当前位置:文档之家› 互感3实验

互感3实验

互感3实验
互感3实验

实验9、互感电路

(研究性实验)

一、学时分配

3学时。

二、实验目的

1. 掌握互感线圈同名端的测量方法。

2. 掌握互感线圈互感系数和耦合系数的测量方法。

三、实验原理

1、互感线圈同名端的测定

两个或两个以上具有互感的线圈中,感应电压极性相同的端钮定义为同名端。在电路中,常用“”或“*”等符号标明互感耦合线圈的同名端。同名端可以用实验方法来测定,常用的有直流法和交流法。

(1) 直流通断法

图9-1所示电路中,线圈L1通过开关K接到直流电压源,直流电压表接到线圈L2的两端。在开关K闭合瞬间,线圈L2的两端会产生一个互感电压,电压表上就会有电压显示。若电压表显示为正值,则与直流电压源正极相连的端钮a和与电压表正极相连的端钮c为同名端;反之,则a、c为异名端。实际上,当开关K断开或闭合瞬间,电位同时升高或降低的端钮即为同名端。

图9-1 直流通断法图9-2 交流电压法

(2) 交流电压法

图9-2所示电路中,将两线圈的b端和d端短接,在a、b端加交流电源,用交流电压表分别

测量有效值、、。若,则a端和c端为同名端;若,则a端与d端为同名端。

(3)交流电流法

设两个耦合线圈的自感系数分别为、,它们之间的互感系数为。若将两个线圈的异

名端相联,称为顺接串联,顺接串联后的等效电感为;若将两个线圈的同名端

相联,则称反接串联,其等效电感是。显然,在串联线圈两端加上正弦交流电

压时,其等效电抗的关系为,这时测出各自的电流。如果测得的电流小,则是顺接串联,两线圈相连接的端子是异名端;如果测得的电流大,则是反接串联,两线圈相连接的端子是同名端。

2 互感系数的测定

(1) 利用感应电压测量互感系数

图9-3所示的两个互感耦合线圈的电路,耦合线圈的互感系数为。当线圈a、b端接角频率为

的正弦交流电压源,线圈c、d端开路时,则c、d两端的开路电压有效值为,

其中是线圈ab的电流有效值。这样,可得耦合线圈的互感系数为

(9-1)

需要指出的是,为了减少测量误差,应尽量选用内阻较大的电压表和内阻较小的电流表。

图9-3 互感系数的测定

(2) 利用两个互感耦合线圈串联测量互感系数

两线圈顺接串联后,两端接角频率为的正弦电压源,用电流表测量电流为,则顺接串

联后的等效电感为;两线圈反接串联后,两端也接角频率为的正弦电压源,用

电流表测量电流为,则反接串联后的等效电感为。设两线圈的自感系数分别为、,根据两线圈顺接串联、反接串联的等效电感的关系,有

解上述方程组,得耦合线圈的互感系数为

(9-2)

3 耦合系数的测定

耦合系数是定量描述两个线圈耦合的松紧程度。利用电感元件阻抗特性的测定方法,

可测出感抗和;再用公式和求出各自的自感系数和;最后,

结合互感系数,计算出耦合系数。

四、实验仪器和器材

1. 交流电压源1台交流0~24V可调

2. 直流稳压电源1台

3. 数字万用表1台

4. 互感耦合线圈U型铁芯1副

5. 电阻1只 1Ω×1

6. 电容1只 220μF×1

7. 短接桥和连接导线若干 P8-1和50148

8. 实验用9孔插件方板1块297mm×300mm

五、实验内容

1、测定两互感耦合线圈的同名端

在两线圈内插入一个公共U型铁芯以增强耦合的程度,分别用图9-1、图9-2所示的直流通断法

(直流电源=5V)和交流电压法(交流电源幅值7.5V、f=50Hz),测定耦合线圈的同名端,并记下两线圈的同名端标号。注意两种方法测定的同名端是否相同。

表9-1 判断同名端的实验数据

(V) (V) (V)

