当前位置:文档之家› 跟踪雷达基础知识讲

跟踪雷达基础知识讲

跟踪雷达基础知识讲
跟踪雷达基础知识讲

18.5 目标捕获和距离跟踪

距离跟踪就是连续测量从发射射频脉冲到目标回波信号返回之间的延时的过程。距离测量是雷达最精确的位置坐标测量。其典型数据是在测量几百英里距离时精密到几码以内。通常距离跟踪是从其他目标中鉴别出所需目标的主要方法,通过距离波门(即时间选通)从误差检波器输出中消除其他目标的回波(虽然也有用速度鉴别和角度鉴别的)。距离跟踪电路也可用来捕获所希望的目标。距离跟踪不仅必须测量脉冲从雷达到目标的往返行程时间,而且必须识别出反射信号是一目标而不是噪声,并且保存目标的距离随时间变化的历程。

这里的讨论适用于典型的脉冲跟踪雷达。距离测量也可以用使用调频连续波的连续波雷达来完成,这种调频连续波通常是一种线性调频波。目标距离由回波信号和发射信号之间的频率差异决定。考虑到多普勒效应的调频连续波系统的性能见参考资料1。

捕获

距离跟踪的第一个作用是捕获所需的目标。虽然这不是跟踪工作,但在典型的雷达里这是实现距离跟踪或角跟踪之前必需的第一步。对于窄波束跟踪雷达而言,为使天线波束指向目标的方向,必须具备有关目标角位置的某些信息。这个信息叫做引导数据,可以由搜索雷达或其他来源提供。引导数据可以足够精确地把窄波束指向目标或者可以要求跟踪器扫描一个较大的不确定区域。雷达距离跟踪的优点是能看到从近距离一直到雷达的最大距离上的所有目标。通常把这个距离分成小段,其中各段可以同时检验是否有目标存在。当需要波束扫描时,距离跟踪器可在短时间里(如0.1s)检验各段情况,即可作出关于目标是否存在的判断。如果没有目标存在,就让波束移向新的位置。这个过程对机械式跟踪而言是完全连续的,因为机械式跟踪移动波束相当慢,因此使得在对各段距离进行检验的短时间内目标仍然留在波束宽度之内。

与搜索雷达一样,目标捕获要考虑实现给定的检测概率和虚警概率所需的信噪比门限和积累时间[1]。然而,与搜索雷达相比,目标捕获可使用较高的虚警概率,这是因为操纵员知道目标是存在的,不存在在等待目标时由于虚警而使操纵员疲劳。最佳虚警概率的选择是以电路的性能为基础的,此电路可观察各距离间隔以判断哪一个间隔中有目标回波。

其典型的技术是使门限电压足够高,以防止大多数噪声尖峰超过门限,可是又要低得足以让弱信号通过。在各个发射脉冲之后即可观察所检验的距离间隔是否有信号超过了门限。积累时间允许雷达在判决是否有目标存在之前进行几次这种观察。噪声和目标之间的主要区别在于超过门限的噪声尖峰是随机的,但如果有目标存在,则当它超过门限时就比较有规律。一种典型的系统就可简单地计算在积累时间内超过门限的次数,并在超过的次数大于雷达发射次数的一半时,就指出是否有目标出现。若雷达脉冲重复频率是300 Hz,积累时间是0.1s,则在有一个强而稳定的目标时,雷达就能观察到30次超过门限。由于从弱目标来的回波加上噪声不一定总是超过门限,所以可以规定一个界限,如15次,在积累时间里,必须超过这一界限才判定有目标出现。对于非闪烁目标,预期的性能为:在信噪比为2.5dB时,发现概率是90%,虚警率是10-5。AN/FPS—16和AN/FPQ—6测量雷达均使用这些检测参数,每次捕获可使用10个邻接的波门,每个波门宽为1000yd。这10个波门覆盖了5n mile的距离间隔。

距离跟踪

一旦目标被找到,就希望在距离坐标上跟踪目标,以提供连续的距离信息(即到目标的斜距)。适当的定时脉冲提供了距离波门选通,从而使角跟踪电路和自动增益控制电路可仅仅顾及一个短的距离间隔(或预期出现回波脉冲的时间间隔)。距离跟踪是由类似于角跟踪器的闭环跟踪器完成的。它能检测出距离波门对于目标回波脉冲中心的误差,并产生误差电压,从而可提供一个响应于这个误差电压电路,使波门向一个方向移动以重新对准目标回波脉冲中心。

距离跟踪误差可以用许多方法进行检测。其最常用的方法是前、后波门技术(如图18.24所示)。两个波门这样来定时:前波门在主距离波门开始时打开,在主距离波门的中心关闭;后波门在主距离波门中心处打开,在其结束后关闭;前、后波门各自让目标视频脉冲在波门开着的时间内对电容器充电;电容器的作用像积分器;前波门电容器充电到正比于目标视频脉冲的前半个区域的电压上,后波门电容器是负向充电,并正比于目标视频脉冲的后半个区域;当波门正确地对准了一个对称的视频脉冲时,两电容器就等量地充电,其充电所得的电压相加就产生一个零输出;当波门中心没有对准目标视频中心,以致前波门超过了目标视频脉冲的中心时,正向充电波门电容器就收到较大的电荷,而后波门由于只套上脉冲的一小部分,因而得到较小的负电荷。两电容器的电压相加就得到正的电压输出;同样,如果波门提早,以致目标视频脉冲的大部分区域落入后波门内,则两电容器电压的相加就得到负的输出;在误差大约在目标视频脉冲宽度的±1/4的范围内,输出电压基本上是定时误差的线性函数,且具有对应于误差方向的极性。

图18.24 前、后波门距离误差敏感电路

许多雷达距离跟踪系统利用采样电路在视频回波脉冲附近采3~5个样本。与前、后波门距离跟踪器的幅度相类似,可对脉冲前、后两半样本的幅度进行比较以检测出距离误差。

在某些情况下,雷达距离跟踪系统希望按回波前沿或后沿进行距离跟踪。这已在一些应用中得到实现,其方法是简单地加上一个偏置,使对误差灵敏的波门套在目标回波中心的前面或后面,即用波门抑制了不需要的回波(如从目标附近来的其他回波)。门限装置也可用做按前沿或后沿工作的跟踪器,通过观测目标视频超过给定门限的时间来完成。在超过门限的瞬间触发波门电路,以便从计时设备上读出目标距离或者产生一个标志目标出现的合成脉冲。

雷达距离跟踪系统可利用距离误差检波器输出来调整距离波门位置,并校正距离读数而使距离跟踪环路闭合。有一种技术是使用由稳定振荡器驱动的高速数字计数器,在其发射脉冲时使计数器复位到零。如图18.25所示,目标距离由数字系统寄存器中的数字表示。在数字计数器计到与距离寄存器中的数字相同时,重合电路就给出指示并进而产生距离波门,如图18.26所示的框图。距离误差经距离误差检波器检测而得到误差电压,且激励电压控制可变频率振荡器,依据误差电压极性的正、负而增加或减少距离寄存器中的计数。这就把距离寄存器里的数字改变到对应于目标距离的数值上。读出距离寄存器中的数就读出了目标的距离。譬如说,每个单位数即对应于2yd的距离。另外一项技术是使用两个振荡器[26],其距离波门由两振荡器的差频控制,其中一个振荡器由误差检波输出电压在频率上控制。

图18.25 数字式距离跟踪器

图18.26 数字距离跟踪器框图

电子式距离跟踪器是无惯性的,且可以有任何所需的转换速度,很容易做到既产生给自动检测电路的捕获波门,又产生发射机触发脉冲和导前触发脉冲。跟踪带宽通常被限制在跟踪所必需的数值,以便使对假目标和干扰的跟踪损耗为最小。还有许多其他电子式距离跟踪技术,它们同样具有以上的大部分优点[2]。

