当前位置:文档之家› 直流电机速度控制

直流电机速度控制

直流电机速度控制
直流电机速度控制

直流电机速度控制

调节系统

调节系统是一类通常能提供稳定输出功率的系统。

例如,电机速度调节器要能在负载转矩变化时仍能保持电机速度为恒定值。即使负载转矩为零,电机也必须提供足够的转矩来克服轴承的粘滞摩檫影响。其它类型的调节器也提供输出功率,温度调节器必须保持炉内的温度恒定,也就是说,即使炉内的热量散失也必须保持炉温不变。一个电压调节器必须也保持负载电流值变化时输出电压恒定。对于任何一个提供一个输出,例如速度、温度、电压等的系统,在稳态下必定存在一个误差信号。

电气制动

在许多速度揑制系统中,例如轧钢机,矿坑卷扬机等这些负载要求频繁地停顿和反向运动的系统。随着减速要求,速度减小的比率取决于存储的能量和所使用的制动系统。一个小型速度控制系统(例如所知的伺服积分器)可以釆取机械制动,但这对大型速度控制器并不可行,因为散热很难并且很昂贵。

可行的各种电气制动方法有:

1.回馈制动。

2.涡流制动。

3.能耗制动。

4.反向(接)制动。

回馈制动虽然并不一定是最经济的方式,但却是做好的方式。负载中存储的能量通过工作电机(暂时以发电机模式运行)被转化成电能并被返回到电源系统中。这样电源就充当了一个收容不想要的能量的角色。假如电源系统具有足够的容量,在短时回馈过程中最终引起的端电压升高会很少。在直流电机速度控制沃特-勒奧那多法中,回馈制动是固有的,但可控硅传动装置必须被排布的可以反馈。如果轴转速快于旋转磁场的速度,感应电机传动装置可以反馈。有晶闸管换流器而来的廉价变频电源的出现在变速装置感应电机应用中引起了巨大的变化。

涡流制动可用于任何机器,只要在轴上安装一个铜条或铝盘并在磁场中旋转它即可。在大型系统中,散热问题很重要的,因为如果长时间制动,轴、轴承和电机的温度就会升高。

在能耗制动中,存储的能量消粍在回路电阻器上。用在小型直流电机上时,电枢供电被断开,接入一个电阻器(通常是一个继电器、接触器或晶闸管)。保持磁场电压,施加制动降到最低速。感应电机要求稍微复杂一点的排布,定子绕组被从交流电源上断开,接到直流电源上。产生的电能继而消粍在转子回路中。能耗制动应用在许多大型交流升降系统中,制动的职责是反向和延长。

任何电机都可以通过突然反接电源以提供反向的旋转方向(反接制动)来停机。在可控情况下这种制动方法对所有传统装置都是适用的。它主要的缺点就是当制动等于负载存储的能量时,电能被机器消耗了。这在大型装置中就大大增加了运行成本。

等脉宽PWM法

VVVF装置在早期是采用PAM控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。

随机PWM

在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须哏制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM 技术正是提供了一个分析、解决这种问题的全新思路。

空间电压矢量控制PWM

空间电压矢量控制PWM也叫磁通正弦PWM法。它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用逆变器不同的开关模式所产生的实际磁通去逼近基准圓磁通,由它们的比较结杲决定逆变器的开关,形成PWM波形。此法从电动机的角度出发,把逆变器和电机看作一个整体,以内切多边形逼近圓的方式进行控制,使电机获得幅值恒定的圆形磁场(正弦磁通)。

具体方法又分为磁通开环式和磁通闭环式。磁通开环法用两个非零矢量和一个零矢量合成一个等效的电压矢量,若采样时间足够小,可合成任意电压矢量。此法输出电压比正弦波调制时提高15%,谐波电流有效值之和接近最小,磁通闭环式引入磁通反馈,控制磁通的大小和变化的速度。在比较估算磁通和给定磁通后,根据误差决定产生下一个电压矢量,形成PWM波形。这种方法克服了磁通开环法的不足,解决了电机低速时,定子电阻影响大的问题,减小了电机的脉动和噪音。但由于未引入转矩的调节,系统性能没有得到根本性的改善。

矢量控制PWM

矢量控制也称磁场定向控制,其原理是将异步电动机在三相坐标系下的定子电流Ia,Ib及Ic,通过三相|二相变換,等效成两相静止坐标系下的交流电流Ia1及Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1及相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿对直流电动机的控制方法,实现对交流电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度、磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。但是,由于转子磁链难以准确观测,以及矢量变換的复杂性,使得实际控制效果往往难以达到理论分析的效果,这是矢量控制技术在实践上的不足。此外.它必须直接或间接地得到转子磁链在空间上的位置才能实现定子电流解耦控制,在这种矢量控制系统中需要配置转子位置或速度传感器,这显然给许多应用场合带来不便。

无刷直流电机是近年来迅速发展起来的一种新型电机,它利用电子换相代替机械換相,既具有直流电动机的调速性能,又具有交流电机结抅简单、运行可靠、维护方便等。而且体积小、效率高,在许多领域已得到了广泛的运用。

