当前位置:文档之家› 材料的疲劳性能

材料的疲劳性能

材料的疲劳性能
材料的疲劳性能

材料的疲劳性能

一.本章的教学目的与要求

本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。

二.教学重点与难点

1. 疲劳破坏的一般规律(重点)

2.金属材料疲劳破坏机理(难点)

3. 疲劳抗力指标(重点)

4.影响材料及机件疲劳强度的因素(重点)

5热疲劳(难点)

三.主要外语词汇

疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue

四. 参考文献

1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009

2.束德林.金属力学性能.北京:机械工业出版社,1995

3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996

4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994

5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991

6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81

五.授课内容

第五章材料的疲劳性能

第一节疲劳破坏的一般规律

1、疲劳的定义

材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。

2、变动载荷指大小或方向随着时间变化的载荷。

变动应力:变动载荷在单位面积上的平均值

分为:规则周期变动应力和无规则随机变动应力

3、循环载荷(应力)的表征

①最大循环应力:σmax

②最小循环应力:σmin

③平均应力:σm=(σmax +σmin)/2

④应力幅σa或应力范围Δσ:Δσ=σmax-σminσa=Δσ/2=(σmax-σmin)/2

⑤应力比(或称循环应力特征系数):r= σmin/σmax

5、循环应力分类

按平均应力、应力幅、应力比的不同,循环应力分为

①对称循环σm=(σmax+ σmin)/2=0 r=-1

属于此类的有:大多数旋转轴类零件。

②不对称循环

σm≠0

如:发动机连杆、螺栓

(a)σa> σm>0,-1

(b)σa> 0,σm<0,r<-1

③脉动循环

σm=σa>0,r=0(σmin=0)如:齿轮的齿根、压力容器。

σm=σa<0,r=∞(σmax=0)如:轴承(压应力)

④波动循环

σm> σa00 如:发动机气缸盖、螺栓。

⑤随机变动应力

应力大小、方向随机变化,无规律性。如:汽车、飞机零件、轮船。二、疲劳破坏的特点

在变动载荷作用下,材料薄弱区域,逐渐发生损伤,损伤累积到一定程度→产生裂纹,裂纹不断扩展→失稳断裂。

特点:从局部区域开始的损伤,不断累积,最终引起整体破坏。

1、潜藏的突发性破坏,脆性断裂(即使是塑性材料)。

2、属低应力循环延时断裂(滞后断裂)。

3、对缺陷十分敏感(可加速疲劳进程)。

三、疲劳破坏的分类

1、按应力状态:弯曲疲劳

扭转疲劳

拉压疲劳

接触疲劳

复合疲劳

2、按应力大小和断裂寿命

N>105,б<бs 高周疲劳→低应力疲劳

N=102~105,б≥бs 低周疲劳→高应力疲劳

四、疲劳破坏的表征—疲劳寿命

疲劳寿命:材料疲劳失效前的工作时间,即循环次数N 。

疲劳曲线: 应力б↑,

N↓

五、疲劳断口的宏观特征

典型疲劳断口具有3个特征区:疲劳源 疲劳裂纹扩展区 瞬断区

1、疲劳源

疲劳裂纹萌生区,多出现在零件表面,与 加工刀痕、缺口、裂纹、蚀坑等相连。

特征:光亮,因为疲劳源区裂纹表面受反复挤压、摩擦次数多。

疲劳源可以是一个,也可以有多个。如:单向弯曲,只有一个疲劳源;双向弯曲,可出现两个疲劳源。

2、疲劳裂纹扩展区(亚临界扩展区)

特征:断口较光滑并分布有贝纹线或裂纹扩展台阶。

贝纹线是疲劳区最典型的特征,是一簇以疲劳源为圆心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向,近疲劳源区贝纹线较细密(裂纹扩展较慢),远疲劳源区贝纹线较稀疏、粗糙(裂纹扩展较快)。

N

贝纹线(海滩花样)

贝纹线区的大小取决于过载程度及材料的韧性,高名义应力或材料韧性较差时,贝纹线区不明显;反之,低名义应力或高韧性材料,贝纹线粗且明显,范围大。

名义载荷

根据额定功率用力学公式计算出作用在零件上的载荷。即机器平稳工作条件下作用于零件上的载荷。

计算载荷=载荷系数*名义载荷

3、瞬断区

裂纹失稳扩展形成的区域

断口特征:

断口粗糙,脆性材料断口呈结晶状;韧性材料断口在心部平面应变区呈放射状或人字纹状;表面平面应力区则有剪切唇区存在。

瞬断区一般在疲劳源对侧

瞬断区大小与名义应力、材料性质有关

高名义应力或脆性材料,瞬断区大;反之,瞬断区小。

第二节疲劳破坏的机理

一、金属材料疲劳破坏的机理

1、疲劳裂纹的萌生(形核)

第Ⅰ阶段在循环应力作用下,裂纹萌生常在材料薄弱区或高应力区。通过不均匀滑移或显微开裂(如第二相、夹杂物、晶界或亚晶界)等方式完成。

通常将长0.05-0.10mm的裂纹定为疲劳裂纹核,对应的循环周期N,为微裂纹萌生期。

驻留滑移带:

在循环载荷作用下,即使循环载荷未超过材料屈服强度,也会在材料表面形成循环滑移带—不均匀滑移,其与静拉伸形成的均匀滑移不同,循环滑移带集中于某些局部区域,用电解抛光法也难以去除,即使去除了,再重新循环加载,还会在原处再现。

不均匀滑移

驻留滑移带在表面加宽过程中,会形成挤出脊和侵入沟,从而引起应力集中,形成疲劳微裂纹→形核(萌生)。

挤出和侵入模型

表面易产生疲劳裂纹的原因

(1)在许多载荷方式下,如扭转疲劳,弯曲和旋转弯曲疲劳等,表面应力最大。(2)实际构件表面多存在类裂纹缺陷,如缺口,台阶,键槽,加工划痕等,这些部位极易由应力集中而成为疲劳裂纹萌生地。

(3)相比于晶粒内部,自由表面晶粒受约束较小,更易发生循环塑性变形。(4)自由表面与大气直接接触,因此,如果环境是破坏过程中的一个因素,则表面晶粒受影响较大。

2、疲劳裂纹的扩展→ 第Ⅱ阶段

疲劳裂纹形核后,在室温及无腐蚀条件下

第Ⅰ阶段属于微裂纹扩展

第Ⅱ阶段呈穿晶扩展,扩展速率da/dN 随N的增加而增大。

在多数韧性材料的第Ⅱ阶段,断口用电子显微镜可看到韧性条带而脆性材

料中可看到脆性条带。

疲劳条带(辉纹)呈略弯曲并相互平行的沟槽状花样,与裂纹扩展方向垂直。

与贝纹线不同,疲劳条带是疲劳断口的微观特征。

疲劳条带形成的原因:

裂纹尖端的塑性张开,钝化和闭合钝化,使裂纹向前延续扩展疲劳裂纹的形成与扩展模型。

韧性疲劳条带与脆性疲劳条带形貌

疲劳条带的形成模型(Laird-Smith模型):

疲劳条带的形成模型—再生核模型(F-R)

韧性条带与脆性条带的区别:

二、非金属材料疲劳破坏机理

1、陶瓷材料的疲劳破坏机理

静态疲劳相当于金属中的延迟断裂,即在一定载荷作用下,材料耐用应力随时间下降的现象。

动态疲劳在恒定加载条件下,研究材料断裂失效对加载速率的敏感性。

循环疲劳在长期变动应力作用下,材料的破坏行为。

陶瓷材料断口呈现脆性断口的特征。

2、高分子聚合物的疲劳破坏机理

⑴非晶态聚合物

a、高循环应力时,应力很快达到或超过材料银纹的引发应力,产生银纹,随后转变成裂纹,扩展后导致材料疲劳破坏。

b、中循环应力也会引发银纹,形成裂纹,但裂纹扩展速率较低(机理相同)。

c、低循环应力,难以引发银纹,由材料微损伤累积及微观结构变化产生微孔及微裂纹,最终裂纹扩展导致宏观破坏。

⑵结晶态高聚合物或低应力循环的非晶态高聚合物,疲劳过程有以下现象:

①整个过程,疲劳应变软化而不出现硬化。

②分子链间剪切滑移,分子链断裂,结晶损伤,晶体结构变化。

③产生显微孔洞,微孔洞合并成微裂纹,并扩展成宏观裂纹。

④断口呈裂纹扩展形成的肋状形态,断口呈丛生簇状结构(拉拔)。

⑶高聚物的热疲劳

由于聚合物为粘弹性材料,具有较大面积的应力滞后环,所以在应力循环过程中,外力所做的功有相当一部分转化为热能;而聚合物导热性能差,因此温度急剧升高,甚至高于熔点或玻璃化转变温度,从而产生热疲劳。

热疲劳常是聚合物疲劳失效的主要原因。因此疲劳循环产生的热量,使聚合物升温,可以修补高分子、的微结构损伤,使机械疲劳裂纹形核困难。

⑷聚合物疲劳断口可观察到两种特征的条纹

A、疲劳辉纹

每周期的裂纹扩展10μm(间距)。

聚合物相对分子量较高时,在所有应力强度因子条件下,皆可形成疲劳辉纹。

B、疲劳斑纹

不连续、跳跃式的裂纹扩展,50μm间距

而相对分子量较低时,在较低应力强度因子时,易形成疲劳斑纹。

3、复合材料的疲劳破坏机理

⑴复合材料疲劳破坏的特点

a、多种疲劳损伤形式:界面脱粘、分层、纤维断裂、空隙增长等。

b、不发生瞬断,其疲劳破坏的标准与金属不同,常以弹性模量下降的百分数1%-2%),共振频率变化(1-2HZ)作为破坏依据。

c、聚合物基复合材料,以热疲劳为主,对加载频率感。

d、较大的应变引起纤维与基体界面开裂形成疲劳源(纤维、基体的变形量不同)压缩应变使复合材料纵向开裂,故对压缩敏感。

e、复合材料的疲劳性能与纤维取向有关纤维是主要承载组分,沿纤维方向具有很好的疲劳强度;而沿纤维垂直方向,疲劳强度较低。

对于复合材料,界面结合非常重要,因为:基体与纤维的E不同,变形量不同,故界面产生很大的剪切应力。

第三节疲劳抗力指标

一、疲劳试验方法

实验设备:旋转弯曲疲劳试验机

实验方法用一组光滑试样,测量σ—N曲线,即疲劳应力—疲劳寿命曲线。实验标准GB4337—84

旋转弯曲疲劳试验机:

临界值σ–1材料的疲劳强度

σ >σ–1有限循环

σ≤σ–1无限循环

金属材料的疲劳曲线有两类:

碳钢、低合金钢、球铁等有水平线

而有色合金、不锈钢、高强度的无水平线取N=106,107或108下的疲劳强度→条件疲劳强度。

二、疲劳强度

在指定疲劳寿命下,材料能承受的上限循环应力。

指定的疲劳寿命:无限周次有限周次

1、对称循环疲劳强度

对称弯曲:σ-1

对称扭转:τ-1

对称拉压:σ-1p

2、不对称循环疲劳强度

不对称循环疲劳强度难以用实验方法直接测定。一般用工程作图法,由疲劳图求出各种不对称循环应力下的疲劳强度。

r=-1~1个状态下的疲劳强度。

由此即可根据已知循环应力比r 求出α值作图,在AHB 上对应点的纵坐标值即为相应的疲劳强度。

注意:上述疲劳图仅适合于脆性材料,对于塑性材料,应该用屈服强度σs 进行修正。

3、不同应力状态下的疲劳强度

同种材料在不同应力状态下,相应的疲劳强度也不同,存在如下关系:

钢: σ-1p =0.85 σ-1

铸铁: σ-1p =0.65 σ-1

钢及轻合金:τ-1=0.55σ-1

铸铁: τ-1=0.80σ-1

同种材料的疲劳强度: σ–1> σ–1P >τ–1

因为弯曲疲劳时,试样表面应力最大,只有表面层才产生疲劳损伤。而拉压疲劳时,应力分布均匀,整个截面都可产生疲劳损伤,故σ–1> σ–1P 。扭转疲劳时,切应力大,更容易使材料发生滑移,产生疲劳损伤,故τ–1最小。

4、疲劳强度与静强度间的关系

试验表明,材料的抗拉强度越大,其疲劳强度也越大。对于中、低强度钢,σ–1与σb 大致成线性关系, σ–1=0.5σb 。随着抗拉强度增大,材料的塑性、断裂韧性降低,裂纹易于形成和扩展,疲劳强度降低。

经验公式

结构钢: σ–1P =0.23(σs + σb )

σ–1=0.27(σs + σb )