第n次发射之后返回的距离跟踪

用减小脉冲重复频率来扩展非模糊的距离会增加捕获时间和减小数据率。对这个问题的一种解决办法叫做“在第n个次发射之后返回的距离跟踪”。它能在预期有回波的时间内避免发射,并能分辨距离模糊。这使雷达能在高脉冲重复频率下工作,并且不模糊地跟踪到远距离。在这种情况下,会有几个脉冲在雷达与目标之间传播。这种技术只有在目标正被跟踪时才有用。在捕获期间,雷达必须考察发射脉冲之间的间隔,初始捕获后,应在不分辨距离模糊的情况下闭合距离和角跟踪环路。第一步就是断定目标位于第几个距离间隔,也就是断定目标在哪一对发射脉冲之间,对发射脉冲进行编码,并计算在此编码脉冲回来之前有多少个脉冲数,就可定出n。测量雷达能提供n次回波距离跟踪的能力,因为装在火箭与宇宙航行器上的信标在远距离上提供了足够的信号电平。

为了不使目标回波被发射脉冲掩盖,必须检测出目标在何时接近干扰区,并且移动干扰区。这可以通过改变PRF或者延迟一组数目等于传播中的脉冲数的发射脉冲来实现。这可由最佳PRF变换或交替延时具有正确脉冲数的脉冲组来自动完成。

18.6 特殊单脉冲技术

高距离分辨力单脉冲

高距离分辨力在单脉冲雷达的应用中为改善性能和提取目标信息提供了方法[27]。其基本途径是提供足够的距离分辨力以分辨出目标上的主要散射体,并经单脉冲处理确定每一个散射体的距离、方位和高度。这将提供目标反射体位置的三维(3D)雷达图像,并提供第四维数据,即通过每一个散射体回波的幅度测定反射体尺寸。

其优点如下:

(1)对于需要精确跟踪目标上的点(如重心)的应用,可大大减少目标角度和距离的闪烁;

(2)大大减少了雨杂波、海杂波和金属箔条干扰,这些干扰将随距离分辨力的提高而降低;

(3)可提供目标识别用的三维目标图像和反射体尺寸(回波幅度);

(4)对抗某些干扰的复杂发射波形[27]。

为了保持足够的平均功率,满足雷达探测距离的要求,有必要进行脉冲压缩。有效的宽带声表面波脉冲压缩滤波器可供使用[28]。而且,如果要处理目标的细节信息,那么采用高速采样和数字化技术是必需的。

图18.27显示利用了高距离分辨力技术之后,目标距离的起伏变小。它展示的是目标在进行近似为等距离飞行时雷达所测出的距离。目标的真实偏移可以从距离曲线的走势中得到。对于0.25μs的脉冲宽度,随机波动的典型值约为3~4yd(均方根值)。然而,虽然对于3ns 的脉冲宽度距离闪烁已基本上消除了,但由目标重心起伏而引起的小误差却仍存在。

图18.27 比较3ns和1/4μs跟踪的闭环距离跟踪输出数据的模拟记录以演示目标距离起伏大大减小(见参考

资料27)

高距离分辨力单脉冲雷达的视频输出测量值如图18.28所示。图中描述的是分辨出一种“超星座”飞机主要散射体的单脉冲和信号的距离-幅度轮廓。单脉冲差信号双极性视频的极性确定方位,而其幅度可测量每个反射器到天线轴线的偏移量(只标出了方位角的轴线)。平均双极性视频可减少目标重心均方根值的误差。

图18.28 来自飞行中的超星座客机的高距离分辨力的单脉冲距离和角度视频雷达工作于X波段、1波束宽度和3ns脉冲宽度;角度视频是根据天线轴和偏移量对目标方位的测量。

双波段单脉冲

双波段单脉冲能在一个天线上有效地组合两个特征互补的射频频段特性[15][29]。X波段(9GHz)和K a波段(35GHz)的组合是非常有用的。X波段能够很好地实现探测量程和跟踪精度。其不足之处是低角度的多路径范围性能差和该波段的抗干扰性能差。K a波段虽然受大气衰减和雨衰减的限制,但它能在低角度多路径范围内提供很高的精确度,并且这个波段是电子干扰技术很难攻克的一个波段。

美国海军研究实验室(NRL)已经设计出了一种叫TRAKX(在K a波段和X波段的跟踪雷达)的测量雷达,可用于导弹靶场和训练靶场[15]。设计这套系统的目的是在目标溅落时能够精确跟踪,并且在X波段受到干扰时用K a波段仍能精确跟踪。

荷兰Signaal-apparaten公司已开发出相似的X波段和K a波段的系统用于战术上的用途。其中的一种雷达系统是地面型,被称为Flycatcher,是机动防空武器系统的一部分[29];而另一种雷达系统(Goalkeeper)则是用在舰载防空武器上,用做格林机枪的火控装置[30]。这两种系统都充分利用了两个波段的优点,以提供多路径和ECM环境下的精确跟踪。

镜面天线(逆卡塞格伦)

波束扫描使用的可移动射频镜面天线,被称为镜面天线或逆卡塞格伦天线,在单脉冲雷达中十分有用。这种天线应用了由天线罩支撑且可反射水平极化馈源能量的网格抛物面。回波经过抛物面校正成平行波束,被极化旋转成镜面反射,使极化方向旋转了90 的能量能够有效地通过网格抛物面。其优点如下:(1)镜面和它的驱动机械装置是惟一用于波束移动的活动部分,馈源和有天线罩的抛物面保持固定;(2)波束移动通过镜面的反射完成,是镜面

倾斜角度的2倍,对于给定的覆盖范围的要求,提供了紧凑的结构;(3)在正常情况下,较轻的镜面和相对于镜面倾斜角为2:1的波束位移,使得可以用很小的驱动功率得到很快的波束扫描速度。

紧凑的结构和较轻的重量对于机载的应用特别有用,如法国“超军旗”飞机所用的Thompson—CSF公司的AGA VE雷达。该雷达为“飞鱼”导弹提供目标距离和相关数据。这种结构紧凑、滚动俯仰稳定的单脉冲雷达,其方位扫描角为140?,俯仰扫描角为60?[31]。以色列航空工业公司的Elta子公司应用这种天线技术研制出一种机载跟踪雷达,可用于空对空作战和地面武器发射[32]。

地面和舰载实验用镜面天线系统概念是和双波段单脉冲功能(3GHz和9.3GHz)一起发展的。其目的包括用于高数据率三坐标监视和多目标精确跟踪的快速波束移动[33]。双波段极化扭转镜面的设计是通过双层镜面网格结构来实现的[34]。

同轴跟踪

当目标基本处在雷达天线轴线上时,雷达的跟踪性能最好。因此,为使跟踪精度最高,使跟踪滞后和影响波束指向的其他误差源为最小是非常必要的。同轴(on-axis)技术通过预测和跟踪回路中的最佳滤波使雷达轴线与目标的偏差为最小[14][35]。当目标的轨迹大体知道,如跟踪轨道上的卫星或者弹道目标时,这项技术特别有效。跟踪回路中的计算机能引导雷达去跟踪一组已估算出的轨道参数,也能对雷达角误差检测器的输出进行最佳滤波以产生误差趋势并根据它来更新假设的一组轨道参数,从而把雷达波束的移动校正到更接近的一组轨道参数上。通过这种方法可使雷达天线能以最小的误差跟踪目标。