单片机控制的永磁无刷直流电动机调速系统适用于电动自行车等小功率的工作情况。并能将多余的电能回溃。该系统具有调速性能好、功率因数高、节能、体积小、重量轻等优点。

根据永磁无刷直流电动机的特性实施脉宽?厕控制,并通过转速传感器测量转速通过数码管动态显示出其转速’通过软硬件的配合使用,实现了整个系统的速度控制的要求。

无刷直流电动机驱动器

理想的扭矩生产:如前所述,直流无刷电机一般描述了电机具有trape-zoidal 反电势。对于这种情况下,相电流矩形脉冲,有时松散确定为叫spuareware电流。虽然可以用来描述杻矩生产汽车,在三个阶段已标有A,B,和C分别,图中的反电势的形状,取背部电磁场除以速度,是trape-zoids有2\ 3 占空比。也就是说,每180度的反电势形状不变超过120度。目前与反电势各组成矩形类有2\3占空比,那些非零部分脉冲排列与该单位的各自领域的反电势的形状和极性当前匹配的反电势。生产的是恒转矩显示出底部的数字。在每一个60度部分是一个阶段,目前的流动负面影响另一个,没有电流流动的第三阶段。这些信件低于恒转矩线表明目前的分两个阶段进行,与消极overbar表明当前流动或流出的一个阶段。每隔60度在反电势的阶段提出了过渡时期,目前仍然在一个阶段不变,而目前在另一到零,目前在第三无刷直流电动机驱动器变为非零,超过360度有6个过渡或减刑前重复序列。因此,这种马达驱动通常称为六步驱动器

直流电机速度控制

所有直流电机速度控制的基本关系都可以由下式得出:

E∝φω

U=E+IaRa

各项就是它们通常所指的含义。如杲IaRa很小,等式近似为U∝φω或ω∝U\φ。这样,控制电枢电压和磁通就可以影响电机的转速。要将转速降为零,或者U=0或者φ=∞。后者是不可能的,因此只可通过电枢电压的变化来减低转速。要将转速增加到较高值,可以增大或者减小φ。后者是最可行的方法,就是我们通常所知的弱磁场。在要求速度调解范围宽的场合可综合使用这两种方法。

直流电机速度控制模型建立

十二、直流电动机速度控制模型建立 如图所示,a R 和a L 分别为电枢回路电阻和电感,a J 为机械旋转部分的转动惯量,f 为旋转部分的粘性摩擦系统,)(t u a 为电枢电压,)(t n 为电动机转动速度,)(t i a 为电枢回路电流。 通过调节电枢电压)(t u a ,控制电动机的转动速度)(t n 。电动机负载变化为电动机转动速度的干扰因素,用负载力矩)(t M d 表示。 根据直流电动机的工作原理及基尔霍夫定律,直流电动机有四大平衡方程: (1)电枢回路电压平衡方程 )()()(t u E t i R dt t di L a a a a a a =++ 式中,a E 为电动机的反电势。 (2)电磁转矩方程 )()(t ia K t M a w = 式中,)(t M w 为电枢电流产生的电磁转矩,a K 为电动机转矩系数。 (3)转矩平衡方程 )()()()(t M t M t fn dt t dn J d w a +=+ 式中,a J 为机械旋转部分的转动惯量,f 为旋转部分的粘性摩擦系数。 (4)由磁感应关系,得 )(t n K E b a = 根据上述的四个平衡方程式,可建立起系统的输出量、干扰量与输入量之间的传递函数 b a a a a a a a a a K K f R s J R f L s L J K s U s N ++++=)()()(2 a a a a d R s L K s U s M +-=)()( 建立起直流电动机的结构图为

直流电动机参数为 Ω =0.2a R , 015.0,015.0,5.0===b a a K K H L ,Nms f 2.0=,202.0m kg J a ?=。 得到系统的阶跃响应曲线为

基于MATLAB的直流电机速度控制仿真

密级: 科学技术学院 NANCHANG UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY 学士学位论文 THESIS OF BACHELOR (2012 —2016 年) 题目基于MATLAB的直流电机速度控制仿真学科部:信息学科部 专业:电气工程及其自动化 班级:电气122班 学号:7022812072 学生姓名:谢磊 指导教师:万旻 起讫日期:2015年12月至2016年5月31日

目录 目录 (1) 摘要: ........................................................................................................................................................... I Abstract:............................................................................................................................................................ II 第一章绪论 (1) 1.1 课题来源及意义 (1) 1.2 国内外发展现状 (1) 1.3研究目标及内容 (1) 1.3.1研究目标 (1) 1.3.2研究内容 (1) 第二章MATLAB介绍 (2) 2.1 MATLAB简介 (2) 2.2 MATLAB所蜕变的历史经过 (2) 2.3 MATLAB的特点 (2) 2.4 控制系统仿真中常用的函数介绍 (2) 2.5 Simulink的基本介绍 (3) 第三章直流电机速度控制系统的建模和仿真 (4) 3.1 直流电机的工作原理 (4) 3.3直流电机速度控制仿真研究原理 (5) 第四章直流电机速度控制仿真介绍 (6) 4.1 直流电机H桥关于H桥的驱动的设计 (6) 4.1.1、H桥驱动电路 (6) 4.1.2 使能控制和方向逻辑 (7) 4.2直流电机速度控制仿真图 (9) 4.3仿真的模拟 (9) 4.4 仿真的分析 (12) 第五章总结与展望 (13) 参考文献 (14) 致谢 (15)