铸铁: σ–1P =0.4σb

σ–1=0.45σb

铝合金: σ–1P =1/6σb +7.5MPa

σ–1=1/6σb -7.5Mpa

青铜: σ–1=0.21σb

三、过载持久值及过载损伤界

1、过载持久值

材料在高于疲劳强度的一定应力下工作,发生疲劳断裂的应力循环周次称为材料的过载持久值(有限疲劳寿命)。

表征了材料对过载疲劳的抗力,过载持久值可由疲劳曲线倾斜部分确定:曲线倾斜度越大,持久值越高,表明材料在相同过载条件下能承受的应力循环次数越多。

2、过载损伤界

实验证明,材料在过载应力水平下,只有运转一定周次后,才会造成过载损伤→疲劳强度、疲劳寿命才会降低,短时间过载并不会造成过载损伤。

把每个过载应力下运行能引起损伤的最少循环次数连接起来,就得该材料的过载损伤界。

过载损伤界到疲劳曲线间的区域→过载损伤区。

材料的过载损伤区越窄,则抵抗疲劳过载的能力越强(损伤界越陡)。所以,工程上经常过载的零件,常选用疲劳损伤区窄的材料。

四、疲劳缺口敏感度

零件上的台阶、拐角、健槽、螺纹、油孔等结构,产生结构应力集中,作用

疲劳缺口敏感度

K t —

,Kt >1。

K f —疲劳缺口系数

显然,K f >1, 0< q f 当K f =1时,q f =0 表明材料对缺口完全不敏感。 K f = K t 时,q f =1 表明材料对缺口十分敏感。

结构钢:q f =0.6-0.8,敏感度高

球铁: q f =0.11-0.25

灰铸铁:q f =0-0.05,不敏感

五、疲劳裂纹扩展速率及扩展门槛值

1、扩展速率是指疲劳裂纹亚稳扩展阶段的速率(第Ⅱ阶段)。

2、实验测定

利用三点弯曲切口试样或中心裂纹试样或紧凑拉伸试样。在固定应力比r 及应力幅Δσ下进行疲劳试验。通过疲劳裂纹长度测量装置,测出每一定循环周次N 对应的裂纹长度a ,直到试样断裂为止。

作出a —N 曲线,如图,疲劳裂

纹扩展曲线

Δσ2>Δσ1

由图可见,在一定循环应力条件下,裂纹长度a 是不断扩展的,疲劳裂纹扩展速率da/dN 也是不断增加的。当a 达到a c 时, da/dN 无限增大,裂纹将失稳扩展。

因此,da/dN 不仅与裂纹长度a 有关,还与应力水平有关。

当应力增加时,da/dN 增大,a —N 曲线向左上方移动,a c 相应减小

建立da/dN —ΔKI 曲线,并在双对数坐标上描绘,如图:

Ⅰ区:相当于疲劳裂纹的初始扩展阶段,da/dN 很小,约10-8~10-6mm/周次,从ΔK th 开始,随着ΔK I 增加,da/dN 快速增大

Ⅱ区:是疲劳裂纹扩展的主要阶段,da/dN 约为10-5~10-2mm/周次,lg (da/dN )

与 lgΔK I 呈线性关系,

可用:da/dN=C (ΔK I )n 表示

———Paris 公式

C 、n 为材料常数。

Ⅲ区:是疲劳裂纹扩展的最后阶段,da/dN 值很大。并ΔK I 增加而急剧增大,很快导致裂纹失稳扩展。

ΔK th 处da/dN=0,即裂纹不会扩展,只有K I >ΔK th 时,da/dN>0。因此,ΔK th 称疲劳裂纹扩展门槛值,表征材料阻止疲劳裂纹开始扩展的能力。

ΔK th 与σ-1的区别:

σ-1代表光滑试样的无限寿命疲劳强度,适用于无裂纹零件设计、校核依据。 ΔK th 代表裂纹试样的无限寿命疲劳强度,适用于含裂纹零件的设计和校核。

利用公式:

1、已知裂纹件的原始裂纹长度a 和材料的疲劳门槛值ΔK th ,可求得该零件在无

用该式算出的Δσσ-1。

2Δσ ,材料的ΔK th ,该零件无限疲劳寿命时,允许 工程上常规定在平面应变状态下,da/dN=10-6~10-7mm/周次时对应的ΔK I 为ΔK th

—称为条件疲劳裂纹扩展门槛值。

大多数金属材料的ΔK th 值很小,约为 5%~10%K IC

如钢: ΔK th ≤9MPa·m 1/2,

铝合金:ΔK th ≤4MPa·m 1/2

注意Paris 公式仅适用于低应力,低扩展速率da/dN<10-2mm/周次和较长寿命Nf>104情况。

根据Paris 公式,可以对零件的剩余疲劳寿命进行估算。

可先用无损伤法测出零件的初始裂纹长度a 0、形状、位置和取向,以确定ΔK I 的值,再根据材料的断裂韧度ΔK IC 及名义工作应力Δσ,确定临界裂纹长度ac 。最后用积分法算出剩余疲劳寿命:

第四节影响材料疲劳强度的因素

一、工作条件的影响

1、载荷条件

①应力状态,平均应力,应力比

②在过载损伤区内的过载,会降低材料的疲劳强度、疲劳寿命

③次载锻炼材料尤其金属在低于疲劳强度的应力循环一定周次后称为次载锻炼。

次载应力越接近材料的疲劳强度,次载循环周期越长,锻炼效果越好。

新机器经次载锻炼,既跑合、又延长疲劳寿命。

④间歇效应:实验表明,对应变时效材料,在循环加载运行过程中,若间歇空载一段时间或间隙时适当加温,可提高疲劳强度,延长寿命。

⑤载荷频率:在一定频率范围内(170~1000HZ),材料的疲劳强度随加载频率的增加而提高;在常用频率范围内50~170HZ,材料的疲劳强度不受频率变化影响;低于1HZ的加载,σ-1降低。

2、温度

温度降低,疲劳强度升高(与静强度相似);反之,疲劳强度降低。

如结构钢在400℃以上时,疲劳强度急剧下降;耐热钢在550~650 ℃以上时,疲劳强度明显下降。

注意高温时材料的疲劳曲线无水平段→条件疲劳强度

3、腐蚀介质

腐蚀介质的作用使材料表面产生蚀坑,而降低材料的疲劳强度,导致腐蚀疲劳。

一般腐蚀疲劳曲线无水平段(低应力下也产生疲劳断裂)→条件疲劳强度

二、表面状态及尺寸因素的影响

1、表面状态

a、零件表面质量,对疲劳强度寿命影响很大,表面粗糙度↑,σ-1↓ 、N↓

b、另外,使零件表面产生残余压应力层(氮化、喷丸等工艺),可显著提高疲劳强度与寿命。

2、尺寸因素

尺寸效应:零件尺寸增大(三向拉应力状态),疲劳强度下降。

尺寸效应系数ε=(σ-1)d/ σ-1

三、表面强化及残余应力的影响

表面强化:喷丸和滚压

表面淬火

化学热处理

1、表面喷丸及滚压

喷丸过程就是将大量弹丸喷射到零件表面上的过程,有如无数小锤对表面锤击,因此,金属零件表面产生极为强烈的塑性形变,使零件表面产生一定厚度的冷作硬化层,称为表面强化层,此强化层会显著地提高零件的疲劳强度。