对其他可大致预知弹道的目标,亦可获得提高的跟踪精度。但当跟踪目标具有不可预知的动机时,同轴跟踪的性能将受到限制。

18.7 误差源

在雷达跟踪目标的过程中有很多误差来源,除非是高精度的跟踪雷达(如测距装置中,角度精确度要求达到0.05mrad)。误差源的大部分并不是很重要,且很多误差源可以通过雷达设计或跟踪几何关系的修正来避免或减少。提供高精度跟踪能力的主要因素是费用。因此,了解允许的误差范围有多大、哪些误差来源影响跟踪效果及满足精确度要求的效果价格比最高的措施是什么是非常重要的。

跟踪雷达不仅在角度上、在距离上,有时还要在多普勒频率上跟踪目标。因此,每一个目标参数的误差都应该考虑在误差预算之内,本章的其他部分将讲述如何确定主要的误差来源及其大小。

了解什么是雷达信息实际的输出是很重要的。对于机械移动的天线,角度跟踪输出通常是从俯仰和方位天线轴的位置获得,绝对的目标位置(相对于地理坐标)将包含天线底座的地理位置精确度。

相控阵测量雷达(如MOTR——多目标跟踪雷达)可在±30?有限的区域内提供电子波束移动,加上天线机械移动而覆盖要测量的区域[16]~[19]。输出为机械传动轴位置和从电子波束扫描得到的每个目标的数字角度信息。

18.8 目标引起的误差(目标噪声)

雷达对目标的跟踪经常是利用从目标表面反射回来的回波信号来实现的。这被称为表面跟踪,以便与信标跟踪相区别。在信标跟踪中,信标或应答机可以用来提供强的点源信号。由于大部分目标(如飞机)在外形上是非常复杂的,因此总的回波信号是由目标各个部分(如发动机、螺旋桨、机体及机翼边缘)回波信号的矢量叠加而成。目标和目标各部分相对于雷达的运动使得总的回波信号随时间变化,从而导致雷达的目标参数测量值有起伏。不计大气的影响和雷达噪声,只由目标本身产生的起伏称为目标噪声。

目标噪声的讨论大多是基于飞机的,但是也适用于任何目标,包括陆地上具有复杂外形的目标。它们相对于波长来说是很大的。主要的区别在于目标的运动,但这里只是一般性的讨论,对任何目标环境都是通用的。

从复杂目标反射回来的回波与从点源反射回来的回波不同,其区别在于回波有起伏。这个起伏是由于从目标各个部分反射回来的回波在幅度和相对相移上有变化而引起的。“起伏”之所以用复数形式是因为有5种由复杂目标所引起的回波信号起伏影响雷达,包括幅度起伏、相位波前起伏闪烁、极化起伏、多普勒起伏及脉冲时间起伏(距离闪烁)。起伏的机制是目标的运动,包括随机偏航、俯仰及翻转,使目标不同部分相对于雷达的距离产生了变化。

尽管目标的移动看上去很小,但如果目标某一部分的相对距离有半个波长的变化,就会在相对相位上有360 的变化(由于雷达路径是双程的。在X波段,这大约是5/8in,小到可以同飞机各个部分之间的扭曲相比较。

下面将讨论由复杂目标产生的5种起伏。

雷达基础理论习题

雷达基础理论习题 一、填空题 1.一次雷达的峰值功率为,平均功率为1200W,重复频率为1000Hz。 2.二次雷达询问频率为1030MHz 。脉冲P1-P3称模式询问脉冲,脉冲间隔决定了询问功能,目前本场雷达使用的两种询问模式3/A模式和C模式,P1-P3脉冲间隔分别是8μs 和 21μs 。 3. 两项告警指的是低高度告警和冲突告警。 4. ISLS是指询问旁瓣抑制,作用是避免环绕效应。 5. 接收机的动态范围是指接收机出现过载时的输入功率与最小可检测功率之比。 6. 目前ICAO定义了25种数据链格式,其中有 8 种在现行模式S中使用。 7. 雷达信号的检测由发现概率和虚警概率来描述。 8. 脉冲P2称旁瓣抑制脉冲,不论是何种询问模式,P2与P1间恒为2μs 。 9. STC的含义是时间灵敏度控制,作用是扩大动态范围。 10. 雷达距离分辨力主要取决于脉冲宽度。 11. 二次雷达发射通道是∑和Ω通道。 12. 一次雷达天线的转速为15转/分。 13.一次射频脉冲宽度为1μs。 二、单选题 1. 二次雷达中频频率是(B ) A. 30MHz B. 60MHz C. 90MHz 2. 余割平方天线的雷达波束指的是( A )。 A .垂直方向图 B.水平方向图 3. C模式下P1P3脉冲的时间间隔是( D ) A.3μs B.5μs C.8μs D.21μs 4. 二次监视雷达天线系统的极化方式应为( B ) A.水平极化 B.垂直极化 C.圆极化 5. 决定雷达检测能力的是( A )。 A.接收机输出端的信噪比 B.发射机的功率 C.噪声的大小 D.接收机的灵敏度 6. 在下列关于二次雷达场地设置的说明中,哪一项是错误的( A ) A.对于其所保障的主要航线,特别是进场着陆航线,不应构成使动目标显示失效的切线航线(切线飞行的航线); B.通常配置在机场内地势较高的高地或建筑物顶上,或机场外(航路上)较高的地点; C.应根据其特性(进近或航路),能保证其对所辖区域各条航线和主要空中定位点均能进行有效的探测; D.应使雷达顶空盲区避开进离场航线和主要航路,并量保证主要航路航线。 7. 航空器在飞行中遇到严重威胁航空器和所载人员生命安全情况时,机长(飞行通信员)必须尽一切可能发出遇险信

激光雷达基础知识

什么是色散呢? 当光纤的输入端光脉冲信号经过长距离传输以后,在光纤输出端,光脉冲波形发生了时域上的展宽,这种现象即为色散。以单模光纤中的色散现象为例,如下图所示: 如何消除色度色散对DWDM系统的影响: 对于DWDM系统,由于系统主要应用于1550nm窗口,如果使用G.652光纤,需要利用具有负波长色散的色散补偿光纤(DCF),对色散进行补偿,降低整个传输线路的总色散。 光的衍射 光在传播过程中,遇到障碍物或小孔时,光将偏离直线传播的途径而绕到障碍物后面传播的现象,叫光的衍射(Diffraction of light)。 光的衍射和光的干涉一样证明了光具有波动性。

物理学中,干涉(interference)是两列或两列以上的波在空间中重叠时发生叠加从而形成新的波形的现象。 光的干涉 光的干涉现象是波动独有的特征,如果光真的是一种波,就必然会观察到光的干涉现象。定义:两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象,证实了光具有波动性。 两束光发生干涉后,干涉条纹的光强分布与两束光的光程差/相位差有关:当相位差为周期的整数倍时光强最大;当相位差为半周期的奇数倍时光强最小。从光强最大值和最小值的和差值可以定义干涉可见度作为干涉条纹清晰度的量度。 只有两列光波的频率相同,相位差恒定,振动方向一致的相干光源,才能产生光的干涉。由两个普通独立光源发出的光,不可能具有相同的频率,更不可能存在固定的相差,因此,不能产生干涉现象。 大气气溶胶 大气气溶胶是液态或固态微粒在空气中的悬浮体系。它们能作为水滴和冰晶的凝结核、太阳辐射的吸收体和散射体,并参与各种化学循环,是大气的重要组成部分。雾、烟、霾等都是天然或人为原因造成的大气气溶胶。 大气气溶胶是悬浮在大气中的固态和液态颗粒物的总称,粒子的空气动力学直径多在0.001~100μm之间,非常之轻,足以悬浮于空气之中,当前主要包括6 大类7种气溶胶粒子,即:沙尘气溶胶、碳气溶胶(黑碳和有机碳气溶胶)、硫酸盐气溶胶、硝酸盐气溶胶、铵盐气溶胶和海盐气溶胶。 散射特性:气溶胶质点能发生光的散射,这是使天空成为蓝色,太阳落山时成为红色的原因。 多普勒频移 当移动台以恒定的速率沿某一方向移动时,由于传播路程差的原因,会造成相位和频率的变化,通常将这种变化称为多普勒频移。 多普勒效应造成的发射和接收的频率之差称为多普勒频移。它揭示了波的属性在运动中发生变化的规律。 主要内容为:物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移blue shift)。多普勒频移,当运动在波源后面时,会产生相反的效应。波长变得较长,频率变得较低(红移red shift)。 多普勒频移及信号幅度的变化等如图所示。当火车迎面驶来时,鸣笛声的波长被压缩(如图2右侧波形变化所示),频率变高,因而声音听起来尖利刺耳。当火车远离时,声音波长就被拉长(如图2左侧波形变化所示),频率变低,从而使得声音听起来减缓且低沉。