直流电机转速控制

. 直流电机转速控制 课程设计

姓名: 学号: 班级: 目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6)

3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11 1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。

1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电

直流电机控制设计(1)

河南科技大学 课程设计说明书 课程名称现代电子系统课程设计题目_直流电机控制设计 学院__电子信息工程学院____班级_________ 学生姓名__________ 指导教师__________

日期_______ 课程设计任务书 (指导教师填写) 课程设计名称现代电子系统课程设计学生姓名专业班级 设计题目直流电机控制设计 一、课程设计目的 学习直流电机PWM的FPGA控制; 掌握PWM控制的工作原理; 掌握GW48_SOPC实验箱的使用方法; 了解基于FPGA的电子系统的设计方法。 二、设计内容、技术条件和要求 利用PWM控制技术实现直流电机的速度控制。 (1)基本要求: a.速度调节:4档,数字显示其档位。 b.能控制电机的旋转方向。 c.通过红外光电电路测得电机的转速,设计频率计用4位10进制显示电机的转速。 (2)发挥部分 a.设计“去抖动”电路,实现直流电机转速的精确测量。 b.修改设计,实现直流电机的闭环控制,旋转速度可设置。 c.其它。 三、时间进度安排 布置课题和讲解:1天 查阅资料、设计:4天 实验:3天 撰写报告:2天 四、主要参考文献 何小艇《电子系统设计》浙江大学出版社2008.1 潘松黄继业《EDA技术实用教程》科学出版社2006.10 齐晶晶《现代电子系统设计》实验指导书电工电子实验教学中心2009.8

指导教师签字:2010年12月30日 摘要 利用FPGA可编程芯片及VHDL语言实现了对直编程实现流电机PWM控制器的设计,对直流电机速度进行控制。介绍了用VHDL语言编程实现直流电机PWM控制器的PWM的产生模块、转向调节模块、转速控制模块、去抖动电路模块、电机转速显示等模块功能。 采用CPU控制产生PWM信号,一般的PWM信号是通过模拟比较器产生的,比较器的一端按给定的参考电压,另一端接周期性线性增加的锯齿波电压。当锯齿波电压小于参考电压时输出低电平,当锯齿波电压大于参考电压时输出高电平。改变参考电压就可以改变PWM波形中高电平的宽度。若用单片机产生PWM信号波形,需要通过D/A转换器产生锯齿波电压和设置参考电压,通过外接模拟比较器输出PWM波形,因此外围电路比较复杂。 FPGA中的数字PWM控制与一般的模拟PWM控制不同,用FPGA产生PWM波形,只需FPGA 内部资源就可以实现。用数字比较器代替模拟比较器,数字比较器的一端接设定值计数器输出,另一端接线性递增计数器输出。当线性计数器的计数值小于设定值时输出低电平,当计数值大于设定值时输出高电平。与模拟控制相比,省去了外接的D/A转换器和模拟比较器,FPGA外部连线很少,电路更加简单,便于控制。脉宽调制式细粉驱动电路的关键是脉宽调制,转速的波动随着PWM脉宽细分数的增大而减小。 直流电机控制电路主要由三部分组成: (1)FPGA中PWM脉宽调制信号产生电路。 (2)FPGA中的工作/停止控制和正/反转方向控制电路。 (3)由功率放大电路和H桥组成的正反转功率驱动电路 关键词

基于Matlab的直流电机速度控制

基于Matlab的直流电机速度控制

系统仿真 课程设计报告 设计题目:基于Matlab的直流电机速度控制 专业:自动化 学生姓名: 班级学号: 指导教师: 开课日期2013年 7 月 1 日至2013年 7 月 13 日南京邮电大学自动化学院

一、课程设计题目 控制系统的执行机构常用直流电机来驱动,电路和原理示意图如下所示 其开环传递函 数 为 ()()0001 .0)15.0)(1.001.0(01 .02+++= +++= s s K R Ls b Js K V θ ,请用时域分析方法设计PID 控制器,使系统满足下列性能指标要求:当仿真输入是单位阶跃信号时,电机输出转速调整时间小于2秒,超调小于5%,稳态误差小于1%。 要求给出详细的设计步骤,matlab 源码及仿真曲线。 二、实验原理 本报告首先介绍了直流电动机的物理模型,并测量计算了它的具体参数。然后根据牛顿第二定律和回路电压法分别列写运动平衡方程式和电机电枢回路方程式,从而通过一些数学变换抽象出了以电压为输入、转速为输出、电流和转速为状态变量的数学模型。借助MATLAB 设计simulink 模块调整PID 模块的各项系数,使系统的阶跃响应达到了设计指标。 1、建立该系统的时域数学模型 由克希霍夫定律得: V=R*i+L +e 直流电机转矩和电枢电流关系为 T=Kt*I 电枢旋转产生反电动势与旋转运动角速度的关系为 e=