可使金属表面形变强化,并在塑性变形层内产生残余压应力,既提高了表层材料强度,又能降低表层材料的工作时的拉压力;同时可降低缺口应力集中系数和疲劳缺口敏感度,提高材料的疲劳抗力。

表面滚压技术是在一定的压力下用辊轮、滚球或者辊轴对被加工零件表面进行滚压或者挤压,使其发生塑性变形,形成强化层的工艺过程。

形状简单的大尺寸零件→滚压强化

形状复杂的零件→喷丸强化

2、表面热处理和化学热处理

表面淬火:外硬内韧组织

化学热处理:氮化,外硬内韧,残余压应力层

3、复合强化

渗氮+表面淬火,渗氮+喷丸,表面淬火+喷丸

例如:

某型车辆扭力轴在服役过程中经常发生早期断裂失效,失效部位位于扭力轴的端部附近, 如图1所示。扭力轴是该型车辆行动部分减震装置中的主要零件,当车辆行驶在起伏不平的路面或者遇到障碍时, 平衡肘以其轴为圆心产生摆动, 使装配在平衡肘中的扭力轴承受扭矩, 扭力轴通过充分扭转吸收和释放能量, 以达到缓冲和减震的目的。因此在车辆行驶过程中, 扭力轴经常在大应力、大应变、冲击和交变扭矩载荷作用下工作,容易发生疲劳断裂。扭力轴材料为45C rNMi oVA 钢。为优化扭力轴的减震性能, 提高其抗疲劳性能, 制造中采用了淬火+ 中温回火热处理和表面滚压强化处理。

四、材料成分及组织的影响

1、合金成分

工程材料中,结构钢的疲劳强度最高σ-1≈0.5 σb

结构钢中碳是影响疲劳强度的重要因素,既有间隙固溶强化作用,又有弥散强化作用(碳化物),提高材料的形变抗力、疲劳强度。

在一定范围内,随着含碳量增大,疲劳强度增大(固溶强化,弥散强化作用增大),但含碳量太大,钢的脆性增大,σ-1降低。

2、非金属夹杂物及冶金缺陷

a、脆性夹杂物(Al2O3,硅酸盐)在钢中易萌生疲劳裂纹,降低疲劳强度。

b、冶金缺陷(气孔、缩孔、偏析、白点、裂纹等)都是疲劳裂纹源,降低疲劳强度和寿命。

3、显微组织

晶粒度对疲劳强度的影响σ-1= σ i+ kd -1/2

σ i—位错在晶格中运动摩擦阻力

k —材料常数

d —晶粒平均直径,显然,d↓→ σ-1↑

第五节热疲劳

一、热疲劳

1.概念:由周期变化的热应力或热应变引起的材料破坏称为热疲劳。

2.热疲劳的特点:是热塑性应变损伤累积引起的破坏,服从低周应变疲劳的规律。热疲劳裂纹多萌生于表面热应变最大区域,有多个裂纹源。

3.脆性材料的热震断裂与热损伤

抗热震性:材料经受温度瞬变而不被破坏的能力

热震断裂热震温差引起的热应力超过材料的断裂应力时,引起材料瞬时断裂。

热损伤热冲击循环作用引起材料开裂、剥落、碎裂或变质,最后整体损伤。

3.热疲劳的表征

(1)材料的热疲劳抗力常以一定温度幅下产生一定尺寸疲劳裂纹的循环次数或

在规定的循环周次下产生的裂纹长度表示

(2)材料的抗热震性用抗热震参数表征: (a )对于极剧受热和冷却的材料,抗热震参数为

(b )对于缓慢受热和缓慢冷却的材料,抗热震参数为 (c)当材料表面以恒定速率

二、影响材料热疲劳性能的因素

1、材料的热学性质如导热性、热比容、热膨胀系数等

2、材料的力学性质如材料的弹性模量、屈服强度、韧性等

3、材料的几何因素几何形状、表面积等

4、热应力(应变)循环频率

作业:

1.比较金属材料、陶瓷材料、高分子材料、复合材料疲劳断裂的特点及过程。

2.试述疲劳宏观断口和微观断口的特征及其形成的过程或模型。

3.疲劳失效过程可分为哪几个阶段?简述各个阶段的机制及提高材料疲劳抗力的主要方法。

4.试述估算疲劳裂纹扩展速率、寿命和剩余寿命的主要方法及步骤。

5试述应力集中和应力比对疲劳寿命和疲劳强度的影响规律。

铝合金焊接接头疲劳性能研究 张禧铭

铝合金焊接接头疲劳性能研究张禧铭 摘要:测定了6061铝合金焊接件焊接接头的疲劳性能,介绍了铝合金焊接件焊 接接头的疲劳特征,分析了铝合金焊接件焊接接头中缺陷对其疲劳性能的影响。 结果表明铝合金焊接件焊接接口处气孔、夹杂物及未焊透三个焊接缺陷均会零件 的应力集中创造条件,对铝合金焊接件焊接接头疲劳性能有重大影响。气孔的大小、数量,未焊透的分布位置及形式明显地影响铝合金焊接件焊接接头的疲劳性 能 0.引言 铝合金由于其质量轻、强度高、无磁性、耐腐蚀性好,广泛应用于汽车、铁路、航空航天等领域。焊接是铝合金零件最常见的连接方式,在铝合金焊接零件 在重复外力作用下会发生疲劳断裂,而疲劳破坏过程又这些问题往往会给用户造 成不可估量的巨大损失[1]。通过研究发现,铝合金焊件焊接接头发生疲劳破坏是 铝合金焊接断裂的主要原因,因此对铝合金焊接件进行全面分析,找出原因并提 出解决方案,提高铝合金焊接件有着重大意义[2,3]。近些年过高校和科研院所 对铝合金焊接件焊接接口做了大量研究工作,并取得了重大成果。周进等人通过 对5A02 铝合金焊接接头的疲劳性能进行分析,得出了补焊可以降低铝合金焊接 件焊接接口的疲劳强度(下降将近20%),可作为一种可靠的补救措施[4]。王德 俊通过对铝合金焊接接头焊缝几何特征的研究,得出了十字接头焊接方式比对接 接头焊接方式应力集中更严重的结论[5]。本文以6061铝合金为研究对象,分析 焊接缺陷铝合金焊接件疲劳性能的研究。 1.试验材料及试验方法 本试验需要的材料为铝合金和焊丝,其中铝合金选用6061铝板,焊丝选用5356焊丝,铝板采用对接焊接。这两种材料的化学成分如表1所示。 试验材料化学成分/% 将铝板通过焊丝分别用MIG焊和TIG焊两种方法进行焊接,不仅仅能够保证 铝合金焊接件内部化学成分的完整性,而且也可以提高铝合金焊接件的焊接质量。 在进行全部焊接之后还需要采用合理的方法对焊接物进行验伤处理,找出其 中存在的问题,并对出现问题的原因进行全面分析。焊后进行X射线探伤检验, 找出存在的问题并找到原因及时解决,将样品进行铣削加工,去除焊缝余高。为 获得样品真实状态,将样品铣削加工后再进行X射线探伤检测。在MTS万能试验机上进行疲劳试验,用JSM-35C显微镜对断口形状进行合理观察。 2.试验结果及分析 2.1疲劳试验 试验结果如表2所示,对试验结果进行整理、对比,可以发现无论6061铝合金焊接件的焊缝有无缺陷,发生疲劳破坏的均为焊接口。但是整个焊接过程是否 存在缺陷对存在的疲劳现象和相应寿命还有很重要的作用。但焊缝有无缺陷对其 寿命有明显影响,即有焊缝缺陷的样品其寿命明显低于无焊缝缺陷的样品,并且 随着缺陷尺寸的增大,疲劳寿命下降越多。 6061铝合金焊接接头疲劳性能 2.2疲劳断口特征 按照焊接接头的断裂过程疲劳断口一般分为裂纹源、疲劳裂纹扩展和最后断

