当前位置:文档之家› 高中数学学案回归分析

高中数学学案回归分析

高中数学学案回归分析
高中数学学案回归分析

§3.2 回归分析(1)

教学目标

(1)通过实例引入线性回归模型,感受产生随机误差的原因;

(2)通过对回归模型的合理性等问题的研究,渗透线性回归分析的思想和方法; (3)能求出简单实际问题的线性回归方程. 教学重点,难点

线性回归模型的建立和线性回归系数的最佳估计值的探求方法. 教学过程

一.问题情境

1. 情境:对一作直线运动的质点的运动过程观测了8次,得到如下表所示的数据,试估计当

根据《数学(必修)》中的有关内容,解决这个问题的方法是: 先作散点图,如下图所示:

从散点图中可以看出,样本点呈直线趋势,时间x 与位置观测值y 之间有着较好的线性关系.因此可以用线性回归方程来刻画它们之间的关系.根据

线性回归的系数公式,

1

221()n

i i i n i i x y nx y b x n x a y bx

==?

-?

?=??-??=-??∑∑ 可以得到线性回归方为 3.5361 2.1214y x =+,所以当9x =时,由线性回归方程可以估计其位置值为22.6287y =

2.问题:在时刻9x =时,质点的运动位置一定是22.6287cm 吗?

二.学生活动

思考,讨论:这些点并不都在同一条直线上,上述直线并不能精确地反映x 与y 之间的关系,y 的值不能由x 完全确定,它们之间是统计相关关系,y 的实际值与估计值之间存在着误差. 三.建构数学

1.线性回归模型的定义:

我们将用于估计y 值的线性函数a bx +作为确定性函数;

y 的实际值与估计值之间的误差记为ε,称之为随机误差;

将y a bx ε=++称为线性回归模型.

说明:(1)产生随机误差的主要原因有:

①所用的确定性函数不恰当引起的误差; ②忽略了某些因素的影响; ③存在观测误差.

(2)对于线性回归模型,我们应该考虑下面两个问题: ①模型是否合理(这个问题在下一节课解决); ②在模型合理的情况下,如何估计a ,b ? 2.探求线性回归系数的最佳估计值:

对于问题②,设有n 对观测数据(,)i i x y (1,2,3,

,)i n =,根据线性回归模型,对于

每一个i x ,对应的随机误差项()i i i y a bx ε=-+,我们希望总误差越小越好,即要使

2

1

n

i

i ε

=∑越小越好.所以,只要求出使2

1

(,)()

n

i

i

i Q y x αββα==

--∑取得最小值时的α,β值作

为a ,b 的估计值,记为a ,b .

注:这里的i ε就是拟合直线上的点(),i i x a bx +到点(),i i i P x y 的距离. 用什么方法求a ,b ?

回忆《数学3(必修)》“2.4线性回归方程”P71“热茶问题”中求a ,b 的方法:最小二乘法.

利用最小二乘法可以得到a ,b 的计算公式为

1

1

22211

()()()()n

n

i i i i

i i n n

i i

i i x x y y x y nx y

b x x x

n x a y bx

====?

---?

?==??--??=-??∑∑∑∑,

其中11n i i x x n ==∑,1

1n

i i y y n ==∑

由此得到的直线y a bx =+就称为这n 对数据的回归直线,此直线方程即为线性回归方程.其中a ,b 分别为a ,b 的估计值,a 称为回归截距,b 称为回归系数,y 称为回归值.

在前面质点运动的线性回归方程 3.5361 2.1214y x =+中, 3.5361a =, 2.1214b =. 3. 线性回归方程y a bx =+中a ,b 的意义是:以a 为基数,x 每增加1个单位,y 相应地

平均增加b 个单位;

4. 化归思想(转化思想)

在实际问题中,有时两个变量之间的关系并不是线性关系,这就需要我们根据专业知识或散点图,对某些特殊的非线性关系,选择适当的变量代换,把非线性方程转化为线性回归方程,从而确定未知参数.下面列举出一些常见的曲线方程,并给出相应的化为线性回归方程的换元公式. (1)b y a x =+

,令'y y =,1

'x x

=,则有''y a bx =+. (2)b

y ax =,令'ln y y =,'ln x x =,'ln a a =,则有'''y a bx =+. (3)bx

y ae =,令'ln y y =,'x x =,'ln a a =,则有'''y a bx =+. (4)b x y ae =,令'ln y y =,1

'x x

=

,'ln a a =,则有'''y a bx =+. (5)ln y a b x =+,令'y y =,'ln x x =,则有''y a bx =+.

四.数学运用 1.例题:

例1.下表给出了我国从1949年至1999年人口数据资料,试根据表中数据估计我国2004年的人口数.

解:为了简化数据,先将年份减去1949,并将所得值用x 表示,对应人口数用

y 表示,

作出11个点(),x y 构成的散点图,

由图可知,这些点在一条直线附近,可以用线性回归模型y a bx ε=++来表示它们之间的关系.

根据公式(1)可得

14.453,

527.591.

b a ?≈??