由牛顿定律,转子力矩平衡关系为 其中,T:负载转矩,:负载电流 V(s)=R*I(s)+L*sI(s)+E(s) 拉式变换:E=Ke(s) 划去中间变量得: 开环传递函数为: 2、PID控制器的功能 比例环节:Kp增大等价于系统的开环增益增加,会引起系统响应速度加快,稳态误差减少,超调量增加。当Kp过大时,会使闭环系 统不稳定; 积分环节:相当于增加系统积分环节个数,主要作用是消除系统的稳态误差。积分环节作用的强弱取决于积分时间常数Ti,Ti增大, 系统超调量变小,响应速度变慢; 微分环节:主要作用是提高系统的响应速度,同时减少系统超调量,抵消系统惯性环节的相位滞后不良作用,使系统稳定性明显改善。 Td偏大或偏小,都会使超调量增大,调整时间加长。由于该环节所产 生的控制量与信号变化速率有关,故对于信号无变化或变化缓慢的系 统微分环节不起作用。 三、设计步骤 方法1: 搭建simulink模块,利用经验调节法整定PID参数,使整个系统满足调节时间小于2秒,超调小于5%,稳态误差小于1%。 1、搭建的simulink模块图如下:

直流无刷电机转速控制

一、 直流无刷电机转速控制 1. 模拟PID 控制 1.1 模拟PID 控制原理 在模拟控制系统中,最常用的控制器就是模拟PID 控制器。以下图所示直流电机 控制系统为例,说明PID 控制器控制电机转速的原理。图中)(0t n 为转速设定值,)(t n 为转速反馈值,)()()(0t n t n t e -=为偏差信号,偏差信号通过PID 控制器后产生控制作用作用于直流电机从而控制电机转速到设定值。 常见的模拟PID 控制系统如下图所示。PID 控制器由比例、积分、微分的线性组合构成。控制规律如下: ]) ()(1)([)(0?++=t d i p dt t de T d e T t e K t u ττ * 其中: p K ——控制器的比例系数 i T ——控制器的积分系数 d T ——控制器的微分系数 1) 比例部分 比例部分的数学表达式:)(t e K p 。 比例部分的作用是对偏差信号做出快速反应,一旦控制器检测到偏差,比例部分就 能迅速产生控制作用,且偏差越大,控制作用越强。但仅存在比例控制的系统存在稳态偏差。比例系数越大,响应越快,过渡越快,稳态偏差也越小,但系统也越不稳定,因此比例系数必须选择恰当。 2) 积分部分 积分部分的数学表达式: ?t i p d e T K 0 )(ττ。

从积分部分表达式可以看出,只要系统输出与设定值存在偏差,积分作用就会不断增加,知道偏差为零,因此积分部分可以消除稳态偏差。但积分作用会降低系统的响应速度,增加系统的超调量。积分常数越小,积分作用越强,过渡过程容易产生震荡,但回复时间减小;积分常数越大,积分作用越弱,过渡过程不产生震荡,但回复时间增长。因此应根据具体情况选取积分常数。 3) 微分部分 微分部分的数学表达式: dt t de T K d p ) (。 微分作用能阻值偏差的变化。它根据偏差的变化趋势进行控制。偏差变化越快,微分作用越强,能在偏差变化之前就行控制。微分作用的引入有助于减小超调量,克服振荡;但微分作用对噪声很敏感,导致系统的错误响应,使系统不稳定。 为实现PID 控制器的软件实现,将式*进行适当离散化,即离散PID 。 2. 数字PID 控制 2.1 位置式PID 算法 离散化处理的方法是,以T 为采样周期,对模拟信号进行采样,以k 为采样序列号,进行以下近似: T e e dt t de e T d e kT t k k k j j t 1 )()(-=-≈≈≈∑?ττ 将上式带入式*,得到如下式所示的位置式离散PID 控制规律。 ][1 T e e T e T T e K u k k d k j j i k p k -=-++ =∑ ** 由于位置式PID 要对t 时刻之前的所有输出进行记录,工作量大,对计算机硬件要求高。增量式PID 可避免这些。 2.2 增量式PID 算法 由式**得到 ][2 11 11T e e T e T T e K u k k d k j j i k p k ---=---++ =∑ 将式**与上式相减,得到增量式PID 控制规律如下 211)21()1(---++-++ =-=?k d p k d p k d i p k k k e T T K e T T K e T T T T K u u u *** 一旦得出控制作用的增量,就可递推得出当前控制作用的输出。 2.3 控制器参数整定 1) 离线整定法 步骤 1:将控制器从“自动”模式切换至“手动”模式(此时控制器输出完全由人工控制),人为以阶跃方式增大或减少控制器输出,并记录控制器相关的输入输出动态响应数据。 步骤 2:由阶跃响应数据估计特性参数 K , T ,τ。

直流电机PID控制与仿真

长春大学 课程设计说明书 题目名称直流电机速度PID控制与仿真 院(系)电子信息工程学院 专业(班级)自动化13403 学生姓名张华挺 指导教师曹福成 起止日期2016.10.24——2016.11.04

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 直流电机速度PID控制与仿真 摘要:在本次课程设计中重点研究直流电机的工作原理以及直流电机的各种调速方法。在调速控制中,我们包含两个大的部分,一个是直流电机的开环控制,另一个是直流电机的闭环控制,在直流电机的闭环控制中,又分别介绍转速闭环控制和PID闭环控制,并且对直流电机的每个模型进行建模并仿真,观察其动态性能,分析研究直流电机的各个控制的优缺点。 关键词:直流电动机;转速控制;PID控制;Matlab仿真