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

纤维增强复合材料疲劳性能研究进展

纤维增强复合材料疲劳性能研究进展 宋磊磊李嘉禄 (天津工业大学复合材料研究所天津市和教育部共建先进纺织复合材料重点实验室天津 300160) 摘要:随着科技的发展,纤维增强复合材料作为一种新型材料越来越多的应用于众多领域。然而,纤维增强复合材料的疲劳性能对应用具有重要影响。本文根据近年来国内有关复合材料疲劳性能的研究和探索,综述了纤维增强复合材料疲劳性能的定义、机理以及影响因素,并提出了当前存在的一些问题。 关键词:纤维增强复合材料疲劳 1 前沿 随着科技的进步,很多工业特别是高新技术工业对材料的要求不断提高。复合材料由于比强度和刚度高、质量轻、耐磨性和耐腐蚀性好等优点,广泛应用于船舶、汽车、基础设施和航空航天等领域,以及文体用品、医疗器械、生物工程、建筑材料、化工机械等方面。 在复合材料构件的使用过程中,由于应力和环境等因素的影响,会逐渐产生构件的损伤以至破坏,其主要破坏形式之一是疲劳损伤。疲劳损伤的产生、扩展与积累会加速材料的老化,造成材料耐环境性能严重下降以及强度与刚度的急剧损失,大大降低其使用寿命,甚至报废。为了使复合材料的应用更加广泛和深入,本文综述了近年来在纤维增强复合材料疲劳性能方面的研究。 2 复合材料疲劳性能及损伤机理 在周期性交变载荷作用下材料发生的破坏行为称为疲劳,它记述了材料经受周期应变或应变时的失效过程。复合材料疲劳主要是指复合材料构件在交变荷载作用下的疲劳损伤机理、疲劳特性(强度、刚度随着时间变化规律及其破坏规律)、寿命预测及疲劳设计。 复合材料是非均质(在大尺度上)和各向异性的,它以整体的方式积累损伤,且失效并不总是由一个宏观裂纹的扩展导致。损伤积累的微观机构机理,包括纤维断裂基体开裂、脱粘、横向层开裂和分层等,这些机理有时独立发生,有时以互相作用的方式发生,而且材料参数和试验条件可能强烈影响其主要优势。多种损伤及其组合,使疲劳损伤扩展往往缺乏规律性,完全不像大多数金属材料那样能观察到明显的单一主裂纹扩展,复合材料不仅初始缺陷/损伤大,而且在疲劳破坏发生之前,疲劳损伤已有了相当大的扩展。 3 影响复合材料疲劳性能的主要因素 3.1 基体材料 Boller研究了基体材料对玻璃纤维增强复合材料疲劳性能的影响,研究证明,不同的基体材料具有完全不同的疲劳性能。一般情况下,疲劳性能最好的是环氧树脂。 很多复合材料的疲劳试验证明,基体和界面是薄弱环节。尽管树脂含量的变化在106次循

材料的疲劳性能

材料的疲劳性能一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随 1 /2; min) 2 应力; ②不对称循环:σm≠0,-1σm>0,-10,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力;

④波动循环:σm>σa,0

②疲劳破坏属于低应力循环延时断裂,对于疲劳寿命的预测显得十分重要和必要; ③疲劳对缺陷(缺口、裂纹及组织)十分敏感,即对缺陷具有高度的选择性。因为缺口或裂纹会引起应力集中,加大对材料的损伤作用;组织缺陷(夹杂、疏松、白点、脱碳等)将降低材料的局部强度。二者综合更加速疲劳破坏 出现两个疲劳源。 (2)疲劳裂纹扩展区(亚临界扩展区)? 疲劳裂纹扩展区特征为断口较光滑并分布有贝纹线或裂纹扩展台阶。贝纹线是疲劳区最典型的特征,是一簇以疲劳源为圆心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向。近疲劳源区贝纹线较细密(裂纹扩展较慢),远

材料的疲劳性能

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:σmax; ②最小循环应力:σmin; ③平均应力:σm=(σmax+σmin)/2; ④应力幅σa或应力范围Δσ:Δσ=σmax-σmin,σa=Δσ/2=(σmax-σmin)/2; ⑤应力比(或称循环应力特征系数):r=σmin/σmax。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:σm=(σmax+σmin)/2=0,r=-1,大多数旋转轴类零件承受此类应力; ②不对称循环:σm≠0,-1σm>0,-1

③脉动循环:σm=σa>0,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力; ④波动循环:σm>σa,0

聚合物基复合材料疲劳性能测试方法 第2部分:线性或线性化应力

I C S83.120 Q23 中华人民共和国国家标准 G B/T35465.2 2017聚合物基复合材料疲劳性能测试方法第2部分:线性或线性化应力寿命(S-N)和应变寿命(ε-N)疲劳数据的统计分析 T e s tm e t h o d f o r f a t i g u e p r o p e r t i e s o f p o l y m e rm a t r i x c o m p o s i t em a t e r i a l s P a r t2:S t a t i s t i c a l a n a l y s i s o f l i n e a r o r l i n e a r i z e d s t r e s s-l i f e(S-N)a n d s t r a i n-l i f e(ε-N)f a t i g u e d a t a 2017-12-29发布2018-11-01实施中华人民共和国国家质量监督检验检疫总局

