甲数的35 相当于乙数的79 则甲比乙多(------) 4、甲数的38 相当于乙除以2的商,则乙比甲少(----) 5、甲与乙的差、商都是34 ,则甲乙各是多少?

相关主题
文本预览
相关文档 最新文档