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ DC Motor Speed PID Control and Simulation Abstract: In this curriculum design, the work principle of DC motor and DC motor speed control methods are studied. In speed control, we include two parts, one is the open loop control of DC motor, the other is a closed loop DC motor control in DC motor closed-loop control, and introduces the speed closed-loop control and PID control, and each model of the DC motor for modeling and simulation to observe the dynamic performance analysis of DC motor control and the advantages and disadvantages of each. Keywords: DC motor; speed control; PID control; Matlab simulation

直流电机转速控制(DOC)

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、

直流电动机速度控制设计概述

第一章:概述 直流电动机是人类发明最早和应用的一种电机。与交流电机相比,直流电机因结构复、维护苦难,价格昂贵等缺点制约了它的发展,应用不及交流电机广泛。但由于直流电动机具有优良的启动、调速和制动性能,因此在工业领域中仍占有一席之地。 转速调节的主要技术指标是:调速范围D和负载变化时对转速的影响即静差率,以及调速时的允许负载性质等(静差率就是表示在负载变化时拖动装置转速降落的程度。静差率越小,表示转速稳定性越好,对生产机械,如机床加工的零件,其加工的精度及表面光洁度就越高)。而直流电动机的突出优点是恰好是能在很大的范围内具有平滑,平稳的调速性能,过载能力较强,热动和制动转矩较大。 因此,从可靠性来看,直流电动机仍有一定的优势。 调节直流电动机转速的方法有三种: (1)电枢回路串电阻; (2)改变励磁电流; (3)改变电枢回路的电源电压; 而本文从另一个角度来阐述直流电机的速度控制,即利用自动控制中的反馈来调节电机的平稳运行以达到各项性能指标。

第二章:系统数学模型 本系统的简化方框图为: 其对应的原理图为: 控制系统的被控对象为电动机(带负载),系统的输出量是转速w ,参数亮是Ui 。控制系统由给定电位器、运算放大器1(含比较作用)、运算放大器2(含RC 校正网络)、功率放大器、测速发电机、减速器等部分组成。 工作原理为:当负载角速度ω和电动机角速度m ω一致的时候,反馈电压为0,电机处于平衡状态即电动机运行稳定。当负载的角速度收到干扰的作用时,ω和m ω失谐,控制系 统通过反馈电压的作用来改变m ω直到达到新的一致使系统恢复稳定,电机稳定运行。

2.1直流电动机的数学模型: 直流电动机的数学模型。直流电动机可以在较宽的速度范围和负载范围内得到连续和准确地控制,因此在控制工程中应用非常广泛。直流电动机产生的力矩与磁通和电枢电流成正比,通过改变电枢电流或改变激磁电流都可以对电流电机的力矩和转速进行控制。图2.2是一个电枢控制式直流电动机的原理图。在这种控制方式中,激磁电流恒定,控制电压加在电枢上,这是一种普遍采用的控制方式。 设为输入的控制电压 电枢电流 为电机产生的主动力矩 为电机轴的角速度 为电机的电感 为电枢导数的电阻 为电枢转动中产生的反电势 为电机和负载的转动惯量 根据电路的克希霍夫定理 (2-1) 电机的主动转矩 (2-2) 其中为电机的力矩常数。 反电势 (2-3) 式中为电机反电势比例系数 力矩平衡方程

直流电机速度控制

目录 摘要.................................................. II 第1章绪论. (1) 第2章系统论述 (3) 2.1 总体方案 (3) 2.2 基本原理 (3) 2.3 原理框图 (3) 第3章系统的硬件设计 (5) 3.1 单片机最小系统的设计 (5) 3.2 电源电路设计 (6) 3.3 直流电机驱动电路设计 (7) 3.4 显示模块设计 (8) 3.5 按钮电路设计 (8) 3.6 元件参数选择 (9) 第4章系统的软件设计 (11) 4.1 总体方案 (11) 4.2 相关软件介绍 (12) 4.3 应用软件的编制、调试 (13) 第5章仿真结果与分析 (14) 5.1仿真电路图 (14) 5.2 仿真结果 (14) 第6章总结 (17) 参考文献 (18) 附录A:系统整体硬件电路图 (19) 附录B:程序代码 (20)

摘要 当今,计算机控制系统已经在各行各业中得到了广泛的应用和发展,而直流驱动控制作为电器传动的主流在现代化生产中起着主导作用。由于生产过程的不同要求,需要电动机进行不同转速的运转。为此,研究并制造高性能、高可靠性的直流电动机控制系统有着十分重要的显示意义。 本设计主要运用AT89C51单片机为核心硬件,对直流电动机进行速度控制。并且辅助以硬件部分的驱动、复位、LED显示等电路,软件部分对AT89C51进行模块化程序的输入,通过按钮控制,实现对直流电动机的正转、反转、加速、减速和停止等控制功能。同时,由LED与电动机转速显示控制效果。利用AT89C51芯片进行低成本直流电动机控制系统设计,简化系统构成、提高系统性能,满足了生产要求。 关键词:计算机控制 AT89C51单片机直流电动机