如何做出专业的雷达图

如何做出专业的雷达图 导语: 雷达图如果是手工绘制,是非常麻烦的,不过可以用软件制图。在制作雷达图时,需要将各项数据,按重要程度集中画在一个圆形的图表中,来展示一个其中的比率情况,读表者可以快速获取到有效信息。 免费获取商务图表软件:https://www.doczj.com/doc/471398883.html,/businessform/ 一般用什么软件绘制专业的雷达图? 雷达图算得上是颜值较高的一个图表类型了,它是一种以二维形式展示多维数据的图形。它的可以描述为线图, X 轴以折叠形式环绕 360 度,Y 轴表示每一个 X 轴上的值。由中心向外辐射出多条坐标轴,每个多维数据在每一维度上的数值都占有一条坐标轴,并和相邻坐标轴上的数据点连接起来,形成一个个不规则多边形。相比绘制其他图表,绘制雷达图的门槛较高,一般多用亿图图示软件绘制专业的雷达图。

用亿图图示软件怎么做出专业的雷达图? 创建雷达图 打开亿图图示软件,选择“新建”——“图表”——“蜘蛛(雷达)图”——“创建”,即可开启画布。

操作界面左侧为符号库,使用者可以从这里,选择合适的雷达图模板,添加至画布中。根据不同的展示场景,雷达图可分为普通雷达图、面积雷达图、百分比雷达图、极性图。本文以普通雷达图为例,介绍基本的操作技巧。 从文件加载数据 亿图图示软件支持用户从本地导入数据,一键生成雷达图。具体的操作方法如下: 1、启动文本模板:另外创建一个空白画布,将符号库中的“如何使用”拖动至画布。

选择复制“example 1”或“example 2”中的文本内容。 2、编辑数据:在电脑本地新建txt记事本,将上文所复制的文本内容,粘贴在txt记事本里。根据模板,进行自定义修改。第一行是类别的名称,从左到右,依次填写。第二行至第n行是系别,第一列为系别名称,其它列为数据。每个数据之间需要用逗号隔开,避免导入出错。

(完整版)关于车载激光雷达的知识清单

关于车载激光雷达的知识清单 ?2017年6月28日 ? ?国际电子商情 本篇知识清单分享给你,助你快速了解车载激光雷达产业。 在无人驾驶架构中,传感层被比作为汽车的“眼睛”,包括车载摄像头等视觉系传感器和车载毫米波雷达、车载激光雷达和车载超声波雷达等雷达系传感器。其中激光雷达已经被大部分人认为是实现自动驾驶的必要基础,毕竟传统雷达无法识别物体细节,而摄像头在暗光或逆光条件下识别效率明显降低。 也正得益于无人驾驶汽车市场规模的爆发,预计2030年全球激光雷达市场可达到360亿美元的规模,将成为新的蓝海。本篇知识清单分享给你,助你快速了解车载激光雷达产业。 内容导读: 1.车载激光雷达的技术原理 2.激光雷达在自动驾驶应用中有何优缺点? 3.车载激光雷达有哪些应用? 4.如何降低自激光雷达的成本? 5.国内外最全激光雷达企业介绍 一、车载激光雷达的技术原理 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统,最初是军事用途。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。 这里详细介绍一下车载激光雷达的工作原理及实现方式。第一种是较为传统的扫描式激光雷达,这种设备被架在汽车的车顶上,能够用多束激光脉冲绕轴旋转360°对周围环境进行距离检测,并结合软件绘制3D图,从而为自动驾驶汽车提供足够多的环境信息。 这种激光雷达最初是在11年前的Darpa无人车挑战赛上,由美国Velodyne公司开发并被参赛团队使用(当时采用的是64线的激光雷达方案)。由于那时的成本

新雷达标绘测试题

题卡1 1.本船雾中航行,航向060°,航速8kn,雷达观测他船数据如下: 时间T 方位B 距离R 1500 080°7.0 1508 080° 6.0 1516 080° 5.0 求:(1)他船的航向、航速? (2)本船1516转向使他船从本船左舷3海里出通过,求本船的新航向?352°2.6kt /100° 2.本船雾中航行,航向030°,航速10kn,雷达观测数据如下: 时间T 方位B 距离R 1100 060°11.0 1106 060°9.0 1112 060°7.0 求:(1)他船的航向、航速? (2)若本船于1115向右转向30°避让,求转向后的DCPA,TCPA?263°12.5 kt / 1.3nm 1132 180

270

题卡2 1.本船雾中航行,航向060°,航速8kn,雷达观测他船数据如下: 时间T 方位B 距离R 1500 080°7.0 1508 080° 6.0 1516 080° 5.0 求:(1)他船的航向、航速? (2)本船1516转向使他船从本船左舷3海里出通过,求本船的新航向? 2.本船雾中航行,航向120°,航速9kn,雷达观测数据如下: 时间T 方位B 距离R 1006 160°11.4 1012 160°10.2 1018 160°9.0 求:(1)他船的航向、航速? (2)若本船于1028向右转向30°避让,求转向后的DCPA,TCPA?29°7.5kt / 2.1nmile 1055 270

题卡3 1.本船雾中航行,航向060°,航速8kn,雷达观测他船数据如下: 时间T 方位B 距离R 1500 080°7.0 1508 080° 6.0 1516 080° 5.0 求:(1)他船的航向、航速? (2)本船1516转向使他船从本船左舷3海里出通过,求本船的新航向? 2.本船雾中航行,航向185°,航速12kn,雷达观测数据如下: 时间T 方位B 距离R 0830 220°10.0 0836 219.5°8.5 0842 219°7.0 求:(1)他船的航向、航速?095°9kt /2.2nm /0904 (2)本船于0846时刻向右转向30°避让,求本船转向后与他船的DCPA? (3)若本船于他船保持DCPA=2海里通过,何时可以恢复原航行? 270 180