≈?? 这里的,a b 分别为,a b 的估 计值,因此线性回归方程 为527.59114.453y x =+

由于2004年对应的55x =,代入线性回归方程527.59114.453y x =+可得1322.50

y =(百万),即2004年的人口总数估计为13.23亿. 例2. 某地区对本地的企业进行了一次抽样调查,下表是这次抽查中所得到的各企业的

人均资本x (万元)与人均产出y (万元)的数据:

(1)设y 与x 之间具有近似关系b

y ax ≈(,a b 为常数),试根据表中数据估计a 和b 的值; (2)估计企业人均资本为16万元时的人均产出(精确到0.01).

分析:根据x ,y 所具有的关系可知,此问题不是线性回归问题,不能直接用线性回归方

程处理.但由对数运算的性质可知,只要对b

y ax ≈的两边取对数,就能将其转化为线性关系.

解(1)在b

y ax ≈的两边取常用对数,可得lg lg lg y a b x ≈+,设lg y z =,lg a A =,

lg x X =,则z A bX ≈+.相关数据计算如图327--所示.

仿照问题情境可得A ,b 的估计值A ,b 分别为0.2155,

1.5677,

A b ?=-??=??由lg 0.2155a =-可得

0.6088a ≈,即a ,b 的估计值分别为0.6088和1.5677.

(2)由(1)知1.56770.6088y x =.样本数据及回归曲线的图形如图328--(见书本102P

页)

当16x =时, 1.56770.60881647.01y =?≈(万元),故当企业人均资本为16万元时,人均产值约为47.01万元.

2.练习:104P 练习第1题. 五.回顾小结:

1. 线性回归模型y a bx ε=++与确定性函数y a bx =+相比,它表示y 与x 之间是统计相

关关系(非确定性关系)其中的随机误差ε提供了选择模型的准则以及在模型合理的情况下探求最佳估计值a ,b 的工具;

2. 线性回归方程y a bx =+中a ,b 的意义是:以a 为基数,x 每增加1个单位,y 相应地

平均增加b 个单位; 3.求线性回归方程的基本步骤. 六.课外作业:106P 第2题.

高二数学《1.1回归分析的基本思想及其初步应用》教案 文

第一章统计案例 1.1回归分析的基本思想及其初步应用(一) 第一课时 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关? 2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题: ①例1从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编号 1 2 3 4 5 6 7 8 165 165 157 170 175 165 155 170 身高 /cm 体重 48 57 50 54 64 61 43 59 /kg 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重. (分析思路→教师演示→学生整理) 第一步:作散点图第二步:求回归方程第三步:代值计算 ②提问:身高为172cm的女大学生的体重一定是60.316kg吗? 不一定,但一般可以认为她的体重在60.316kg左右. ③解释线性回归模型与一次函数的不同 事实上,观察上述散点图,我们可以发现女大学生的体重y和身高x之间的关系并不能用一=+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身次函数y bx a 高和体重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e(即 =++,其中残差残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e 变量e中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义. 3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同. 备课人:张颖岳新霞王莉

(完整word版)高中数学专题训练(教师版)—线性回归

高中数学专题训练(教师版)—线性回归 一、选择题 1.实验测得四组(x ,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为( ) A.y ^=x +1 B.y ^=x +2 C.y ^=2x +1 D.y ^=x -1 答案 A 解析 画出散点图,四点都在直线y ^=x +1. 2.下列有关样本相关系数的说法不正确的是( ) A .相关系数用来衡量变量x 与y 之间的线性相关程度 B .|r |≤1,且|r |越接近于1,相关程度越大 C .|r |≤1,且|r |越接近0,相关程度越小 D .|r |≥1,且|r |越接近1,相关程度越小 答案 D 3.由一组样本(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程y ^=a +bx ,下面有四种关于回归直线方程的论述: (1)直线y ^=a +bx 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点; (2)直线y ^=a +bx 的斜率是 ∑n i =1x i y i -n x y ∑n i =1x 2i -n x 2; (3)直线y ^=a +bx 必过(x ,y )点; (4)直线y ^=a +bx 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差∑n i =1 (y i -a -bx i )2是该坐标平面上所有的直线与这些点的偏差中最小的直线. 其中正确的论述有( ) A .0个 B .1个 C .2个 D .3个 答案 D 解析 线性回归直线不一定过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的任何一点;b =∑n i =1x i y i -n x y ∑n i =1x 2i -n x 2就是线性回归直线的斜率,也就是回归系数;线性回 归直线过点(x ,y );线性回归直线是平面上所有直线中偏差∑n i =1 (y i -a -bx i )2 取得最小的那一条.故有三种论述是正确的,选D. 4.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵截距是a ,那么必有( ) A .b 与r 的符号相同 B .a 与r 的符号相同 C .b 与r 的符号相反 D .a 与r 的符号相反 答案 A

高二线性回归方程试题及答案

回归直线方程 1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为 .] (1)根据频率分布直方图计算图中各小长方形的宽度; (2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值); (3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表: 由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程. 401 22 1???,n i i i n i i x y nx y b a y bx x nx ==-==--∑∑4x y y x