微机原理课程设计—直流电机闭环调速控制系统

实验课题:直流电机调速控制 实验内容: 本实验完成的是一个实现对直流电机转速调节的应用。 编写实验程序,用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。用8255的B口作为直流电机的控制信号输出口,通过对电机转速反馈量的运算,调节控制信号,达到控制电机匀速转动的的作用。并将累加器中给定的转速和当前测量转速显示在屏幕上。再通过LED灯显示出转速的大小变化。 实验目的: (1)学习掌握模/数信号转换的基本原理。 (2)掌握的ADC0809、8255芯片的使用方法。 (3)学习PC系统中扩展简单I/O接口的方法。 (4)了解实现直流电机转速调节的基本方法。 实验要求: 利用微机接口实验系统的硬件资源,运用汇编语言设计实现直流电机的调速控制功能。 基本功能要求:1、利用A/D转换方式实现模拟量给定信号的采样;2、实现PWM方式直流电机速度调节;3、LED灯显示当前直流电机速度状态。 实验设备: (1)硬件要求: PC微机一台、TD-PIT实验系统一套 (2)软件要求:唐都编程软件,tdpit编程软件,“轻松编程”软件 实验原理: 各芯片的功能简介: (1)8255的基本输出接口电路: 并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息,CPU 和接口之间的数据传递总是并行的,即可以同时进行传递8位,16位,32位等。8255可编程外围接口芯片是具有A、B、C三个并行接口,+5V单电源供电,能在以下三种方式下工作:方式0—基本输入/出方式、方式1—选通输入/出方式、方式2—双向选通工作方式。

双闭环直流电机调速的matlab仿真

双闭环直流电机调速系统的设计与MATLAB 仿真 双闭环调速系统的工作原理 转速控制的要求和调速指标 生产工艺对控制系统性能的要求经量化和折算后可以表达为稳态和动态性能指标。设计任务书中给出了本系统调速指标的要求。深刻理解这些指标的含义是必要的,也有助于我们构想后面的设计思路。在以下四项中,前两项属于稳态性能指标,后两项属于动态性能指标 调速范围D 生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,即 m in m ax n n D = (1-1) 静差率s 当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落,与理想空载转速之比,称作静差率,即 %1000 ??= n n s nom (1-2) 静差率是用来衡量调速系统在负载变化下转速的稳定度的。 跟随性能指标 在给定信号R (t )的作用下,系统输出量C (t )的变化情况可用跟随性能指标来描述。具体的跟随性能指标有下列各项:上升时间r t ,超调量σ,调节时间s t . 抗扰性能指标 此项指标表明控制系统抵抗扰动的能力,它由以下两项组成:动态降落%max C ?,恢复时间v t . 调速系统的两个基本方面 在理解了本设计需满足的各项指标之后,我们会发现在权衡这些基本指标,即

1) 动态稳定性与静态准确性对系统放大倍数的要求; 2) 起动快速性与防止电流的冲击对电机电流的要求。 采用转速负反馈和PI 调节器的单闭环调速系统,在保证系统稳定的条件下,实现转速无静差,解决了第一个问题。但是,如果对系统的动态性能要求较高,例如要求快速启制动,突加负载动态速降小等等,则单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流和转矩。 在电机最大电流受限的条件下,希望充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流为允许的最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳态后,又让电流立即降低下来,使转速马上与负载相平衡,从而转入稳态运行。在单闭环调速系统中,只有电流截止负反馈环节是专门用来控制电流的,但它只是在超过临界电流I dcr 值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图1-1a 所示。 a) b) 图1-1 调速系统启动过程的电流和转速波形 a) 带电流截止负反馈的单闭环调速系统的启动过程 b) 理想快速启动过程 当电流从最大值降低下来以后,电机转矩也随之减小,因而加速过程必然拖 I d t 0 I 0 t

直流电动机转速控制

直流电动机转速控制 王文玺 (北京交通大学机械与电子控制工程学院,北京) 摘要:通过对直流电动机控制系统的建模,再利用Matlab对建模后的系统进行分析,来加深对自动控制系统的理解。找到系统的输入、输出,理清经历各环节前后的信号变化,找出系统传递函数。 关键词:直流电动机、Matlab、建模、传递函数 1、直流电动机动态数学模型建立 1.1直流电机数字PID闭环速度控制,系统实现无静差控制。 这是一个完整的带PID算法的直流电动机控制系统。目标值为给定的期望值,期望值与被测输出结果形成的反馈做比较,得到误差信号。误差信号经过PID控制环节得到控制信号。继而经历驱动环节得到操作量,驱动量作用与对象即电动机然后得到输出信号即转速。转速通过传感器得到反馈信号。 1.2PID控制环节 1.3被控对象(直流电动机)的统一数学模型 信号类型一次为,输入信号为电压,然后电流、电流、转矩、转速,反馈信号为电压。