《雷达原理》知识点总结

【雷达任务:测目标距离、方位、仰角、速度;从目标回波中获取信息 【雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。 【影响雷达性能指标:脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。 【测角:根据接收回波最强时的天线波束指向 【雷达是如何获取目标信息的? 【雷达组成:天线,发射机,接收机,信号处理机,终端设备(电源,显示屏),收发转换开关 【发射机工作原理:为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去。 【发射机基本组成:单级振荡式:脉冲调制器,大频率射频振荡器,电源。 主振放大式:脉冲调制器,中间和输出射频功放,电源,定时器,固体微波源(主控振荡器,用来产生射频信号) 工作过程:(1)单级振荡式:信号由振荡器产生,受调制 (2)主振放大式:信号由固体微波源经过倍频后产生,经射频放大链进行放大,各级都需调制(脉冲调制器),定时器协调工作。 优缺点:单击振荡式:简单经济轻便,频率稳定度差,无复杂波形; 主振放大式:频率稳定度高,相位相参信号,有复杂波形,适用频率捷变雷达【发射机质量指标:(1)工作频率(波段)(2)输出功率:影响威力和抗干扰能力。峰值功率(脉冲期间射频振荡的平均功率)和平均功率(脉冲重复周期内输出功率的平均值)。(3)总效率Pt/P。(4)调制形式:调制器的脉冲宽度,重复频率,波形。(5)信号稳定度/频谱纯度,即信号各项参数。 【调制器组成:电源,能量储存,脉冲形成 【调制器任务与作用:为发射机的射频各级提供合适脉冲,将一个信号载到一个比它高的信号上 【仿真线:由于雷达的工作脉冲宽度多半在微秒级别以上,用真实线长度太长,因此在实际中是用集总参数的网络代替长线,即仿真线 【刚/软性开关:刚性开关的电容储能部分放电式调制器,特点为部分放电,通电利索;软性开关的人工线性调制器,特点为完全放电,效率高,功率大。 【接收机指标:(1)灵敏度:表示接收机接受微弱信号的能力。提高灵敏度,减小噪声电平,提高接收机增益。(2)工作频率宽度:表示接收机瞬时工频范围,提高:高频部件性能(3)动态范围:表示正常工作时接收信号强度的范围,提高:用对数放大器增益控制电路抗干扰(4)中频滤波特性:减小噪声,带宽>回波时,噪声大。(5)工作稳定度(6)频率稳度(7)抗干扰能力(8)噪声系数 【收发软换开关工作原理:脉冲雷达天线收发共用,需要一个收发软换开关TR,发射时,TR使天线与发射机接通,与接收机断开,以免高功率发射信号进入接收机使之烧毁;接收时,天线与接收机接通,与发射机断开,以免因发射机旁路而使微弱接收信号受损。 【收发开关组成及类型:高频传输线,气体放电管。分为分支线型和平衡式。 【显示器分类:距离,平面,高度,情况和综合,光栅扫描。 【显示器列举:距离(A型J型A/R型)平面(PPI)高度(E式RHI) 【A型显示器组成:扫掠形成电路,视频放大电路,距标形成电路。

雷达标绘练习题

《雷达标绘》练习题 本内容适用船舶驾驶人员参加二小证培训之用,内容包括:真运动作图、相对运动单次避让作图、相对运动多目标避让作图、相对运动多次避让作图四部分。 作图精度要求:航向方位误差在±3°之内 速度误差在±1节之内 距离误差在±0.′3之内 时间误差在±3m之内 一、真运动作图 1、本船雾航,航向120°,航速15节,雷达测得回波数据如下: 时间真方位距离 1154 220° 10′ 1200 219° 8′.8 1206 217° 7′.9 试作真运动图,求: (1)来船的航向和航速。 (2)10分钟后,来船的距离和方位。 2、本船雾航,航向350°,航速20节,雷达测得回波数据如下: 时间真方位距离 0610 275° 8′ 0616 271.5° 6′.8 0622 268° 5′.7 试作真运动图,求: (1)来船的航向和航速。 (2)本船0622右转30°,求来船0628的方位、距离。 3、本船雾航,航向210°,航速15节,雷达测得回波数据如下: 时间真方位距离 0800 270° 7′ 0806 271° 6′.2 0812 272° 5′.4 试作真运动图,求: (1)来船的航向和航速。 (2)0818本船减速到5节(不计冲程),求0828来船的方位、距离 4、本船雾航,航向010°,航速20节,雷达测得回波数据如下: 时间真方位距离 0610 060° 9′ 0616 060° 8′ 0622 060° 7′ 试作真运动图,求: (1)来船的航向和航速。 (2)本船0625右转40°,并测得来船真方位060°,距离6′,0631测得来船真方位

激光雷达测距基本知识与其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1雷达与激光雷达系统 (2) 2激光雷达测距方程研究 (3) 2.1测距方程公式 (3) 2.2发射器特性 (4) 2.3大气传输 (5) 2.4激光目标截面 (5) 2.5接收器特性 (6) 2.6噪声中信号探测 (6) 3伪随机m序列在激光测距雷达中的应用 (7) 3.1测距原理 (7) 3.2 m序列相关积累增益 (8) 3.3 m序列测距精度 (8) 4脉冲激光测距机测距误差的理论分析 (9) 4.1脉冲激光测距机原理 (9) 4.2 测距误差简要分析 (10) 5激光雷达在移动机器人等其它方面中的应用 (10) 6结束语 (11) 致谢 (12) 参考文献 (12) -

激光雷达测距原理与其应用 摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。 关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差 Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan Tutor Shang lianju Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects. Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error. 引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度 高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实

跟踪雷达基础知识讲

18.5 目标捕获和距离跟踪 距离跟踪就是连续测量从发射射频脉冲到目标回波信号返回之间的延时的过程。距离测量是雷达最精确的位置坐标测量。其典型数据是在测量几百英里距离时精密到几码以内。通常距离跟踪是从其他目标中鉴别出所需目标的主要方法,通过距离波门(即时间选通)从误差检波器输出中消除其他目标的回波(虽然也有用速度鉴别和角度鉴别的)。距离跟踪电路也可用来捕获所希望的目标。距离跟踪不仅必须测量脉冲从雷达到目标的往返行程时间,而且必须识别出反射信号是一目标而不是噪声,并且保存目标的距离随时间变化的历程。 这里的讨论适用于典型的脉冲跟踪雷达。距离测量也可以用使用调频连续波的连续波雷达来完成,这种调频连续波通常是一种线性调频波。目标距离由回波信号和发射信号之间的频率差异决定。考虑到多普勒效应的调频连续波系统的性能见参考资料1。 捕获 距离跟踪的第一个作用是捕获所需的目标。虽然这不是跟踪工作,但在典型的雷达里这是实现距离跟踪或角跟踪之前必需的第一步。对于窄波束跟踪雷达而言,为使天线波束指向目标的方向,必须具备有关目标角位置的某些信息。这个信息叫做引导数据,可以由搜索雷达或其他来源提供。引导数据可以足够精确地把窄波束指向目标或者可以要求跟踪器扫描一个较大的不确定区域。雷达距离跟踪的优点是能看到从近距离一直到雷达的最大距离上的所有目标。通常把这个距离分成小段,其中各段可以同时检验是否有目标存在。当需要波束扫描时,距离跟踪器可在短时间里(如0.1s)检验各段情况,即可作出关于目标是否存在的判断。如果没有目标存在,就让波束移向新的位置。这个过程对机械式跟踪而言是完全连续的,因为机械式跟踪移动波束相当慢,因此使得在对各段距离进行检验的短时间内目标仍然留在波束宽度之内。 与搜索雷达一样,目标捕获要考虑实现给定的检测概率和虚警概率所需的信噪比门限和积累时间[1]。然而,与搜索雷达相比,目标捕获可使用较高的虚警概率,这是因为操纵员知道目标是存在的,不存在在等待目标时由于虚警而使操纵员疲劳。最佳虚警概率的选择是以电路的性能为基础的,此电路可观察各距离间隔以判断哪一个间隔中有目标回波。 其典型的技术是使门限电压足够高,以防止大多数噪声尖峰超过门限,可是又要低得足以让弱信号通过。在各个发射脉冲之后即可观察所检验的距离间隔是否有信号超过了门限。积累时间允许雷达在判决是否有目标存在之前进行几次这种观察。噪声和目标之间的主要区别在于超过门限的噪声尖峰是随机的,但如果有目标存在,则当它超过门限时就比较有规律。一种典型的系统就可简单地计算在积累时间内超过门限的次数,并在超过的次数大于雷达发射次数的一半时,就指出是否有目标出现。若雷达脉冲重复频率是300 Hz,积累时间是0.1s,则在有一个强而稳定的目标时,雷达就能观察到30次超过门限。由于从弱目标来的回波加上噪声不一定总是超过门限,所以可以规定一个界限,如15次,在积累时间里,必须超过这一界限才判定有目标出现。对于非闪烁目标,预期的性能为:在信噪比为2.5dB时,发现概率是90%,虚警率是10-5。AN/FPS—16和AN/FPQ—6测量雷达均使用这些检测参数,每次捕获可使用10个邻接的波门,每个波门宽为1000yd。这10个波门覆盖了5n mile的距离间隔。