2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调 ()完成列联表,并判断在犯错误的概率不超过的前提下,能否认为选题与性 别有关. (Ⅱ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中 共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望. 附: ,其中. ξξE ξ()()()()() 2 2n ad bc K a b c d a c b d -=++++n a b c d =+++

(完整)高中数学知识点:线性回归方程,推荐文档

高中数学知识点:线性回归方程 1.回归直线方程 (1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。求出的回归直线方程简称回归方程。 2.回归直线方程的求法 设与n 个观测点(,i i x y )()1,2,,i n =???最接近的直线方程为$ ,y bx a =+,其中a 、b 是待定系数. 则$,(1,2,,)i i y bx a i n =+=L .于是得到各个偏差 μ(),(1,2,,)i i i i y y y bx a i n -=-+=L . 显见,偏差$i i y y -的符号有正有负,若将它们相加会造成相互抵 消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和. 2222211)()()(a bx y a bx y a bx y Q n n --++--+--=Λ 表示n 个点与相应直线在整体上的接近程度. 记21()n i i i Q y bx a ==--∑. 上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值.即 1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====?---??==??--??=-??∑∑∑∑, ∑==n i i x n x 11,∑==n i i y n y 11

相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析 上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。 要点诠释: 1.对回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可.不要求掌握回归直线方程的推导过程. 2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性. 3.求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误. 4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.

高中数学线性回归方程检测试题(附答案)

高中数学线性回归方程检测试题(附答案) 高中苏教数学③ 2. 4线性回归方程测试题 一、选择题 1.下列关系属于线性负相关的是() A.父母的身高与子女身高的关系 B.身高与手长 C.吸烟与健康的关系 D.数学成绩与物理成绩的关系 答案:C 2.由一组数据得到的回归直线方程,那么下面说法不正确的是() A.直线必经过点 B.直线至少经过点中的一个点 C.直线 a的斜率为 D.直线和各点的总离差平方和是该坐标平面上所有直线与这些点的离差平方和中最小的直线 答案:B 3.实验测得四组的值为,则y与x之间的回归直线方程为() A.B. C.D.

答案:A 4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是,那么下列说法正确的是() A.直线和一定有公共点 B.直线和相交,但交点不一定是 C.必有直线 D.和必定重合 答案:A 二、填空题 5.有下列关系: (1)人的年龄与他(她)拥有的财富之间的关系 (2)曲线上的点与该点的坐标之间的关系 (3)苹果的产量与气候之间的关系 (4)森林中的同一种树木,其断面直径与高度之间的关系(5)学生与他(她)的学号之间的关系 其中,具有相关关系的是. 答案:(1)(3)(4) 6.对具有相关关系的两个变量进行的方法叫做回归分析.用直角坐标系中的坐标分别表示具有的两个变量,将数据表

中的各对数据在直角坐标系中描点得到的表示具有相关关 系的两个变量的一组数据的图形,叫做. 答案:统计分析;相关关系;散点图 7.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为,则新数据的平均数是,方差是,标准差是. 答案:;; 8.已知回归直线方程为,则可估计x与y增长速度之比约为. 答案: 三、解答题 9.某商店统计了近6个月某商品的进价x与售价y(单位:元)的对应数据如下: 3 5 2 8 9 12 4 6 3 9 12 14 求y对x的回归直线方程. 解:,, 回归直线方程为. 10.已知10只狗的血球体积及红血球的测量值如下: 45 42 46 48 42 6.53 6.30 9.25 7.580 6.99 35 58 40 39 50

高中数学《线性回归方程》教案

线性回归方程 教学目标: (1)了解非确定性关系中两个变量的统计方法; (2)掌握散点图的画法及在统计中的作用; (3)掌握回归直线方程的实际应用。 教学重点: 线性回归方程的求解。 教学难点: 回归直线方程在现实生活与生产中的应用。 教学过程: 一、复习练习 1.下例说法不正确的是( B ) A.在线性回归分析中,x 和y 都是变量; B.变量之间的关系若是非确定关系,那么x 不能由y 唯一确定; C.由两个变量所对应的散点图,可判断变量之间有无相关关系; D.相关关系是一种非确定性关系. 2.已知回归方程81.05.0?-=x y ,则x =25时, y 的估计值为__11.69____. 3.三点)24,11(),20,7(),10,3(的线性回归方程是 ( D ) A x y 75.175.1?-= B x y 75.575.1? += C x y 75.575.1?-= D x y 75.175.1?+= 4.我们考虑两个表示变量x 与y 之间的关系的模型,δ为误差项,模型如下: 模型1:x y 46+=:;模型2:e x y ++=46. (1)如果1,3==e x ,分别求两个模型中y 的值; (2)分别说明以上两个模型是确定性模型还是随机模型. 解 (1)模型1:y=6+4x=6+4×3=18; 模型2:y=6+4x+e=6+4×3+1=19. (2)模型1中相同的x 值一定得到相同的y 值.所以是确定性模型;模型2中相同的x 值,因 δ不同,且δ为误差项是随机的,所以模型2是随机性模型。 二、典例分析 例1、一个车间为了规定工时定额,需要确定加工零件所花费的时间.为此进行了10次试验,测得数据如下:

高中数学 选修 非线性回归模型

2.非线性回归模型 教学目标 班级____姓名________ 1.进一步体会回归分析的基本思想. 2.通过非线性回归分析,判断几种不同模型的拟合程度. 教学过程 一、非线性回归模型. 非线性回归分析的步骤:(1)确定研究对象;(2)采集数据;(3)作散点图;(4)选取函数模型,并转化成线性回归模型,并转化数据;(5)求线性回归方程;(6)建线性回归模型,求残差,画残差图;(7)求2R ,刻画拟合效果. 二、例题分析. 例1:研究红铃虫产卵数与温度的关系. (例见教科书2P ) 1.确定研究对象:红铃虫产卵数与温度的关系. 2.采集数据: 3.作散点图: 4.选取函数模型,并转化成线性回归模型,并转化数据: (1)根据样本点的变化趋势,选取函 数模型:x c e c y 21=(指数函数模 型); (2)令y z ln =,将指数函数 模型转化成一次函数模型a bx z +=(1ln c a =,2c b =); (3)数据转化: (4)新散点图: 5.求线性回归方程: 温度C x ο/ 21 23 25 27 29 32 35 产卵数/y 个 7 11 21 24 66 115 325 21 23 25 27 29 32 35 1.946 2.398 3.045 3.178 4.190 4.745 5.784

运用公式求得272.0?=b ,849.3?=a ,线性回归方程为849.3272.0?-=x z , 而红铃虫的产卵数对温度的非线性回归方程为849.3272.0)1(?-=x e y . 6.建线性回归模型,求残差,画残差图; 残差849.3272.0)1() 1(??--=-=i x i i i i e y y y e 7.求2R ,刻画拟合效果. 注意事项: (1)根据样本点的变化趋势,选取函数模型时,可能的选择不止一个; (2)本例可选取二次函数模型423c x c y +=, (3)令2x t =,将二次函数模型转化成一次函数模型43c t c y +=; (4)不同模型拟合效果不同,可根据2R 来判断,2R 越大,拟合效果越好. 作业:为了研究某种细菌随时间x 变化时,繁殖个数y 的变化,收集数据如下: 天数x /天 1 2 3 4 5 6 繁殖个数y / 个 6 12 25 49 95 190 (1)用天数x 作解释变量,繁殖个数y 作预报变量,作出这些数据的散点图; (2)描述解释变量x 与预报变量y 之间的关系; (3)计算相关指数 2R .

人教版高中数学(理科)选修线性回归(一)

线性回归(一) 教学目的: 1 了解相关关系、回归分析、散点图的概念 2.明确事物间是相互联系的,了解非确定性关系中两个变量的统计方法;掌握散点图的画法及在统计中的作用,掌握回归直线方程的求解方法 3.会求回归直线方程 教学重点:散点图的画法,回归直线方程的求解方法 教学难点:回归直线方程的求解方法 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 客观事物是相互联系的过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度所以说,函数关系存在着一种确定性关系但还存在着另一种非确定性关系——相关关系 二、讲解新课: 1.相关关系的概念 当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系 相关关系是非随机变量与随机变量之间的关系,函数关系是两个非随机变量之间的关系,是一种因果关系,而相关关系不一定是因果关系,所以相关关系与函数关系不同,其变量具有随机性,因此相关关系是一种非确定性关系(有因果关系,也有伴随关系).因此,相关关系与函数关系的异同点如下: 相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系. 2.回归分析: 对具有相关关系的两个变量进行统计分析的方法叫做回归分析通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性 3.散点图:表示具有相关关系的两个变量的一组数据的图形叫做散点图.散点图形象地反映了各对数据的密切程度粗略地看,散点分布具有一定的规律 4. 回归直线 设所求的直线方程为,^ a bx y +=,其中a 、 b 是待定系数. 则),,2,1(,^ n i a bx y i i =+= .于是得到各个偏差 ),,2,1(),(^ n i a bx y y y i i i i =+-=-. 显见,偏差i i y y ^ -的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和. 2222211)()()(a bx y a bx y a bx y Q n n --++--+--= 表示n 个点与相应直线在整体上的接近程度.