前言 G B/T35465‘聚合物基复合材料疲劳性能测试方法“分为3个部分: 第1部分:通则; 第2部分:线性或线性化应力寿命(S-N)和应变寿命(ε-N)疲劳数据的统计分析; 第3部分:拉-拉疲劳三 本部分为G B/T35465的第2部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分由中国建筑材料联合会提出三 本部分由全国纤维增强塑料标准化技术委员会(S A C/T C39)归口三 本部分主要负责起草单位:北京玻钢院复合材料有限公司三 本部分参加起草单位:新疆金风科技股份有限公司二中材科技风电叶片股份有限公司二明阳智慧能源集团股份公司二泰山玻璃纤维有限公司二上海玻璃钢研究院有限公司二四川东树新材料有限公司二山东非金属材料研究所二德劳工业服务(上海)有限公司三 本部分主要起草人:彭兴财二李小明二高克强二王艳丽二刘利锋二姜侃二杨德旭二张旭二孙林二孙秀平三

材料的疲劳性能

材料的疲劳性能 一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

镁合金疲劳性能的研究现状_高洪涛

镁合金疲劳性能的研究现状 高洪涛,吴国华,丁文江 (上海交通大学材料科学与工程学院,上海200030) 摘要:针对近几年镁合金疲劳性能的研究进行总结,从冶金因素、形状因素、加载制度、介质和温度等方面考察对镁合金疲劳性能的影响。归纳提高镁合金抗疲劳性能的途径:热处理、滚压强化和喷丸处理等。提出对镁合金疲劳性能研究的展望。 关键词:镁合金;疲劳性能;影响因素;强化途径 中图分类号:TG146.2 文献标识码:A 文章编号:1000-8365(2003)04-0266-03 Review on the Fatigue Behavior of Magnesiu m Alloys GAO Hong-tao,W U Guo-hua,DI NG W en-jiang (Schoo l of M aterials Science and Engineering,Shang hai Jiaotong U niversity,Shang hai200030,China) A bstract:This report provides some of the results of magnesium alloy s studying,especially about its fatigue behavior, in recent years.The facto rs that influence the fatigue behavior of magnesium alloy s can be given from several aspects of metallurgy,form factor,loading system,medium and tem perature.The strengthening methods can be concluded in three aspects.One is heat treatment;the o ther tw o are roller burnishing and shot blasting.In addition,the prospect of fatigue behavio r observation on mag nesium alloy s is discussed. Key words:M ag nesium alloy;Fatigue behavior;Influencing factors;Strengthening approach 综合性能优良的镁合金已大量应用于航空航天、汽车、电子等领域[1]。据预测,从2001~2007年,镁合金铸件在汽车上的用量将以25%~30%速度递增[2]。 随着镁合金需求的急剧增加,对其性能要求也越来越高。本文总结近几年镁合金疲劳性能方面的研究,以及提高其性能的建议。 1 镁合金的疲劳与断裂 M g属于密排六方结构,此类金属的塑性变形取决于c/a(c为点阵的高,a为基面的边长),Mg的c/a=1.6235,略小于按原子为等径刚球模型计算出的轴比1.633。孪晶和疲劳变形与现存孪晶的结合是疲劳变形的主要形式,滑移带沿着孪晶带堆积的区域是一些常见的裂纹源。许多微裂纹是一些微空洞造成的。位错环集团是Mg典型的疲劳位错结构。 镁合金的疲劳断裂是由最大剪应力控制的,并且沿着最大剪应力方向扩展。它的解理断裂发生在高指数面上,并且裂纹的形态因孪晶和滑移而强烈变化着。镁合金疲劳断裂结构中也有一些韧窝特征,它们来源于加载过程中出现并长大直到在塑性应变和塑性断裂条件下联合起来的微空洞,在沉淀相-基体界面处结合力较小,沉淀相或者夹杂物的破碎、局部的应力集中 收稿日期:2003-02-17; 修订日期:2003-03-24 基金项目:国家863计划资助项目,编号:200233AA1100. 作者简介:高洪涛(1976- ),河南洛阳人,博士生.研究方向:镁合金的研究与开发.都可能形成一些微空洞。 2 影响镁合金疲劳性能的因素 2.1 冶金因素 微观组织对疲劳裂纹的萌生和扩展有很大的影响[3]。砂型铸造M g-Zn-Zr合金,不管是铸态还是热处理态,晶粒越粗大,疲劳强度越低。另外,第2相质点或颗粒也影响镁合金的疲劳行为,第2相的切变模量和第2相质点间的平均距离是影响疲劳裂纹扩展速率的重要参数。另外,在小的ΔK区域,镁合金位错密度越高,疲劳裂纹扩展速率就越低。 镁基复合材料的疲劳性能与断裂特征与其基体上增强颗粒和晶须的尺寸和形态关系密切[4],含20% SiC晶须的AZ91D镁基复合材料低周疲劳断裂后发现,由于晶须散乱的分布于基体之上,裂纹表面粗糙并且裂纹扩展路径看起来很弯曲。断裂组织观察表明疲劳断裂扩展区和最后断裂区没有明显区别,并且特征是解理断裂。 在冶炼过程中,不可避免的引进一些夹杂物。这些夹杂物引起应力集中从而降低镁合金的抗疲劳能力,如果夹杂物是尖角,危害更大。夹杂物分布不均匀时,也会降低疲劳强度。 2.2 形状因素 (1)缺口敏感性及表面状况 镁合金比铝合金和钛合金有更大的缺口敏感性,变形镁合金比铸造镁合金有更大的缺口敏感性。 · 266· 铸造技术 FO UN DRY TECHN OLOG Y V ol.24N o.4 Jul.2003

材料的疲劳性能完整版

材料的疲劳性能 A system office room [HUA 16H-TTMS2A-HUAS8Q8-HUAH1688]

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:0?: ②最小循环应力:0血; ③平均应力:0 F ( o远+0血)/2; ④应力幅o &或应力范围A o : △ o二o ?-0込,o a= A o /2= (o远-o血)/2; ⑤应力比(或称循环应力特征系数):"0血/。远。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:0尸(。込+o血)/2二0, r-1,大多数旋转轴类零件承受此类应力; ②不对称循环:o.HO, -l O >0, -l

④波动循环:o?Oa, 0

材料的疲劳性能汇总

一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

力学性能是材料最重要的性能树脂基复合材料具有比强度.