雷达发射机基础知识

雷达发射机是雷达系统的一个重要组成部分,它产生满足要求的大功率射频发射信号,经馈线系统再由天线辐射出去,从而照射远处目标。典型脉冲雷达框图如下,其中发射机(Transmitter)主要由三部分组成:高压电源,脉冲调制器和射频放大器。 发射机性能的好坏直接影响雷达整机的性能和质量,首先发射的电磁波信号必须具备一定的发射功率,对于不同体制和不同任务的雷达,发射机功率量级差别很大,例如,脉冲雷达的峰值功率可达到兆瓦级,而连续波雷达功率几十瓦就已经很高了。雷达发射机输出功率的大小将直接影响雷达的探测威力,通常可分为峰值功率和平均功率。 通常规定发射机送至天线输入端的功率为发射机的输出功率,峰值功率指脉冲期间射频振荡的平均功率,用Pt 表示;而平均功率则是脉冲重复周期(PRI)输出功率的平均值,常用Pav 表示。 对于简单的矩形脉冲列来说,峰值功率和平均功率有如下关系: av t t P P P PRF T ττ=?=?? 其中T 表示脉冲重复周期,τ表示脉冲宽度。由于平均功率是决定雷达潜在探测距离的一个关键因素,雷达发射总能量等于平均功率乘以时间。 之前有人问:对于相参雷达,在不改变雷达设备硬件的基础下,怎么提高探测距离? 这里从雷达发射机的角度给出几个方法:不改变雷达设备,说明峰值功率功率也已调制最高了,那么可以做的一种方法是:提高雷达的占空比D ,也就是要么增大脉冲宽度,要么增大PRF ;另外,多个脉冲积累会有效提高信噪比,从而改善雷达对目标的发现能力,也就是提高积累时间来获得更多的发射能量。 对于这个问题还需要结合具体的雷达和修正后的雷达方程来分析哪些参数是不能变的,哪些参数是方便改变的。修正的雷达方程相关知识可见:

跟踪雷达基础知识讲义

18.5 目标捕获和距离跟踪 距离跟踪就是连续测量从发射射频脉冲到目标回波信号返回之间的延时的过程。距离测量是雷达最精确的位置坐标测量。其典型数据是在测量几百英里距离时精密到几码以内。通常距离跟踪是从其他目标中鉴别出所需目标的主要方法,通过距离波门(即时间选通)从误差检波器输出中消除其他目标的回波(虽然也有用速度鉴别和角度鉴别的)。距离跟踪电路也可用来捕获所希望的目标。距离跟踪不仅必须测量脉冲从雷达到目标的往返行程时间,而且必须识别出反射信号是一目标而不是噪声,并且保存目标的距离随时间变化的历程。 这里的讨论适用于典型的脉冲跟踪雷达。距离测量也可以用使用调频连续波的连续波雷达来完成,这种调频连续波通常是一种线性调频波。目标距离由回波信号和发射信号之间的频率差异决定。考虑到多普勒效应的调频连续波系统的性能见参考资料1。 捕获 距离跟踪的第一个作用是捕获所需的目标。虽然这不是跟踪工作,但在典型的雷达里这是实现距离跟踪或角跟踪之前必需的第一步。对于窄波束跟踪雷达而言,为使天线波束指向目标的方向,必须具备有关目标角位置的某些信息。这个信息叫做引导数据,可以由搜索雷达或其他来源提供。引导数据可以足够精确地把窄波束指向目标或者可以要求跟踪器扫描一个较大的不确定区域。雷达距离跟踪的优点是能看到从近距离一直到雷达的最大距离上的所有目标。通常把这个距离分成小段,其中各段可以同时检验是否有目标存在。当需要波束扫描时,距离跟踪器可在短时间里(如0.1s)检验各段情况,即可作出关于目标是否存在的判断。如果没有目标存在,就让波束移向新的位置。这个过程对机械式跟踪而言是完全连续的,因为机械式跟踪移动波束相当慢,因此使得在对各段距离进行检验的短时间内目标仍然留在波束宽度之内。 与搜索雷达一样,目标捕获要考虑实现给定的检测概率和虚警概率所需的信噪比门限和积累时间[1]。然而,与搜索雷达相比,目标捕获可使用较高的虚警概率,这是因为操纵员知道目标是存在的,不存在在等待目标时由于虚警而使操纵员疲劳。最佳虚警概率的选择是以电路的性能为基础的,此电路可观察各距离间隔以判断哪一个间隔中有目标回波。 其典型的技术是使门限电压足够高,以防止大多数噪声尖峰超过门限,可是又要低得足以让弱信号通过。在各个发射脉冲之后即可观察所检验的距离间隔是否有信号超过了门限。积累时间允许雷达在判决是否有目标存在之前进行几次这种观察。噪声和目标之间的主要区别在于超过门限的噪声尖峰是随机的,但如果有目标存在,则当它超过门限时就比较有规律。一种典型的系统就可简单地计算在积累时间内超过门限的次数,并在超过的次数大于雷达发射次数的一半时,就指出是否有目标出现。若雷达脉冲重复频率是300 Hz,积累时间是0.1s,则在有一个强而稳定的目标时,雷达就能观察到30次超过门限。由于从弱目标来的回波加上噪声不一定总是超过门限,所以可以规定一个界限,如15次,在积累时间里,必须超过这一界限才判定有目标出现。对于非闪烁目标,预期的性能为:在信噪比为2.5dB时,发现概率是90%,虚警率是10-5。AN/FPS—16和AN/FPQ—6测量雷达均使用这些检测参数,每次捕获可使用10个邻接的波门,每个波门宽为1000yd。这10个波门覆盖了5n mile的距离间隔。

倒车雷达基础知识

倒车雷达基础知识 一、什么是倒车雷达 倒车雷达全称叫“倒车防撞雷达”,也叫“泊车辅助装置”,或称“倒车电脑警示系统”。倒车雷达是汽车泊车安全辅助装置,由超声波传感器、摄像头(俗称探头)、控制器和显示器、报警器(喇叭或蜂鸣器)等部分组成。能以声音或者更为直观的显示提示车辆周围障碍物的情况。解除了驾驶员泊车时前后左右探视所引起的困扰,并帮助驾驶员最大范围的扫除了视野死角和视线模糊的缺陷,提高驾驶的安全性。 二、倒车雷达的作用 当车辆倒车时,挂进倒车档,倒车雷达同时自动进入工作状态,探测器显示器被点亮,主机和系统启动。在控制器的控制下,由装置于车尾保险杠上的探头发送超声波,遇到障碍物,产生回波信号,传感器接收到回波信号后经控制器进行数据处理,从而计算出车体与障碍物之间的距离,判断出障碍物的位置,再由显示器显示距离并发出警示信号,目前的倒车雷达主要具备的就是判断障碍物的距离,并作出提示,以获得有关障碍物的信息,驾驶者便于判断。从而使驾驶者倒车时不至于撞上障碍物。整个过程,驾驶者无须回头便可知车后的情况,使停车和倒车更容易、更安全。 倒车雷达系统主要是协助停车,退出倒档或当相对移动速度超过某一车速时(一般为5公里/小时)系统功能将会停止工作或失效。