高中数学 3.1回归分析(一)教案 北师大选修2-3

3.1 回归分析 教学目标 (1)通过实例引入线性回归模型,感受产生随机误差的原因; (2)通过对回归模型的合理性等问题的研究,渗透线性回归分析的思想和方法; (3)能求出简单实际问题的线性回归方程. 教学重点,难点 线性回归模型的建立和线性回归系数的最佳估计值的探求方法. 教学过程 一.问题情境 1. 情境:对一作直线运动的质点的运动过程观测了8次,得到如下表所示的数据,试估计当 时刻x /s 1 2 3 4 5 6 7 8 位置观测值y /cm 5.54 7.52 10.02 11.73 15.69 1 6.12 16.98 21.06 根据《数学(必修)》中的有关内容,解决这个问题的方法是: 先作散点图,如下图所示: 从散点图中可以看出,样本点呈直线趋势,时间x 与位置观测值y 之间有着较好的线性关系.因此可以用线性回归方程来刻画它们之间的关系.根据线性回归的系数公式, 1 221()n i i i n i i x y nx y b x n x a y bx ==? -? ?=??-??=-??∑∑ 可以得到线性回归方为$3.5361 2.1214y x =+,所以当9x =时,由线性回归方程可以估计其位置值为$22.6287y = 2.问题:在时刻9x =时,质点的运动位置一定是22.6287cm 吗? 二.学生活动 思考,讨论:这些点并不都在同一条直线上,上述直线并不能精确地反映x 与y 之间的关系,y 的值不能由x 完全确定,它们之间是统计相关关系,y 的实际值与估计值之间存在着误差. 三.建构数学 1.线性回归模型的定义: 我们将用于估计y 值的线性函数a bx +作为确定性函数; y 的实际值与估计值之间的误差记为ε,称之为随机误差; 将y a bx ε=++称为线性回归模型.

2017-2018版高中数学24线性回归方程试题苏教版必修3推荐

2.4 线性回归方程 双基达标 限时15分钟 1.有下列关系: ①人的年龄与其拥有的财富之间的关系; ②曲线上的点与该点的坐标之间的关系; ③苹果的产量与气候之间的关系; ④森林中的同一树木,其横截面直径与高度之间的关系; ⑤学生与其学号之间的关系. 其中有相关关系的是________.(填序号) 解析 其中②⑤为确定性关系,不是相关关系. 答案 ①③④ 2.下列命题: ①任何两个变量都具有相关关系; ②圆的周长与该圆的半径具有相关关系; ③某商品的需求量与该商品的价格是一种非确定性关系; ④根据散点图求得的回归直线方程可能是没有意义的; ⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究. 其中正确的命题为________. 解析 两个变量不一定是相关关系,也可能是确定性关系,故①错误;圆的周长与该圆的半径具有函数关系,故②错误;③④⑤都正确. 答案 ③④⑤ 3.由一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程y ^ =bx +a ,那么下面说法正确的是________. ①直线y ^ =bx +a 必经过点(x ,y ); ②直线y ^ =bx +a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点; ③直线y ^ =bx +a 的斜率为 ∑i =1 n x i y i -n x y ∑i =1 n x i 2-n x 2 ; ④直线y ^ =bx +a 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的总离差平方和∑i =1 n [y i -(bx i +a )]2 是该坐标平面上所有直线与这些点的离差平方和中最小的直线. 解析 ②错误;线性回归方程不一定经过(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的某一个

高中数学学案回归分析

§3.2 回归分析(1) 教学目标 (1)通过实例引入线性回归模型,感受产生随机误差的原因; (2)通过对回归模型的合理性等问题的研究,渗透线性回归分析的思想和方法; (3)能求出简单实际问题的线性回归方程. 教学重点,难点 线性回归模型的建立和线性回归系数的最佳估计值的探求方法. 教学过程 一.问题情境 1. 情境:对一作直线运动的质点的运动过程观测了8次,得到如下表所示的数据,试估计当 根据《数学(必修)》中的有关内容,解决这个问题的方法是: 先作散点图,如下图所示: 从散点图中可以看出,样本点呈直线趋势,时间x 与位置观测值y 之间有着较好的线性关系.因此可以用线性回归方程来刻画它们之间的关系.根据 线性回归的系数公式, 1 221()n i i i n i i x y nx y b x n x a y bx ==? -? ?=??-??=-??∑∑ 可以得到线性回归方为 3.5361 2.1214y x =+,所以当9x =时,由线性回归方程可以估计其位置值为22.6287y = 2.问题:在时刻9x =时,质点的运动位置一定是22.6287cm 吗? 二.学生活动 思考,讨论:这些点并不都在同一条直线上,上述直线并不能精确地反映x 与y 之间的关系,y 的值不能由x 完全确定,它们之间是统计相关关系,y 的实际值与估计值之间存在着误差. 三.建构数学 1.线性回归模型的定义: 我们将用于估计y 值的线性函数a bx +作为确定性函数; y 的实际值与估计值之间的误差记为ε,称之为随机误差; 将y a bx ε=++称为线性回归模型.