2、测定耦合线圈的互感系数

按图9-4(a)所示接线,电压源是幅值为、频率为的正弦电压,测量线圈与顺接串

联时的电流,记入表9-2中;按图9-4(b)所示接线,测量与反接串联时的电流,记

入表9-2中,并由式9-2出互感。

(a)与顺接串联 (b)

与反接串联

图9-4 互感系数测定的实验电路表9-2 测定互感系数的实验数据

(

(mH)

(mH)

((mH)

((mH)

((mH)

3、测定互感耦合线圈的耦合系数

(1) 测两个线圈的自感系数

按图9-5(a)所示接线,电压源是幅值为、频率为的正弦电压,将交流电流表串入电路测出电流,将测量数据记入表14.9-3中,并利用公式求出自感系数;按图9-5(b)所示接线,测出电流,将测量数据记入表9-3中,并利用公式求出自感系数。

(2) 根据公式计算出耦合系数。

图9-5 测量自感系数的实验电路

表9-3 测定自感系数的实验数据

(V) ((mH)

端开路

(V) ((mH)

端开路

(V) ((mH)

端开路

(V) ((mH)

端开路

六、实验注意事项

1、整个实验过程中,注意流过两个线圈的电流不得超过规定值;所加电压不要超过耦合线圈的额定电压。

2、测定同名端及其它实验中,都应将小线圈套在大线圈中,并行插入铁芯。

七、思考题

1、为什么要标注同名端

2、互感电压的参考方向如何确定

3、实际中使用的线圈和耦合电感之间的关系是什么?

4、除了在实验原理与说明中介绍的测定同名端的方法外,还有没有其它方法?

5、根据实验步骤3的实验结果,讨论互感对入端阻抗的影响。

6、分析影响互感 M 的因素有哪些?

八、实验报告要求

1、写出实验步骤,将测量结果和计算值填入表9-1、表9-

2、表9-3中。

2、根据实验中观测到的现象,讨论互感与哪些因素有关。

3、回答预习与思考题。

互感电路实验报告结论

竭诚为您提供优质文档/双击可除互感电路实验报告结论 篇一:互感器实验报告 综合性、设计性实验报告 实验项目名称所属课程名称工厂供电 实验日期20XX年10月31日 班级电气11-14班 学号05姓名刘吉希 成绩 电气与控制工程学院实验室 一、实验目的 了解电流互感器与电压互感器的接线方法。 二﹑原理说明 互感器(transformer)是电流互感器与电压互感器的统称。从基本结构和工作原理来说,互 感器就是一种特殊变压器。电流互感器(currenttransformer,缩写为cT,文字符号为TA),是一种变换电流的互感器,其二次侧额定电流一般为5A。电压互

感器(voltagetransformer,缩写为pT,文字符号为TV),是一种变换电压的互感器,其二次侧额定电压一般为100V。(一)互感器的功能主要是:(1)用来使仪表、继电器等二次设备与主电路(一次电路)绝缘这既可避免主电路的高电压直接引入仪表、继电器等二次设备,有可防止仪表、继电器等二次设备的故障影响主回路,提高一、二次电路的安全性和可靠性,并有利于人身安全。(2)用来扩大仪表、继电器等二次设备的应用范围通过采用不同变比的电流互感器,用一只5A量程的电流表就可以测量任意大的电流。同样,通过采用不同变压比的电压互感器,用一只100V量程的电压表就可以测量任意高的电压。而且由于采用互感器,可使二次仪表、继电器等设备的规格统一,有利于这些设备的批量生产。 (二)互感器的结构和接线方案 电流互感器的基本结构和接线电流互感器的基本结构 原理如图3-2-1-1所示。它的结构特点是:其一次绕组匝数很少,有的型式电流互感器还没有一次绕组,而是利用穿过其铁心的一次电路作为一次绕组,且一次绕组 导体相当粗,而二次绕组匝数很多,导体很细。工作时,一次绕组串联在一次电路中,而二次绕组则与仪表、继电器等电流线圈相串联,形成一个闭合回路。由于这些电流线圈的阻抗很小,因此电流互感器工作时二次回路接近于短路状