各环节的比例函数为: 1.3.1额定励磁条件下,直流电机的电压平衡关系: (Ud为外加电压,E 为感应电势,R a为电枢电阻 ,La为电枢电感,i a为电枢电流。) 拉氏变换后: (ra—L /R ,为电枢时间常数) 1.3.2直流电机的转矩平衡关系及拉氏变换: (Te 为电磁转矩,Tl 为负载转矩,B为 阻尼系数,J 为转动惯量,w为电机机 械转速,rm=J/B,为机械时间常数) 1.3.3电动机传递函数 可见直流电动机本身就是一个闭环系统,假设电机工作在空载状态,且机械时间常数远大于电枢时间常数,则电机传递函数可近似为: 1.4具体实例 电枢控制直流电动机拖动惯性负载的原理图,涉及的参数有:电压U为输入,转速为输出,R、L为电枢回路电阻、电感,K 是电动机转矩系数,K 是反电动势系数,K 是电动机和负载折合到电动机轴上的黏性摩擦系数,.厂是电动机和负载折合到电动机轴上的转动惯量。已知:R一2.0 Q,L:==0.5 H ,K = Kb一0.015,Kf一0.2 Nms,J— o.02kg.m 。 ( 取电压U为输入,转速叫为输出,由已知条件和原理图,根据直流电机的运动方程可以求出电动机系统的数学模型为:

单片机PWM控制直流电机的速度

用单片机控制直流电机的速度 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 直流电机的调速方案一般有下列3种方式: ?1、改变电枢电压; ?2、改变激磁绕组电压; ?3、改变电枢回路电阻。 使用单片机来控制直流电机的变速,一般采用调节电枢电压的方式,通过单片机控制PWM1,PWM2,产生可变的脉冲,这样电机上的电压也为宽度可变的脉冲电压。根据公式 U=aVCC 其中:U为电枢电压;a为脉冲的占空比(0

电动机的电枢电压受单片机输出脉冲控制,实现了利用脉冲宽度调制技术(PWM)进行直流电机的变速。 因为在H桥电路中,只有PWM1与PWM2电平互为相反时电机才能驱动,也就是PWM1与PWM2同为高电平或同为低电平时,都不能工作,所以上图中的实际脉冲宽度为B, 我们把PWM波的周期定为1ms,占空比分100级可调(每级级差为10%),这样定时器T0每0.01ms产生一次定时中断,每100次后进入下一个PWM波的周期。上图中,占空比是60%,即输出脉冲的为0.6ms,断开脉冲为0.4ms,这样电枢电压为5*60%=3V。 我们讨论的是可以正转反转的,如果只按一个方向转,我们就只要把PWM1置为高电平或低电平,只改变另一个PWM2电平的脉冲变化即可,,如下图(Q4导通,Q3闭合,电机只能顺时针调整转动速度)

基于Matlab的直流电机速度控制

系统仿真 课程设计报告 设计题目:基于Matlab的直流电机速度控制 专业:自动化 学生姓名: 班级学号: 指导教师: 开课日期2013年 7 月 1 日至2013年 7 月 13 日南京邮电大学自动化学院

一、课程设计题目 控制系统的执行机构常用直流电机来驱动,电路和原理示意图如下所示 其开环传递函数为 ()()0001 .0)15.0)(1.001.0(01 .02 +++=+++= s s K R Ls b Js K V θ ,请用时域分析方法设计PID 控制器,使系统满足下列性能指标要求:当仿真输入是单位阶跃信号时,电机输出转速调整时间小于2秒,超调小于5%,稳态误差小于1%。 要求给出详细的设计步骤,matlab 源码及仿真曲线。 二、实验原理 本报告首先介绍了直流电动机的物理模型,并测量计算了它的具体参数。然后根据牛顿第二定律和回路电压法分别列写运动平衡方程式和电机电枢回路方程式,从而通过一些数学变换抽象出了以电压为输入、转速为输出、电流和转速为状态变量的数学模型。借助MATLAB 设计simulink 模块调整PID 模块的各项系数,使系统的阶跃响应达到了设计指标。 1、建立该系统的时域数学模型 由克希霍夫定律得:

V=R*i+L+e 直流电机转矩和电枢电流关系为 T=Kt*I 电枢旋转产生反电动势与旋转运动角速度的关系为 e= 由牛顿定律,转子力矩平衡关系为 其中,T:负载转矩, :负载电流 V(s)=R*I(s)+L*sI(s)+E(s) 拉式变换:E=Ke(s) 划去中间变量得: 开环传递函数为: 2、PID控制器的功能 比例环节:Kp增大等价于系统的开环增益增加,会引起系统响应速度加快,稳态误差减少,超调量增加。当Kp过大时,会使闭环系统不稳定; 积分环节:相当于增加系统积分环节个数,主要作用是消除系统的稳

直流电动机转速控制系统设计

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。特别是在直流电动机广泛应用的电气传动领域,起到至关重要的作用。直流电动机因为具有良好的调速性能和比较大的起动转矩,一直被应用在电气领域,尤其是在需要调速性能很高的场所。在制造业、工农业自动化、铁路与运输等行业都被广泛的应用,随着市场的竞争力,对直流电动机的需求也越来越高,同时对直流电动机的调速性能也有了更高的要求。因此,研究直流电动机转速控制系统的调速性能有着很重要的意义。 在本次的设计中采用PWM控制直流电动机转速。PWM脉冲受到PID算法的控制,被用来控制直流电动机的转速。同时利用安装在直流电动机转轴上的光电式传感器,将直流电动机的转速转换成脉冲信号,反馈到单片机,形成闭环反馈控制系统,改变不同占空比的PWM脉冲就可以实现直流电动机转速控制。 本论文对每一个方案的选择都进行详细的论述,在软件和硬件部分都进行了模块化。硬件部分首先给出一个以AT89S52单片机为核心的整体结构图,并对驱动电路、显示电路等模块进行详细的阐述。在软件部分给出整体程序流程图,对PWM 程序、PID算法程序、显示程序等模块详细的阐述。本次系统设计的具有抗干扰能力强、性价比高、维修简单方便等优点。 关键词:PWM;单片机;直流电动机;转速控制