说明:(1)产生随机误差的主要原因有: ①所用的确定性函数不恰当引起的误差; ②忽略了某些因素的影响; ③存在观测误差. (2)对于线性回归模型,我们应该考虑下面两个问题: ①模型是否合理(这个问题在下一节课解决); ②在模型合理的情况下,如何估计a ,b ? 2.探求线性回归系数的最佳估计值: 对于问题②,设有n 对观测数据(,)i i x y (1,2,3, ,)i n =,根据线性回归模型,对于 每一个i x ,对应的随机误差项()i i i y a bx ε=-+,我们希望总误差越小越好,即要使 2 1 n i i ε =∑越小越好.所以,只要求出使2 1 (,)() n i i i Q y x αββα== --∑取得最小值时的α,β值作 为a ,b 的估计值,记为a ,b . 注:这里的i ε就是拟合直线上的点(),i i x a bx +到点(),i i i P x y 的距离. 用什么方法求a ,b ? 回忆《数学3(必修)》“2.4线性回归方程”P71“热茶问题”中求a ,b 的方法:最小二乘法. 利用最小二乘法可以得到a ,b 的计算公式为 1 1 22211 ()()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x n x a y bx ====? ---? ?==??--??=-??∑∑∑∑, 其中11n i i x x n ==∑,1 1n i i y y n ==∑ 由此得到的直线y a bx =+就称为这n 对数据的回归直线,此直线方程即为线性回归方程.其中a ,b 分别为a ,b 的估计值,a 称为回归截距,b 称为回归系数,y 称为回归值. 在前面质点运动的线性回归方程 3.5361 2.1214y x =+中, 3.5361a =, 2.1214b =. 3. 线性回归方程y a bx =+中a ,b 的意义是:以a 为基数,x 每增加1个单位,y 相应地

高中数学 2.4 线性回归方程(第1课时)教案 新人教版必修3

江苏省常州市西夏墅中学高中数学 2.4 线性回归方程(第1课时)教 案新人教版必修3 教学目标: 1. 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系; 2. 在两个变量具有线性相关关系时,会在散点图中作出线性直线,会用线性回归方程进行预测; 3. 知道最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解(线性)相关系数的定义. 教学重点: 散点图的画法,回归直线方程的求解方法. 教学难点: 回归直线方程的求解方法. 教学方法: 引导发现、合作探究. 教学过程: 一、创设情景,揭示课题 客观事物是相互联系的.过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系. 二、学生活动 提出问题:两个变量之间的常见关系有几种? (1)确定性的函数关系,变量之间的关系可以用函数表示; (2)相关关系,变量之间有一定的联系,但不能完全用函数来表示.

说明:不要认为两个变量间除了函数关系,就是相关关系,事实是,两个变量间可能毫无关系.比如地球运行的速度与某个人的行走速度就可认为没有关系. 某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表: 如果某天的气温是5-0 C ,你能根据这些数据预测这天小卖部卖出热茶的杯数吗? 从下图可以看出,这些点散布在一条直线的附近,故可用一个线性函数近似地表示热茶销量与气温之间的关系. 选择怎样的直线近似地表示热茶销量与气温之间的关系? 我们有多种思考方案: (1)选择能反映直线变化的两个点,例如取(4,50),(18,24)这两点的直线; (2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同; (3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距; …… 怎样的直线最好呢? 三、建构数学 1.最小平方法: 用方程为?y bx a =+的直线拟合散点图中的点,应使得该直线 与散点图中的点最接近.那么,怎样衡量直线?y bx a =+与图中六 个点的接近程度呢? 我们将表中给出的自变量x 的六个值带入直线方程,得到相应的六个?y 的值: 26,18,13,10,4,b a b a b a b a b a b a +++++-+.这六个值与表中相应的实际值应该越 接近越好.所以,我们用类似于估计平均数时的思想,考虑离差的平方和 22222 2 (,)(2620)(1824)(1334)(1038)(450)(64) Q a b b a b a b a b a b a b a =+-++-++-++-++-+-+-

高中数学选修3统计案例之线性回归方程习题课

1.相关关系的分类 从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关. 2.线性相关 从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线.3.回归方程 (1)最小二乘法:使得样本数据的点到回归直线的距离平方和最小的方法叫最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(x n,y n),其回归方程为y^=b^x+a^,则b^,a^

其中,b是回归方程的斜率,a是在y轴上的截距. 4.样本相关系数 r= ∑ i=1 n (x i-x)(y i-y) ∑ i=1 n (x i-x)2∑ i=1 n (y i-y)2 ,用它来衡 量两个变量间的线性相关关系. (1)当r>0时,表明两个变量正相关; (2)当r<0时,表明两个变量负相关; (3)r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|>0.75时,认为两个变量有很强的线性相关关系. 5.线性回归模型

(1)y=bx+a+e中,a、b称为模型的未知参数;e称为随机误差. (2)相关指数 用相关指数R2来刻画回归的效果,其计算公式是:R2=,R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R2表示解释变量对预报变量变化的贡献率,R2越接近于1,表示回归效果越好. 规律 (1)函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系. 注意