试验十互感电路的研究

实验七示波器和信号发生器的使用 一、实验目的 1.了解示波器的工作原理。 2.掌握示波器和信号发生器的使用方法。 二、实验仪器 双踪示波器信号发生器若干电阻、电容 三、预习要求 1.了解示波器的原理,预习示波器的使用方法。 2.预习信号发生器的使用方法。 四、实验原理 1.示波器。 示波器是一种综合的电信号特性测量仪器,它可以直接显示出电信号的波形,测量出信号的幅度、频率、脉宽、相位、同频率信号的相位差等参数。 2.信号发生器是用来产生不同形状、不同频率波形的仪器,实验中常用作信号源。信号的波形、周期(或频率)和幅值可以通过开关和旋钮加以调节。 五、实验内容 1.寻找扫描光迹。 接通示波器电源(220V),预热1-2分钟。如果仍找不到光点,可调节亮度旋钮,适当调节垂直和水平位移旋钮,将光点移至屏幕的中心位置。调节扫描灵敏度旋钮可使扫描光迹成为一条扫描线。调节辉度(亮度)、聚焦、标尺亮度旋钮,使扫描线成为一条亮度适中、清晰纤细的直线。 2.熟悉双踪示波器面板主要旋钮(或开关)作用。 为了显示稳定的波形,需要注意几个主要旋钮或开关的位置。 ①“触发源方式”开关(SOURCE MODE):通常为内触发。 ②“内触发源方式”开关(INT TRIG):通常置于所用通道位置。当用于双路显 示时,为比较两个波形的相对位置,可将其置于交替(VERT MODE)位置。 ③(扫描)触发方式:通常置于自动位置。 ④显示方式:根据需要可置于CH1、CH2、ALT(交替显示两路高频信号)、 CHOP (断续显示两路低频信号)、 ADD(显示两路信号之和)。 ⑤扫描灵敏度开关:表示横轴方向一个大格的时间。根据被测信号周期确定。 ⑥幅度灵敏度开关:表示纵轴方向一个大格的电压。根据被测信号幅度确定。 ⑦在测量波形的周期和幅值时,应注意将扫描微调旋钮和垂直(Y轴)微调旋钮 置于校准位置。 ⑧当输入波形左右移动、不稳定时,可调节触发电平旋钮使波形稳定。 3.示波器内校准信号的自检 (1)调出校准信号:将示波器内的方波校准信号,通过专用电缆线接入通道1(或通道2),调节示波器各有关旋钮和开关,在屏幕上可以显示出方波。

电流互感器检测报告

编号:DY-GY-01-CF-0101 干式固体结构电流互感器试验报告设备名称001 1BBA01 #1发电机出线 1.设备参数 型号LZZBJ9-12/175b/4 短时热电流31.5/4 kA/s 额定动稳定电流80 kA 额定绝缘水平值 E 二次绕组1S1-1S2 2S1-2S2 3S1-3S2 / 准确等级5P30 5P30 0.2S / 额定容量(VA) 20 20 20 / 变比1000/1 1000/1 1000/1 / 相别A相B相C相 产品编号170400559 170400558 170400555 制造厂中国大连第一互感器有限公司出厂日期2017.04 2.试验依据 GB 50150-2016 电气装置安装工程电气设备交接试验标准 3.绕组的绝缘电阻及交流耐压试验 测试绕组 出厂耐 压值 (kV) 耐压 值 (kV) 耐压 时间 (min) A相(MΩ)B相(MΩ)C相(MΩ) 耐压前耐压后耐压前耐压前耐压后耐压前一次绕组对二次绕组、末 屏及外壳 / 33 1 6430 5370 5230489052804980一次绕组间/ / / / / / / / / 1S1-1S2对2S1-2S2、 3S1-3S2、4S1-4S2及地 / 2 1 1670 1520 16901580 1590 1890 2S1-2S2对1S1-1S2、 3S1-3S2、4S1-4S2及地 / 2 1 1580 1670 14801350 1460 1570 3S1-3S2对1S1-1S2、 2S1-2S2、4S1-4S2及地 / 2 1 1690 1590 15701470 1540 1680 4S1-4S2对1S1-1S2、 2S1-2S2、3S1-3S2及地 / / / / / / / / / 末屏对二次绕组及地/ / / / / / / / / 备注二次绕组回路耐压采用 2500V 兆欧表代替,试验持续时间为 1min 试验环境环境温度: 34 ℃,湿度:45%RH 试验设备FLUKE1550C 电动兆欧表/量程(250V-5000V); FBG-6kVA/50kV 试验变压器(含操作箱) 试验人员试验日期年月日4.测量绕组直流电阻 相别A相B相C相最大差值(%)一次绕组(μΩ)53.5 53.9 53.6 0.75