力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,

材料的疲劳性能完整版

材料的疲劳性能 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:σmax ; ②最小循环应力:σmin ; ③平均应力:σm =(σmax +σmin )/2; ④应力幅σa 或应力范围Δσ:Δσ=σmax -σmin ,σa =Δσ/2=(σmax -σmin )/2; ⑤应力比(或称循环应力特征系数):r=σmin /σmax 。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:σm =(σmax +σmin )/2=0,r=-1,大多数旋转轴类零件承受此类应力; ②不对称循环:σm ≠0,-1σm >0,-10,r=0,齿轮的齿根及某些压力容器承受此类应力。σm =σa <0,r=∞,轴承承受脉动循环压应力;

④波动循环:σ m >σ a ,0

玻璃钢复合材料的性能对比

复合材料聚合物的性能对比 聚合物复合材料的性能解释 1.1 拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标GB/T1447进行测试;对于缠绕成型的,用国标GB/T1458进行测试;对于定向纤维增强的,用国标GB/T33541进行测试;对于拉挤成型的,用国标GB/T13096-1进行测试。使用最多的是 GB/T1447。 国标GB/T1447,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带R型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力----应变曲线的直线段的斜率则为弹性模量,试样横向应变与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用MPa(兆帕)表示,1MPa相当于1N/mm2的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1玻璃钢,拉伸强度为(200-250)MPa,弹性模量为(10-16)GPa;4:1玻璃钢,拉伸强度为(250-350)MPa,弹性模量为(15-22)GPa;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa,弹性模量大于24GPa;SMC材料,拉伸强度为(40-80)MPa,弹性模量为(5-8)GPa;DMC 材料,拉伸强度为(20-60)MPa,弹性模量为(4-6)GPa。 1.2 弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。

橡胶材料疲劳断裂特性研究进展_李晓芳

第19卷第3期2010年9月 计算机辅助工程Computer Aided Engineering Vol.19No.3Sept.2010 文章编号:1006-0871(2010)03-0064-06 橡胶材料疲劳断裂特性研究进展 李晓芳1,2,张春亮 3 (1.大庆油田公司采油工程研究院,黑龙江大庆163453; 2.哈尔滨工业大学力学博士后流动站,哈尔滨150001; 3.大庆油田公司采油二厂,黑龙江大庆163414) 摘 要:由于橡胶材料的动态疲劳特性对保证橡胶制品使用时的安全性和可靠性具有重要意义,综述机械载荷、环境和橡胶配方等因素对橡胶材料疲劳寿命的影响,总结用疲劳裂纹萌生寿命法和基于断裂力学的疲劳裂纹扩展法预测橡胶材料动态疲劳寿命方法的优缺点,并展望这2种方法的发展趋势. 关键词:橡胶;疲劳;裂纹萌生;断裂力学;裂纹扩展中图分类号:O346.2;TQ330文献标志码:A Research advance on rubber material fatigue and fracture characteristics LI Xiaofang 1,2 ,ZHANG Chunliang 3 (1.Research Institute of Production Eng.,Daqing Oilfield Co.,Daqing Heilongjiang 163453,China ; 2.Mechanics Postdoctoral Station ,Harbin Institute of Tech.,Harbin 150001,China ; 3.No.2Oil Production Plant ,Daqing Oilfield Co.,Daqing Heilongjiang 163414,China ) Abstract :Due to the importance of the dynamic fatigue characteristics of rubber materials that ensure the safety and reliability of rubber products in service ,the factors that influence the fatigue life of rubber materials are reviewed ,such as mechanical load ,environment and rubber formulation and so on ;The advantages and disadvantages of fatigue crack nucleation approach and crack growth approach based on fracture mechanics are summarized ,which are usually used to predict fatigue life for rubber.The current development trends of two analysis approaches are described. Key words :rubber ;fatigue ;crack nucleation ;fracture mechanics ;crack growth 收稿日期:2009-10-14 修回日期:2010-01-19 作者简介:李晓芳(1977—),女,湖北天门人,博士,研究方向为采油机械设计, (E-mail )lixiaofang226@https://www.doczj.com/doc/4714755934.html, 0引言 橡胶材料能承受的应变很大且不会导致永久变 形与断裂, 经过适当配方设计可满足的材料性能要求范围十分广,是振动隔离器、轴承、轮胎、密封件、 软管和垫圈等的理想选择材料.橡胶通常适合3种特殊的使用情况:密封、减振和承受负荷,它们几乎都涉及到动态响应.在交变载荷的反复作用下,即使 应力远低于断裂强度极限, 材料也极易发生疲劳破坏,而疲劳断裂性能往往决定这些制品的疲劳寿命.因此,为保证橡胶制品使用时的安全性和可靠性,研究橡胶材料动态疲劳特性的意义十分重要. 1 影响橡胶疲劳断裂的因素 1.1 机械载荷 多数情况下,作用在结构或机械上的载荷随时

玻璃钢复合材料的性能对比

复 聚合物复合材料的性能解释 1.1拉伸性能合材料聚合物的性能对比拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标GB/T1447进行测试;对于缠绕成型的,用国标GB/T1458进行测试;对于定向纤维增强的,用国标GB/T33541进行测试;对于拉挤成型的,用国标 GB/T13096-1进行测试。使用最多的是GB/T1447。 国标GB/T1447,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带R型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力----应变曲线的直线段的斜率则为弹性模量,试样横向应变与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用MPa(兆帕)表示,1MPa相当于 1N/mm2的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1玻璃钢,拉伸强度为(200-250)MPa,弹性模量为(10-16)GPa;4:1玻璃钢,拉伸强度为(250-350)MPa,弹性模量为(15-22)GPa;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa,弹性模量大于24GPa;SMC材料,拉伸强度为(40-80)MPa,弹性模量为(5-8)GPa;DMC材料,拉伸强度为(20-60)MPa,弹性模量为(4-6)GPa。 1.2弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。 弯曲性能,一般采用国标GB/T1449进行测试;对于拉挤材料,用国标 GB/T13096.2进行测试;对于单向纤维增强的,用国标GB/T3356进行测试。测