高中数学线性回归方程讲解练习题只是分享

教学步骤及教学内容 线性回归方程 (参考公式:b= ∑ i=1 n x i y i-n x y ∑ i=1 n x2i-n x2 ,a=y-b x) 1.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为() A.y ^ =x+1 B.y ^ =x+2 C.y ^ =2x+1 D.y ^ =x-1 2.在比较两个模型的拟合效果时,甲、乙两个模型的相关指数R2的值分别约为0.96和0.85,则拟合效果好的模型是() A.甲B.乙C.甲、乙相同D.不确定 3.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值,计算,得∑ 8 i=1 x i=52,∑ 8 i=1 y i=228,∑ 8 i=1 x2i=478,∑ 8 i=1 x i y i=1849,则其线性回归方程为() A.y ^ =11.47+2.62x B.y ^ =-11.47+2.62x C.y ^ =2.62+11.47x D.y ^ =11.47-2.62x 4.下表是某厂1~4月份用水量(单位:百吨)的一组数据: 月份x 123 4 用水量y 4.543 2.5 由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是y ^ =-0.7x+a,则a等于______. 5.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x (个) 2 3 4 5 加工的时间y (小时) 2.5 3 4 4.5 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y 关于x 的线性回归方程y ^ =bx +a ,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时? 作业 布置

最新版高中数学第二章统计2.4线性回归方程学案资料

2.4 线性回归方程 1.理解线性回归的基本思想和方法,体会变量之间的相关关系.(难点) 2.会画出数据的散点图,并会通过散点图判断这组数据是否具有线性关系.(重点) 3.会求数据的线性回归方程,并根据线性回归方程做出合理的判断.(重点、难点) [基础·初探] 教材整理1 变量间的关系 阅读教材P74的内容,并完成下面的问题. 1.变量间的关系 (1)函数关系:变量之间的关系可以用函数表示,是一种确定性函数关系. (2)相关关系:变量之间有一定的联系,但不能完全用函数来表达. 2.散点图 从一个统计数表中,为了更清楚地看出x与y是否有相关关系,常将x的取值作为横坐标,将y的相应取值作为纵坐标,在直角坐标系中描点(x i,y i)(i=1,2,3,…),这样的图形叫做散点图. 判断正误: (1)相关关系是一种不确定关系,而函数关系是一种确定关系.( ) (2)商品的销售收入与广告支出经费是函数关系.( ) (3)散点图越集中,则相关关系越强.( ) 【解析】(1)√.由函数关系及相关关系的定义知正确. (2)×.是相关关系,而不是确定关系,故错误. (3)×.只有当散点图呈规律性分布时才具有相关关系.故错误. 【答案】(1)√(2)×(3)× 教材整理2 线性回归方程 阅读教材P75~P76“例1”上边的内容,并完成下列问题. 1.线性相关关系

如果散点图中点的分布从整体上看大致在一条直线的附近,我们用直线y ^ =bx +a 拟合散点图中的这些点,像这样能用直线y ^ =bx +a 近似表示的相关关系叫做线性相关关系. 2.线性回归方程 设有n 对观察数据如下: 当a ,b 使Q =(y 1 -bx 1-a )2+(y 2-bx 2-a )2+…+(y n -bx n -a )2取得最小值时,就称 y ^ = bx +a 为拟合这n 对数据的线性回归方程,该方程所表示的直线称为回归直线. 3.用回归直线进行数据拟合的一般步骤 (1)作出散点图,判断散点是否在一条直线附近; (2)如果散点在一条直线附近,用公式 ????? b = ∑i =1 n x i y i -∑i =1 n x i ∑i =1n y 1 n ∑i =1n x 2 i -∑i =1 n x i 2 a =y -- b x -或 求出a ,b ,并写出线性回归方程. 填空: (1)有一个线性回归方程为y ^ =2-1.5x ,则变量x 增加一个单位时,y 平均________1.5个单位.(填“增加”或“减少”) 【解析】 ∵b =-1.5,∴x 每增加一个单位时y 减少1.5个单位. 【答案】 减少 (2)过(3,10),(7,20),(11,24)三点的回归直线方程是________. 【解析】 代入系数公式得b =1.75,a =5.75. 代入直线方程. 求得y ^ =5.75+1.75x .

高中数学线性回归方程检测试题附答案

高中数学线性回归方程检测试题(附答案)高中苏教数学③ 2. 4线性回归方程测试题一、选择题 1.下列关系属于线性负相关的是() A.父母的身高与子女身高的关系B.身高与手长C.吸烟与健康的关系D.数学成绩与物理成绩的关系 答案:C 2.由一组数据得到的回归直线方程,那么下面说法不正确的是() A.直线必经过点B.直线至少经过点中的一个点 的斜率为C.直线 aD.直线和各点的总离差平方和是该坐标平面上所有直线与这些点的离差平方和中最小的直 线 答案:B3.实验测得四组的值为,则y与x之间的回归直线方程为() A.B.D.C.页 1 第 答案:A 4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是,那么