互感电路的测量

电工实验—18 互感电路的测量 一. 实验目的 1. 掌握互感线圈同名端的测量方法 2. 掌握互感线圈互感系数和耦合系数的测量方法 二. 实验原理说明 1.两个或两个以上具有互感的线圈中,感应电动势(或感应电压)极性相同的端钮定义为同名端(或称同极性端)。在电路中,常用“?”或“*”等符号标明互感耦合线圈的同名端。同名端可以用实验方法来确定,常用的有直流法和交流法。 (1) 直流法 如图18-1所式,当开关S 合上瞬间,01>dt di ,在'11-中产生的感应电压 011>=dt di M u ,'22-线圈的2端与'11-线圈中的1端均为感应电压的正极性端,1端 与2端为同名端。(反之,若电压表反偏转,则1端与'2端为同名端。) 同理,如果在开关S 打开时, 01

同名端。 2.互感系数M 的测定 测量互感系数的方法较多,这里介绍两种方法。 (1) 如图18-3表示的两个互感耦合线圈的电路,当线圈'11-接正弦交流电压,线圈 '22-开路时,则I M j U ω=20,而互感I U M ω20=,其中ω为电源的角频率,I 为线圈'11-中的电流。为了减少测量误差,电压表应选用内阻较大的。如果选用晶体管毫伏表,则线圈'11-中的电流可以采用间接测量法。 图18-3 测量开路互感电压 图18-4 互感耦合电路的入端阻抗 (2)利用两个互感耦合线圈串联的方法,也可以测量它们之间的互感系数。当两线圈顺向串联时,其等值电感:L 顺=L 1+L 2+2M 。当两线圈反向串联时,等值电感为:L 反=L 1+L 2-2M 。只要分别测出L 顺、L 反,则M=(L 顺 - L 反)/4。 实验中要测量线圈的自感时,可以用相位法测量,测量出线圈的端电压U ,电流I 和相角φ,则可以计算出线圈的自感L : ω ωI U X L L Φ==sin 利用两互感线圈顺向串联时等效电感大,反向串联时等效电感小的特点,在相同电压下,电流的大小将不相同,这样也能判断两线圈的同名端 3.在互感耦合电路中,如图18-4所示,若在线圈'11-上施加电压1U ,在线圈'22-端接入阻抗: ()()f f X X j R R X X R M X j R X R M R I U Z 1111222222222 21222222222 21111+++=??? ? ??+-+???? ??++==ωω 其中,11L X ω=,L R R R +=222,L X L X +=222ω。R 1+X 1j 是原边的复阻抗,R 2+ωL 2j 是副边的复阻抗,R L +X L j 是引入副边的复阻抗。副边电路对原边电路的反射电阻f R 1和反射电抗f X 1分别为:

实验四 互感电路仿真分析

实验四 去耦互感电路仿真分析 1.实验目的 (1)学会互感电路同名端、异名端、互感系数已经耦合系数的特点和计算方式。 (2)掌握同名端、异名端的去耦法的计算方式。 (3)掌握耦合电路Muitisim 仿真电路的连接方式,掌握用Muitisim 检验去耦法的正确性。 2.实验原理及实例 原理:当互感线圈既非串联又非并联,但两线圈有公共端时,去耦后可用一个T 形等效电路来代替。 如图4-1为同名端互感线圈的T 形等效。图4-2为异名端互感线圈的T 形等效。 图4-1 图4-2 实例:如图4-3所示电路,已知1L 和2L 两线圈之间的耦合系数1=k ,电源电压V U s ?∠=?0100,频率Hz f 50=,求总电流?I 和? 2U ?