Abstract Nowadays, automatic control system has been widely used and greatly developed in all walks of life. As the dominant part of electric drive, direct current (DC) control plays an important role in modern production, especially in the DC motor is widely used in the field of electric transmission. DC motor because of its good speed control performance and relatively large starting torque, has been applied in the electrical field, especially in the high speed performance requirements of the occasion. Is widely used in the manufacturing industry, industry and trade of agricultural automation, rail and transit industry, with the competitiveness of the market, the demand of DC motor is also more and more high, also of the DC motor speed performance also has the higher requirements. Therefore, it is very important to study the speed control performance of the DC motor speed control system. In this design, using PWM control DC motor speed. PWM pulse is controlled by the PID algorithm, PWM is used to control the speed of DC motor. At the same time, the hall sensor mounted on the rotational shaft of the DC motor, the DC motor speed is converted into a pulse signal, feedback to the microcontroller, form a closed loop feedback control system, changing the duty ratio of the PWM pulse can realize DC motor speed control. In this paper, the choice of each program are discussed in detail, in both the software and hardware parts are modular. In the part of hardware, we first give a whole structure diagram with AT89S52 single chip microcomputer as the core, and elaborate the driving circuit, display circuit and other modules in detail. In the software part gives the overall program flow chart, the PWM program, PID algorithm program, display program, and other modules are described in detail. The system design has the advantages of strong anti-interference ability, high cost performance, easy maintenance and so on. Key Words: PWM; microcomputer; DC motor; speed control

直流电机的速度控制

EDA课程设计报告 直流电机的PWM调速 一、概述 直流电动机具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求。电动机调速系统采用微机实现数字化控制,是电气传动发展的主要方向之一。采用微机控制后,整个调速系统实现全数字化,结构简单,可靠性高,操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生产中高性能电气传动的要求。由于CPLD/FPGA性能优越,具有较佳的性能价格比,所以在工业过程及设备控制中得到日益广泛的应用。 PWM 调速系统与可控整流式调速系统相比有下列优点:由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。 二、PWM调速的原理

图(1) 图(1)是全桥型的电机驱动电路,利用的是三极管的电流放大来驱动电机。从图上我们可以看到当Q4和Q3导通时,电机正转;当Q1和Q2导通时,电机反转。 设电机速度从静止开始加速,如图(2)所示,首先Q3,Q4必须维持导通一段时间,此时电机所承受的电压约为供电电压U,称之为强加速。待速度接近目标速度时,加速可以减缓,此时Q3,Q4和Q1,Q2轮流导通,只是Q3,Q4在一个周期内所导通的时间t on比Q1,Q2导通的时间t off长一些,在此称为弱加速。任何时刻,电机所承受的平均电压U O,表示为U O = U×(t on-t off)( t on +t off)。如果速度已经达到目标,便可以调整t off 和t on的时间比例使之相等,此时平均电压为0,是定速控制。由此可知,平均电压若为正值时,是加速控制;负值时是减速控制;为零时即达到匀速。 图(2) 三、程序的设计 在整个程序设计中,我们可以把他分成几个部分

直流电机转速调节

直流电机转速调节 直流电动机的转速n和其他参量的关系可表示为 式中 Ua——电枢供电电压(V); Ia ——电枢电流(A); Ф——励磁磁通(Wb); Ra——电枢回路总电阻(Ω); CE——电势系数,,p为电磁对数,a为电枢并联支路数,N为导体数。 可知调速方法: (1)改变电枢回路总电阻Ra; (2)改变电枢供电电压Ua; (3)改变励磁Ф。 由第二种方法知道,直流电机转速与加在电机两端电压有关,故可选用单片机 产生PWM方波,经驱动电路放大后驱动电机旋转。PWM基本原理冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同是指环节的输出响应波形基本相同。PWM (Pulse Width Modulation)是一种对模拟信号电平进行数字编码的方法,PWM控制为脉冲宽度调制,保持开关周期不变,调制导通时间。脉宽调速系统历史久远,但缺乏高速大功率开关器件,未能及时在生产实际中推广应用。后来,由于大功率晶体管(GTR),特别是IGBT功率器件,使直流电动机脉宽调速系统才获得迅猛发展。 产生PWM波形控制电机电压原理 利用单片机A\D转换器输出控制直流电机两端电压,来控制转速。可采用简单的比例调节器,其公式

Y=Kp*e(t) e(t)为偏差电压,即输入,Kp为比例系数,Y为输出。 比例调节是最简单最基本的方式,调节器的输出与输入成正比,与调节比例系数成正比。比例系数越大,动态性能大,调节作用好。采用比例积分调节器代替比例放大器后,可以使系统稳定且有足够的稳定裕量,但是比例调节存在问题,对于多数惯性环节,比例调节会引起自激震荡,而且其控制作用需要用偏差来维持,属于有静差调速系统,只能设法减少静差,无法从根本上消除静差。

相关主题
文本预览
相关文档 最新文档