下列说法正确的是() A.直线和一定有公共点B.直线和相交,但交点不一定是C.必有直线 D.和必定重合答案:A 二、填空题5.有下列关系: (1)人的年龄与他(她)拥有的财富之间的关系 (2)曲线上的点与该点的坐标之间的关系 )苹果的产量与气候之间的关系(3(4)森林中的同一种树木,其断面直径与高度之间的关系 (5)学生与他(她)的学号之间的关系 其中,具有相关关系的是. 43)()(1答案:()6.对具有相关关系的两个变量进行的方法叫做回归分析.用页 2 第 直角坐标系中的坐标分别表示具有的两个变量,将数据表中的各对数据在直角坐标系中描点得到的表示具有相关关系的两个变量的一组数据的图形,叫做. 答案:统计分析;相关关系;散点图7.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为,则新数据的平均数是,方差是,标准差是. 答案:;;8.已知回归直线方程为,则可估计x与y 增长速度之比约为. 答案:三、解答题

高中数学-回归分析(一)练习

高中数学-回归分析(一)练习 课时目标1.掌握建立线性回归模型的步骤.2.了解回归分析的基本思想和初步应用. 1.对于n 对观测数据(x i ,y i )(i =1,2,3,…,n ),直线方程__________________称为这n 对数据的线性回归方程.其中________称为回归截距,______称为回归系数,________称为回归值. 2.a ^ ,b ^ 的计算公式 ?? ? b ^ =∑n i =1x i y i -n x y ∑n i =1 x 2i -n (x )2 a ^ =y -b ^ x 3.相关系数r 的性质 (1)|r |≤1; (2)|r |越接近于1,x ,y 的线性相关程度越强; (3)|r |越接近于0,x ,y 的线性相关程度越弱. 一、填空题 1.下列关系中正确的是________(填序号). ①函数关系是一种确定性关系; ②相关关系是一种非确定性关系; ③回归分析是对具有函数关系的两个变量进行统计分析的一种方法; ④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. 2.回归直线y ^ =a ^ +b ^ x 恒经过定点________. 3.为了解决初中二年级平面几何入门难的问题,某校在初中一年级代数教学中加强概念和推理教学,并设有对照班,下表是初中二年级平面几何期中测试成绩统计表的一部分,其χ2≈________(保留小数点后两位). 70和70分以下 70分以上 合计 对照班 32 18 50

4.从某学校随机选取8名女大学生,其身高x (cm)和体重y (kg)的线性回归方程为y ^ =0.849x -85.712,则身高172 cm 的女大学生,由线性回归方程可以估计其体重为________ kg. 5.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,且y 关于x 的回归直线的斜率是b ^ ,那么b ^ 与r 的符号________(填写“相同”或“相反”). 6.某小卖部为了了解冰糕销售量y (箱)与气温x (℃)之间的关系,随机统计了某4天卖出的冰糕的箱数与当天气温,并制作了对照表(如下表所示),且由表中数据算得线性回归方程y ^ =b ^ x +a ^ 中的b ^ =2,则预测当气温为25℃时,冰糕销量为________箱. 7y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,数据如下表: 由表中数据算出线性回归方程y =b x +a 中的b ≈-2.气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月羽绒服的销售量的件数约为______________________. 8.已知线性回归方程为y ^ =0.50x -0.81,则x =25时,y 的估计值为________. 二、解答题 9.某企业上半年产品产量与单位成本资料如下: (1)(2)指出产量每增加1 000件时,单位成本平均变动多少? (3)假定产量为6 000件时,单位成本为多少元?

高中数学必修三《线性回归》练习题

线性回归练习题 1.(2015 ·张掖高一检测)有几组变量: ①汽车的重量和汽车每消耗 1 升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩; ③立方体的棱长和体积.其中两个变量成正相关的是() A .①③ B .②③ C.② D .③ 解析:选 C.①是负相关;②是正相关;③是函数关系,不是相关关系. 2.对于给定的两个变量的统计数据,下列说法正确的是() A .都可以分析出两个变量的关系 B .都可以用一条直线近似地表示两者的关系 C.都可以作出散点图 D .都可以用确定的表达式表示两者的关系 解析:选 C.由两个变量的数据统计,不能分析出两个变量的关系, A 错;不具有线性相关的 两个变量不能用一条直线近似地表示他们的关系,更不能用确定的表达式表示他们的关系, B, D 错. 3.对有线性相关关系的两个变量建立的回归直线方程^y=^a+^bx 中,回归系数^b() A .不能小于 0 B .不能大于 0 C.不能等于 0 D .只能小于 0 解析:选 C.当b^=0时, r=0,这时不具有线性相关关系,但^b能大于 0,也能小于0. 4.(2013 ·高考湖北卷)四名同学根据各自的样本数据研究变量x,y 之间的 相关关系,并求得回归直线方程,分别得到以下四个结论:() ① y与x负相关且^y=2.347x-6.423;② y与x负相关且^y=- 3.476x+ 5.648;③ y与x正相关 且^y=5.437x+8.493;④ y与x正相关且^y=-4.326x-4.578. 其中一定不正确的结论的序号是() A .①② B .②③ C.③④ D .①④ 解析:选 D.由正负相关性的定义知①④一定不正确. 5.设某大学的女生体重 y(单位: kg)与身高 x(单位: cm)具有线性相关关系, 根据一组样本数据(x i,y i)(i=1,2,?,n),用最小二乘法建立的回归方程为^y

相关主题
文本预览
相关文档 最新文档