图4-3 解:根据21L L k M ωωω+=可得到Ω=??=84161M ω 根据实验原理,可将图4-3通过去耦法等效成为图4-4所示的简易图, 图4-4 则: )(84.362012164414)41(8Ω?∠=+=+--+ =j j j j j j Z ab )(87.36587.3620100A Z U I ab s ?-∠=? ∠==??

)(13.532014 41487.3652V j j j U ?∠=?+-??-∠=? 3.仿真实验设计 步骤: 1.按照L j Z L ω=、C j Z C ω1-=、2 1L L M k =依次算出1L 至8L 、1C 、2C 和2k 的值。 2.按照图4-3未去耦电路连接如图4-5所示的仿真电路图,得到未去耦时的流?I 和? 2U 。 3.按照图4-4运用去耦法之后的电路图连接成如图4-6所示的仿真电路图,得到对图4-5进去去耦法简化之后的?I 和?2U 。 图4-5 图4-6 在通过图4-7的连接得到图4-8的示波图

实验八 互感电路的测量

实验八 互感电路的测量 一.实验目的 1.学会互感电路同名端、互感系数以及耦合系数的测定方法。 2.通过两个耦合线圈顺向串联和反向串联实验,加深理解互感对电路等效参数以及电压、电流的影响。 二.实验基本知识 1.判断互感线圈同名端的方法 (1)直流法 为了正确判断互感电动势的方向,必须首先判断两个具有互感耦合线圈的同名端,判断互感电路同名端的方法是:用一直流电源开关瞬间与互感1接通(图8-1)在线圈2回路中接一直流毫安表,在开关K 闭合的瞬间,线圈1回路中的电流I 1通过互感耦合将在线圈2中产生一互感电势并在线圈2回路中产生一电流I 2使所接毫安表发生偏转,根据愣次定律及图示所假定的电流方向,当毫安表正向偏转时,线圈1与电源正极相接的端点1与线圈2直流毫安表正极相接的端点2′和线圈1与电源正极相接的端1为同名端,(注意上述判定同名端的方法在开关K 闭合的瞬间才成立)。 图8-1 图8-2 (2)交流法 互感电路同名端也可利用交流法来测定,将线圈1的一个端子1`与线圈2的一个端子2′用导线连接(如图8-2中虚线所示)在线圈1两端加以交流电压,用电压表分别测1及1′两端与2、2′两端的电压,设分别为U 11′与U 12,如果U 12>U 11′`,则用导线连接的两个端点(1′与2′)应为异名端(也即1′与2′以及1与2′为同名端),因为如果假定正方向为U 11′,当1与2′为同名端时,线圈2中互 2′ 2 1

感电压的正方向为U 2′2,所以U 12=U 11′+U 2′`2,U 12(因1′与2′相联)必然大于电源电压U 11′,同理,如果1,2两端电压的读数U 12小于电源电压(即U 12

(完整版)电流互感器伏安特性试验

电流互感器伏安特性试验 阿德 一试验目的 CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。 二试验方法 试验接线如图所示: SVERKER650 二次 接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读取电压而无需另接PT。) 试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。试验后,根据试验数据绘出伏安特性曲线。 三注意事项 1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。 2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。若有显著降低,应检查二次绕组是否存在匝间短路。当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点。 3.电流表宜采用内接法。 4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。 四典型U-I特性曲线