三、工作原理 倒车雷达其实跟我们所知道的雷达是一样的,是根据蝙蝠在黑夜里高速飞行而不会与任何障碍物相撞的原理设计开发的。通过感应装置发出超声波,然后通过反射回来的超声波来判断前方有没有障碍物,以及障碍物的距离,大小,方向,形状等。,以下先简单介绍其工作原理及一些相关的事项。 1)超声波测距原理 声音是一种波,一般我们人耳所能听到声音的频率范围为避免20~20KHZ,超过20KHZ的,我们称为超声波。超声波既然也是一种声音,在空气中的传播速度也等于音速340米/秒。超声波遇到障碍物后,一部分反弹回来,那么,通过发射出超声波到接收到回波之间的时差,还有音速,就能计算出障碍物的距离。我们用一个超声波传感器来发射超声波,同时它又可以收到回波,我们也称为探头(超声波探测器)。我们所使用的超声波频率,一般为40KHZ。所以我们所算出的障碍物距离都是指障碍物到超声波传感器表面的距离。 2)超声波传感器的检知角度 发射超声波具有一定的角度范围,一般范围如下: 水平发射角度:90度 垂直发射角度: 60度 3)影响超声波探测的因素

无人机激光雷达扫描系统

激光雷达扫描系统 激光雷达扫描系统可以实时、动态、大量采集空间点云信息。根据用户不同应用需求可以选择不同的载体平台(机载、车载),可快速获取高密度、高精度的激光雷达点云数据。 硬件设备 激光雷达系统可搭载多种类型扫描仪,包括RiegI, Op tech, MDL, Velod yne 等,同时集成GPS、IMU和自主研发的控制平台。 激光雷达扫描系统设备参数见表格1: 三维激光雷达扫描仪长距扫描仪 中距扫描仪短距扫描仪 扫描距离920m 500m 70m 扫描精度1cm 15cm 2cm 飞行速度20-60km/h 20-60km/h 20 -60km/h 扫描角度330°360°360° 每秒发射激光点数50万 3.6万70万 扫描仪重量 3.85kg 4.65kg 1kg 配备我公司自主研发的Li-Air数据处理系统 进行重新标 图1扫描仪、GPS、IMU、控制平台 图3固定翼无人机激光雷达系统 设备检校

定,以保证所采集数据的精度。 图1扫描仪检校前(左)扫描仪检校后(中)检校前后叠加图(右) 图4 (左)为检校前扫描线:不连续且有异常抖动;图4 (中)为检校后扫描线: 数据连续且平滑变化;图4 (右)为检校前后叠加图,红线标记的部分检校效果对比明显。 图5从左至右依次为校正前(侧视图)、校正后(侧视图)、叠加效果图 图5 (左)为检校前扫描线:不在同一平面;图4 (中)为检校后扫描线: 在同一平面;图4 (右)为检校前后叠加图。 完善的数据预处理软件 公司自主研发的激光雷达数据预处理软件可对实时传回的激光雷达数据进行航迹解算、数据生成、可视化等。

雷达标绘

幻灯片 1 雷达标绘 ●雷达标绘与作图的用途 ●通过雷达标绘与作图,可以充分发挥雷达在避碰中的作用,确保船舶在能见度不良时的安全航 行。在避碰中雷达标绘与作图有如下作用: ●能获得碰撞危险的早期警报; ●能准确获得两船的最近会遇距离和会遇时间; ●可精确求得来船的航向和航速; ●可求出本船有效的避让措施; 可判断来船的行动及双方避让行动是否有效。 幻灯片2 碰撞案例分析 幻灯片3 碰撞案例分析 ●碰撞危险判断: S HAPE \* MERGEFORMAT 幻灯片8 舰操绘算图 ●使用舰操绘算图作相对运动图,具有标绘迅速、方便等优点。图上印有等距离圈、方位圈、比 例尺及对数比例尺等,可以直接使用。 幻灯片9 一、求来船的运动要素(航向与航速)

●作出本船航向线。 ●根据两次观测得来的来船的方位和距离,在舰操绘算图上标出第一次的A点和第二次的C 点,连接AC并延长。如果两次观测的时间间隔为t,则相对运动速度,相对运动方向为矢 量。 ● ●根据我船的航向和航速,过A点作我船航向的反航向线,截取(V0为我船的航速),连 接BC,则矢量即为来船的航向和航速。BC的长度为来船在时间间隔t内的航程,来船航 速为。将矢量平移至原点O,在方位圈上读取的度数即为来船的航向。 幻灯片10 一、求来船的运动要素(航向与航速) ●例题1:设本船真航向010°,航速12节,雷达观测来船回波资料如下: ●1030真方位050°,距离8.′0海里 ●1040真方位049°,距离6.′5海里 ●求来船的航向和航速。 ●解:(参见图9—3) ●作出本船航向线。 ●在舰操图上分别标出A点(050°,8.′0)和C点(049°,6.′5),连接A点和C点得相对 运动线AC。 ●过A点作本船航向的反航向线AB,AB等于我船在时间t(t=1min)内的航程,即海里。 ● ●连接BC,量得BC=海里,则来船航速节;将BC平移至原点O,得来船航向为321°。 幻灯片11 一、求来船的运动要素(航向与航速) 幻灯片12 二、求最近会遇距离与会遇时间(DCPA和TCPA) ●由图9—2可知,是相对运动线,即 ●它是判断会遇最近距离及到达会遇最近的时间的重要依据。如果相对运动线的延长线通过雷达 荧光屏中心O点,说明会遇最近距离为零,存在碰撞危险;如果不通过雷达荧光屏中心O点,则可以通过该线求出两船会遇的最近距离,我们称之为最近会遇距离,用DCPA表示。若DCPA 小于1海里,我们也应认为存在碰撞危险。将两船到达最近会遇距离的时间称为最近会遇时间,用TCPA表示。 幻灯片13 二、求最近会遇距离与会遇时间(DCPA和TCPA) ●1、过原点O作AC延长线的垂线,垂足为D,则OD即为与来船会遇的最近距离DCPA。 ●如果垂足在本船正横前,表明他船将在我船前方通过 ●如果垂足在本船正横后,则表明他船将从我船尾后通过。 ●2、以的长度为一个度量单位,在相对运动线由A点量到D点,则: ●或 ●式中:TA和TC分别为A点和C点的时间。 幻灯片14 二、求最近会遇距离与会遇时间(DCPA和TCPA) ●例题2:我船真航向340°,航速12节,从雷达荧光屏上测得来船回波数据如下: ●1035右舷°,距离12海里 ●1041右舷28°,距离海里 ●1047右舷27°,距离9海里

雷达知识点汇总

88多普勒天气雷达探测的基本原理 1.天气雷达是探测(降水系统)的主要手段,是对强对流天气(冰雹、大风、龙卷和暴洪)进行监测和预警的主要工具之一。天气雷达发射(脉冲)形式的(电磁波)当电磁波脉冲遇到降水物质(雨滴、雪花、冰雹等)时,大部分会继续前进,而一部分能量被降水物质向西面八方散射,其中(后向散射)的能量回到雷达天线,被雷达所接收。根据雷达接收的降水系统的(回波)特征可以判别降水系统的特性(降水强弱)(有无冰雹)(龙卷和大风等)。 2.在我国东部和中部地区,装备先进的新一代 S 波段(10cm)和 C 波段(5cm)多普勒天气雷达系统。沿海地区设(S 波段)雷达,内陆地区设(C 波段)雷达。 3.新一代天气雷达系统的应用主要在于对(灾害性天气),特别是与(风害和冰雹)相伴的灾害性天气的监测和预警。它还可以进行较大范围降水的(定量估测),获取(降水)和(降水云体)的风场结构。 4.新一代天气雷达系统的性能要求:对(台风)(暴雨)等大范围降水天气的监测距离应不小于(400km)。对(雹云)、(中气旋)等小尺度强对流天气现象的有效监测和识别距离应大于(150km)。雷达探测能力在50km处可探测到的最小回波强度应不大于(-7dBZ s波段)或(-3dBZ c波段)。 5、新一代天气雷达的应用领域:(对灾害性天气的监测和预警)(定量估测大范围降水) (风场信息)(改善高分辨率数值天气预报模式的初值场) 6.新一代天气雷达采用(全相干)体制,共有(7)种型号,其中 S 波段有(3) 种型号,称为SA、SB、SC ,C 波段有(4)种型号,分别为CINRAD-CB、CC、CCJ、CD。 7.新一代天气雷达的三个主要部分:(雷达数据采集子系统RDA)、(雷达产品