浅析材料的疲劳现象及影响因子

浅析材料的疲劳现象、影响因子及预防措施提起疲劳,人们可能会想到熬夜加班后的困倦和全身酸痛,或者电视里常常报道的车祸“元凶”。材料在使用过程中也存在着疲劳现象,而且材料疲劳的危害不亚于疲劳驾驶。船舶、汽车、动力机械、工程机械、冶金、石油等机械以及铁路桥梁等的主要零件和构件,大多在循环变化的载荷下工作,疲劳是其主要的失效形式。在一些服役时间较长材料的开发与应用中,其疲劳性能也必须纳入考虑。 1.疲劳的概念及现象 疲劳(Fatigue)是指材料、零件和构件在循环加载下,在某点或某些点产生局部的永久性损伤,并在一定循环次数后形成裂纹、或使裂纹进一步扩展直到完全断裂的现象。 早在19世纪就已查阅到多起严重的疲劳破坏事故报道,由于当时显微观测水平不够发达,疲劳损伤无法观测,疲劳破坏会在没有任何先兆的情况下产生,所以疲劳一度被认为是材料中发生的一种不可思议的奇妙现象。1842年轰动欧洲的法国凡尔赛铁路事故,使众多科学家开始对疲劳破坏展开深入的思考与讨论,开启人们对金属疲劳系统的研究。时至今日,疲劳相关研究领域发展蓬勃,有关疲劳研究的文章已超15万篇。 图1 描绘凡尔赛铁路事故惨状的油画图2 铁轨的疲劳断裂 2.疲劳性能的影响因素 根据目前的研究,影响疲劳性能的因素有很多,主要总结如下: 表1 影响疲劳性能的因素

工作环境的影响:金属材料的疲劳极限一般是随着温度的降低而增加的。但随着温度的下降,材料的断裂韧性也下降,表现出低温脆性。一旦出现裂纹,则易于发生失稳断裂。对此,应当十分注意。高温将降低材料的强度,可能引起蠕变,对疲劳也是不利的。同时还应注意,为改善疲劳性能而引入的残余应力,也会因温度升高而消失。 在海水、水蒸气、酸、碱溶液等腐蚀介质环境下的疲劳,腐蚀介质的作用对疲劳是不利的。腐蚀疲劳过程是力学作用与化学作用的综合过程,其破坏机理十分复杂。腐蚀环境通常会使材料表面氧化。在一般的情况下,氧化膜层可起保护作用,以免金属材料进一步受到腐蚀。但在疲劳载荷作用下,将使氧化膜层局部开裂,新的表面再次暴露于腐蚀环境中,造成再次腐蚀并在材料表面逐步形成腐蚀坑。腐蚀使表面粗糙,腐蚀坑形成应力集中,加快了裂纹的萌生,使寿命缩短。这是对裂纹萌生阶段腐蚀疲劳的最一般的解释。 图3 桥梁的设计要考虑腐蚀疲劳 载荷状态的影响:材料疲劳极限的大致规律是——弯曲疲劳极限>拉伸疲劳极限>扭转疲劳极限。假定作用应力水平相同,拉压时高应力区体积等于试件整个试验段的体积,如图4所示: 图4 不同载荷状态下的高应力区 弯曲情形下的高应力区体积则要小得多。疲劳破坏主要取决于作用应力的大

第五节 材料的疲劳极限及影响因素

第五节 材料的疲劳极限及影响因素 一、材料的疲劳极限及其测定 大量实践表明,在交变应力作用下,材料是否产生疲劳失效,不仅与最大应力max σ值有关,还与循环特性r 及循环次数N 有关。在给定的交变应力下,必须经过一定次数的循环,才可能发生破坏。在一定的循环特性下,交变应力的最大值越大,破坏前经历的循环次数越少;反之,降低交变应力中的最大应力,则破坏前经历的循环次数就增加。当最大应力不超过某一极限值时,材料经受无穷多次循环而不发生疲劳失效,这个应力的极限值称为材图21-17 图21-18 测定时取直径10~7=d mm 表面磨光的标准试样10~6根,逐根依次置于弯曲疲劳实 验机上(图21-18)。试件通过心轴随电机转动(每分钟约3000转),在载荷的作用下,试 件中部受纯弯曲作用。试件最小直径横截面上的最大弯曲应力为Z W M = max σ。试件每旋转 一周,其横截面周边各点经受一次对称的应力循环。 t O 裂缝源光滑区粗糙区 t σ σa σa σm i n σm a x σm

图21-19 对于钢及铸铁材料,当循环次数N 达到~1026?7 10次时曲线接近水平,循环次数再 增加,材料不发生疲劳断裂。因此,取横坐标~10260?=N 7 10次对应的最大应力为材料的疲劳极限,0N 称为循环基数。某些有色金属及其合金材料,它们的疲劳曲线不明显趋于水平。 例如某些含铝或镁的有色金属,甚至当循环次数超过8 105?次,疲劳曲线仍未趋于水平。对于这类材料,通常根据实际需要取一个有限循环次数作为循环基数,例如可选定8 010=N 次,把它所对应的最大应力作为疲劳极限,称为条件疲劳极限。 二、影响疲劳极限的因素 实际构件的疲劳极限,受到的影响因素较多,它不但与材料有关,而且还受到构件的几何形状、尺寸大小、表面质量和其他一些因素的影响。因此,用光滑小试件测定的材料的疲劳极限并不能代表实际构件的疲劳极限,在计算构件的疲劳极限时,必须综合考虑这些因素对疲劳极限的影响。 1.构件外形的影响 在工程实际中,有的构件截面尺寸由于工作需要会发生急剧的变化,例如构件上轴肩、槽、孔等,在这些地方将引起应力集中,使局部应力增高,显著降低构件的疲劳极限。用1-σ表示光滑试件对称循环时的疲劳极限,K )(1-σ表示有应力集中的试件的疲劳极限,比值 K K )(11 --= σσσ (21-13) σK 称为有效应力集中系数。因为1-σ>K )(1-σ,所以σK 大于1。有效应力集中系数σK 和τK 均可从有关手册中查到。 前面曾经提到,在静载荷作用下应力集中程度用理论应力集中系数来表示。它与材料 性质无关,只与构件的形状有关;而有效应力集中系数不但与构件的形状变化有关,而且与材料的强度极限b σ,亦即与材料的性质有关。 2.构件尺寸对疲劳极限的影响 在测定材料的疲劳极限时,一般用直径10~7=d mm 的小试件。随着试件横截面尺寸的增大,疲劳极限相应地降低。这是因为构件尺寸愈大,材料包含的缺陷越多,产生疲劳裂纹的可能性就愈大,因而降低了疲劳极限。 用1-σ表示光滑标准试件的疲劳极限,εσ)(1-表示光滑大试件的疲劳极限,则比值 11)(--= σσεε σ (21-14) σετε σε称为尺寸系数。因为εσ)(1-小于1-σ,所以σε是小于1的系数。表21-1为钢材在弯曲和

材料的疲劳性能

第五章材料的疲劳性能 一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

相关主题
文本预览
相关文档 最新文档