电流互感器试验报告

电流互感器试验报告 电气设备试验报告大唐淮南洛河发电厂一期烟气脱硫工程 电流互感器试验报告 安装环境 安装位置电控楼一楼6KVII段2#脱硫增压风机旁路电流互感器设备名称电流互感器试验性质交接试验日期 2008-06-13 天气睛温度 26.2? 湿度66% 试验标准 GB 50150-1991-8 铭牌 型号 LZZBJ9-10A2G 额定电压 6KV 次级线圈编号准确度级容量,VA, 生产日期 2008.4 电流比 200/5 1S-1S0.5 20 12 生产厂家中国.大连第一互感器有限公司 2S-2S 5P20 15 12 A C 出厂编号 080480448 080480499 绝缘电阻测量:,MΩ, 仪器:2500V兆欧表(PC27-5G) 500兆欧表(PC27-1G) 试验项目 A C 初级对次级及地 2500 2500 次级对地 500 500 直流电阻测量及极性检查仪器:直流电阻快速测试仪、HQ2000互感器特性综合测试仪试验项目 A C 直流电阻(mΩ) 0.154 0.120 极性减极性减极性 励磁特性测量仪器:HQ2000互感器特性综合测试仪、标准电压表(0.5级 D26-V 805.60) 标准电流表(0.5级 D26-A 1130.5) 试验项目 A C 电流(A) 1 2 3 4 5 1 2 3 4 5 1S-1S 23.7 23.9 24.2 24.8 25.2 23.5 23.8 24.9 25.0 25.1 12电压(V) 2S-2S 85.2 88.4 91.8 93.6 95.0 82.6 87.9 92.8 95.7 96.2 12 电流比测量仪器:HQ2000互感器特性综合测试仪标准电流表(0.5级 D26-A 1130.5) 试验项目 A C 初级加电流(A) 40 80 120 160 200 40 80 120 160 200

实验十五互感电路观测全解

实验十五互感电路观测 执笔人:zht 实验成员: 班级:自动化二班

实验十五 互感电路观测 一、实验目的 1、学会互感电路同名端、互感系数以及耦合系数的测定方法。 2、观察两个线圈相对位置的改变,以及用不同材料作线圈芯时对互感的影响。 二、原理说明 1、判断互感线圈同名端的方法 (1)直流法 如图15-1所示,当开关S 闭合瞬间,若毫安表的指针正偏,则可断定“1”,“3”为同名端;指针反偏,则 “1”,“4”为同名端。 (2)交流法 如图15-2所示,将两个线圈N 1和N 2的任意两端(如2,4端)联在一起,在其中的一个线圈(如N 1)两端加一个低压交流电压,另一线圈开路,(如N 2),用交流电压表分别测 出端电压U 13、U 12和U 34。若U 13是两个绕组端压之差,则1,3是同名端;若U 13是两个绕组端压之和,则1,4是同名端。 2、两线圈互感系数M 的测定。 如图15-2,在N 1侧施加低压交流电压U 1,N 2侧开路,测出I 1及 U 2 。根据互感电势122MI U E O M ω=≈;可算得互感系数为 图 15-1 图15-2 i 1

1 2I U M ω= 3、耦合系数k 的测定 两个互感线圈耦合松紧的程度可用耦合系数k 来表示 21/k L L M = 如图15-2,先在N 1侧加低压交流电压U 1,测出N 2侧开路时的电流I 1;然后再在N 2侧加电压U 2,测出N 1侧开路时的电流I 2,求出各自的自感L 1和L 2,即可算得k 值。 三、实验设备 四、实验内容及步骤 1、分别用直流法和交流法测定互感线圈的同名端。

电流互感器检测项目及试验

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F (F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图1.2电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a 所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。 第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱。 第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相;Q-气体绝缘 第四个字母:W—五铁芯柱;B—带补偿角差绕组。连字符后的字母:GH—高海拔地区使用;TH—湿热地区使用。

电流互感器检测项目及试验

电流互感器检测项目及 试验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或 P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。

互感电路测量

实验八 互感电路测量 一、实验目的 1、学会互感电路同名端、互感系数以及耦合系数的测定方法。 2、理解两个线圈相对位置的改变,以及用不同材料作线圈芯时对互感的影响。 二、实验设备和器材 数字直流电压表 0~200 V 数字直流电流表 0~200 mA 交流电压表 0~500 V 交流电流表 0~5 A 空心互感线圈 N 1为大线圈,N 2为小线圈 自耦调压器 0~250 V 直流稳压电源 0~30 V 电阻器 30Ω/8W ,500Ω/2W 发光二极管 红或绿 粗、细铁棒、铝棒 变压器 36 V/220 V 三、实验原理与说明 1、判断互感线圈同名端的方法 (1)直流法:如实验图8-1所示,当开关K 闭合瞬间,若毫安表的指针正偏,则可断定“1”、“3”为同名端;指针反偏,则“1”、“4”为同名端。 (2)交流法:如实验图8-2所示,将两个绕组N 1和N 2的任意两端(如2、4端)连在一起,在其中一个绕组(如N 1)两端加一个低电压,另一绕组(如N 2)开路。用交流电压表分别测出端电压U 13、U 12和U 34。若U 13是两个绕组端电压之差,则1、3是同名端;若U 13是两绕组端电压之和,则1、4是异名端。 2、两线圈互感系数M 的测定 在实验图8-2的N 1侧施加低压交流电压U 1,测出I 1及U 2。根据互感电势E 2M ≈U 2 = wMI 1,可算得互感系数为:1 2wI U M 。