雷达基础知识

角分辨率:实际上是指雷达的指向精度,例如,雷达的指向精度为0.01弧度,那么就可以在100米得距离获得1米的分辨率;如果雷达的指向精度是0.001弧度的话,那么在1000米的距离可获得1米的分辨率。 分辨本领:一般用成像系统对两个最小可辨目标之间所张角的大小表示,通常用测度角的弧度系统描述,亦称角分辨率。 雷达的角分辨率与雷达的的波长成反比,与天线的直径或孔径成正比。 在方位向,SAR通过载体与目标之间有规律的相对运动,利用合成孔径原理,把一个小孔径的天线合成为一个大孔径的天线阵列,提高了雷达的角分辨率,从而提高了方位分辨率,这也是SAR不同于普通雷达的根本所在。 天线增益:某一方向上的天线增益是指该方向上的功率通量密度和理想点源或半波振子在最大辐射方向上的功率通量密度之比。 水平波束宽度:在水平方向上,在最大辐射方向两侧,辐射功率3DB的两个方向的夹角。 多普勒波束锐化:机载脉冲多普勒雷达利用多普勒效应通过信息处理提高方位分辨率的模式。 径向速度或视向速度:物体或天体在观察者视线方向的运动速度。 线性调频脉冲信号:在脉冲持续时间内,脉冲载波频率按线性规律变化的一种脉冲压缩技术。 脉冲宽度:脉冲峰值p降低至一半(p/2)时所对应的两个时刻差称为脉冲宽度。脉冲宽度从学术上讲,就是电流或电压随时间有规律变化的时间宽度。 滤波器的作用:允许某一部分频率信号顺利的通过,而另外一部分频率的信号则受到更大的抑制,这实际上是个选频电路。 载频:是一个物理概念,其实是个特定频率的无线电波,在无线通讯技术上,我们使用载波传递信息,将数字信号调制到一个高频载波上,然后在空中发射和接收。 混频:通过非线性器件将两个不同频率的震荡变换成一个与两者都相关的新震荡。 雷达反射截面积:目标向雷达接收天线向散射电磁波能力的量度,它是一个等效的面积,当这个面积所截获的雷达照射能量各向同性的向周围散射时,在单位立体角内的散射功率恰好等于目标向接收天线方向单位立体角内散射的功率。 距离迁移是合成孔径雷达的一个重要问题。产生原因是SAR机载与照相目标间的相对运动。距离迁移的存在使得方位向处理称为一个二维处理,即使回波信号在距离向和方位向产生耦合。

FURUNO雷达使用说明书

23’’ 高分辨率多彩液晶显示屏航海雷达 (ARPA和AIS功能于一体) 型号FAR-2817/2827/2837S 产品说明书 1、先进的信号处理,改进了在恶劣海况下探测的精度 2、液晶显示屏提供更清晰的雷达图像 3、设计符合SOLAS公约对所有运输船舶的要求 4、高达4台以上的雷达可以通过网络交换数据信息 5、自动绘制/跟踪100个自动或手动捕捉的物标 6、通过可定制的简易操作功能键,轨迹球/轮掌模块和旋转控制 7、低于磁控管会议ITU-R制定的多余排放标准

8、可以显示1000个配备AIS的船舶目标 FURUNO的用户良好的操作概念和领先的前沿技术相结合,性能可靠,安装方便 控制面板由逻辑性控制组合按键和轨迹球相结合,并组织良好的菜单,确保所有操作可以通过轨迹球。 代替全键盘控制单元,实现远程操控

革命性的far-28x7系列X和S波段雷达是FURUNO 50年的海洋电子经验和先进的计算机技术的结果。本系列是满足国际海事组织的严格标准(IMO)为所有船舶研制的。 显示单元采用23.1“液晶显示器,提供了一种有效的大于340毫米直径的图片。高级扩展图形阵列显示器提供了更清晰的雷达图像,可以在任何光照条件下轻松观察,有白天和黑夜两种背景颜色可供选择。不同的颜色被用于标志、符号和文本,更方便于用户操作。 目标检测是通过复杂的信号处理增强技术。两个警戒区可以在任何量程和区域内设置,满足用户要求。其他船舶的运动是通过先进的目标评估跟踪软件和CPA/ TCPA数据读数。当在AIS应答器范围内,该far-28x7系列可以显示任何配备AIS的船舶。 雷达天线有4,6.5,和8英尺三种天线。对X波段,转速选择,24转为标准的雷达转速,或42转的高转速。S波段雷达也可用10或12英尺的天线辐射器,S波段雷达比X波段雷达更能在大风浪及雨雪干扰等恶劣天气情况下,保证物标探测的精准。

测速雷达相关知识

测速雷达相关知识 第一部分:测速雷达探测器介绍 很多驾驶员都有闯红灯或超速被电子眼拍到而被罚的经历。被电子眼拍到,罚款不是200就是500,心痛之余,有不少司机朋友们都在寻找能够测到电子眼信号的设备。本文就目前几类常用设备做一个粗浅的原理分析和功能比较。 我们先要声明一下,雷达探测器并不是什么违法的电子产品,它只是单纯的接受雷达测速器发出来的雷达波,从而提醒驾驶员注意车速。由于这种产品并没有发出雷达波或者信号到外界,所以它亦没有违反我国无线电管理规定,这种产品完全合法的。一、普通雷达探测器 我们先来说说雷达测速的原理,雷达测速仪是根据接收到反射波频移量的计算而得出物体的运动速度。由于雷达波束照射面大,因此雷达测速易于捕捉目标,无须精确瞄准。雷达设备可以固定在路面,也可以安装在巡逻车上,在运动中实现车速检测,是“流动电子警察”重要的组成部分,其次,雷达固定测速的误差为±1Km/h,运动时测误差为±2Km/h,完全满足对交通违章查处的要求,国际上采用雷达测速亦有20多年的历史,且技术成熟,成本从目前的情况来看,全国路面上是以背向测速为主,但也已经有了少量的正向测速的测速器出现。高速公路上以正向测速装置居多。背向就是雷达波和摄像机方向和汽车行进方向相同,车辆超速时摄像机拍摄车辆的后车牌,正向就是雷达波和摄像机方向和汽车行进方向相反,车辆超速时摄像机拍摄车辆的前车牌。雷达探测器的原理很简单,就是接收到雷达信号后马上报警车主减速。 雷达探测器大部分是进口的,价格一般在800元至5000元,性能高低也非常不同,最不同就是可以感应的雷达波的频段不同,因为我国各城市道路的雷达测速设备来自不同国家,使用的雷达波频率也不相同,同一个城市往往装了三四个不同频段的雷达测速装置。低端的雷达探测器,往往只能感应一个频段的雷达波,而高端的雷达探测器,可以感应到多个不同频段的雷达波,甚至还有感光器,同时还可以防激光测速器。 此外,感应的距离远近,也体现了雷达探测器的性能的高低,如感应距离过近,车主来不及减速就已经被拍到了;如减速过猛,还易造成追尾事故,高端的雷达探测器正向可以一公里左右感知雷达波,而差的只有在200米左右才能感应。 二、电子狗

相关主题
文本预览
相关文档 最新文档