3、耦合系数k 的测定 两个互感线圈耦合松紧的程度可用耦合系数k 来表示: 21L L M k 如实验图8-2所示,先在N 1侧加低压交流电压U 1,测出N 2侧开路时的电流I 1;然后再在N 2侧加电压U 2,测出N 1侧开路时的电流I 2,求出各自的自感L 1和L 2,即可算得k 值。 四、实验内容与步骤 1、分别用直流法和交流法测定互感线圈的同名端 (1)直流法:实验线路如实验图8-3所示。先将N 1和N 2两线圈的四个接线端子编以1、2和3、4序号。将N 1、N 2同心地套在一起,并放入细铁棒。U 为可调直流稳压电源,调至10 V 。流过N 1侧的电流不可超过0.4 A (选用5 A 量程的数字电流表)。N 2侧直接接入2 mA 量程的毫安表。将铁棒迅速地拔出和插入,观察毫安表读数正、负的变化,来判定N 1和N 2两个线圈的同名端。 (2)交流法:本方法中,由于加在N 1上的电压仅2 V 左右,直接用屏内调压器很难调节,因此采用实验图8-4的线路来扩展调压器的调节范围。图中W 、N 为主屏上的自耦调压器的输出端,B 为升压铁心变压器,此处作降压用。将N 2放入N 1中,并在两线圈中插入铁棒。A 为2.5 A 以上量程的交流电流表,N 2侧开路。 接通电源前,应首先检查自耦调压器是否调至零位,确认后方可接通交流电源,令自耦调压器输出一个很低的电压(约12 V 左右),使流过电流表的电流小于1.4 A ,然后用0~30 V 量程的交流电压表测量u 13、u 12和u 34,然后判定同名端。 拆去2、4连线,并将2、3相接,重复上述步骤,判定同名端。 2、求互感系数M 拆除2、3连线,测u 1、i 1和u 2,计算出M 。 3、测电压和电流 将低压交流加在N2侧,使流过N2侧电流小于1 A ,N1侧开路,按步骤(2)测出u 2、i 2和u 1。 4、求耦合系数k

电压电流互感器的试验方法

电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V 和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2 表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、

L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2 表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如 果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是 两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。

电压电流互感器的试验方法(完整资料).doc

【最新整理,下载后即可编辑】 电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中

的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。

互感3实验

实验9、互感电路 (研究性实验) 一、学时分配 3学时。 二、实验目的 1. 掌握互感线圈同名端的测量方法。 2. 掌握互感线圈互感系数和耦合系数的测量方法。 三、实验原理 1、互感线圈同名端的测定 两个或两个以上具有互感的线圈中,感应电压极性相同的端钮定义为同名端。在电路中,常用“”或“*”等符号标明互感耦合线圈的同名端。同名端可以用实验方法来测定,常用的有直流法和交流法。 (1) 直流通断法 图9-1所示电路中,线圈L1通过开关K接到直流电压源,直流电压表接到线圈L2的两端。在开关K闭合瞬间,线圈L2的两端会产生一个互感电压,电压表上就会有电压显示。若电压表显示为正值,则与直流电压源正极相连的端钮a和与电压表正极相连的端钮c为同名端;反之,则a、c为异名端。实际上,当开关K断开或闭合瞬间,电位同时升高或降低的端钮即为同名端。 图9-1 直流通断法图9-2 交流电压法 (2) 交流电压法 图9-2所示电路中,将两线圈的b端和d端短接,在a、b端加交流电源,用交流电压表分别 测量有效值、、。若,则a端和c端为同名端;若,则a端与d端为同名端。 (3)交流电流法 设两个耦合线圈的自感系数分别为、,它们之间的互感系数为。若将两个线圈的异 名端相联,称为顺接串联,顺接串联后的等效电感为;若将两个线圈的同名端 相联,则称反接串联,其等效电感是。显然,在串联线圈两端加上正弦交流电

压时,其等效电抗的关系为,这时测出各自的电流。如果测得的电流小,则是顺接串联,两线圈相连接的端子是异名端;如果测得的电流大,则是反接串联,两线圈相连接的端子是同名端。 2 互感系数的测定 (1) 利用感应电压测量互感系数 图9-3所示的两个互感耦合线圈的电路,耦合线圈的互感系数为。当线圈a、b端接角频率为 的正弦交流电压源,线圈c、d端开路时,则c、d两端的开路电压有效值为, 其中是线圈ab的电流有效值。这样,可得耦合线圈的互感系数为 (9-1) 需要指出的是,为了减少测量误差,应尽量选用内阻较大的电压表和内阻较小的电流表。 图9-3 互感系数的测定 (2) 利用两个互感耦合线圈串联测量互感系数 两线圈顺接串联后,两端接角频率为的正弦电压源,用电流表测量电流为,则顺接串 联后的等效电感为;两线圈反接串联后,两端也接角频率为的正弦电压源,用 电流表测量电流为,则反接串联后的等效电感为。设两线圈的自感系数分别为、,根据两线圈顺接串联、反接串联的等效电感的关系,有 解上述方程组,得耦合线圈的互感系数为

电压电流互感器的试验方法完整版

电压电流互感器的试验 方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是 100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 ? 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: ? 图1.1 电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态

下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。4.电压互感器和电流互感器在结构上的主要差别

电流互感器伏安特性试验的说明

一试验目的 CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。 二试验方法 试验接线如图所示: 接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。 试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。试验后,根据试验数据绘出伏安特性曲线。 三注意事项 1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。 2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。若有显著降低,应检查二次绕组是否存在匝间短路。当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点。 3.电流表宜采用内接法。

4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压. 典型的U-I特性曲线 附:<<电力设备预防性试验规程>>(DL/T 596-1996)中关于CT二次保护绕组的伏安发生的规定:与同类型互感器特性曲线或制造厂提供的特性曲线比较,就无明显差别。

电流互感器试验报告正式

电流互感器试验报告 一、工程概况: 安装位置:110kV 电铁线 试验日期:2006年10月29日 试验人员: 二、铭牌数据: A相编号:06L05304-17 B相编号:06L05304-19 C相编号:06L05304-11 产品型号:LB6-110W2 额定电压:110 kV 额定频率:50HZ 出线端子1S1-1S2 2S1-2S2 3S1-3S3 4S1-4S3 3S1-3S24S1-4S2 电流比(A)2x 750/5 2x 300/5 额定输出(V A)60 50 50 30 30 准确级10P20 0.5 0.2S 0.5 0.2S 大连第一互感器有限责任公司2006年7月 三、试验数据 1、绝缘电阻:(MΩ) 试验设备:2500V兆欧表 t= 20°C s= 67 %相别一次对二次及地二次之间二次对地末屏对二次及地 A 25002500 2500 2500 B 25002500 2500 2500 C 25002500 2500 2500 规程标准:末屏对二次及地的绝缘电阻不宜小于1000 MΩ。 结论:合格 2、极性检查: 一次 二次 端子 A B C P1 S1减减减 结论:合格 3、介损及电容量测试: 试验设备:上海思创HV9001型介损测试仪 t= 20°C s= 67 % 相别tgδ% 出厂值tgδ% 测量值 C X 出厂值(pF) C X测量值(pF) 误差(%) A 0.26 0.33 855.7 854.3 -0.16 B 0.25 0.30 817.6 815.8 -0.22 C 0.26 0.27 848.0 847.1 -0.10 规程标准:油纸电容式63—220kV,tgδ(%)不应大于 1.0。 220kV及以上主绝缘电容值,实测值与出厂试验值相比,其差值宜在+10%范围内 结论:合格 4、变比试验:

相关主题
文本预览