当前位置:文档之家› 衰老机制的研究进展

衰老机制的研究进展

衰老机制的研究进展
衰老机制的研究进展

衰老机制的研究进展

姓名:王芝 学号:

2010212810

专业:生物科学

任课老师:王玉凤

发育生物学

衰老机制的研究进展

摘要:不同物种,同一个体的不同组织和细胞,它们的衰老速度并不相同。究其原因,遗传与环境都能影响衰老的进程。个体的平均寿命和物种的最高寿限可以从不同侧面反映衰老的进程。目前认为平均寿命主要与环境相关,而物种最高寿限与遗传相关。从两者的关系看,不良环境影响是通过对遗传物质或其产物的作用而影响衰老的进程。从遗传因素看, 衰老并非由单一基因或单一作用所决定, 而是一连串基因激活和阻抑及其通过各自产物相互作用的结果。DNA (特别是线粒体DNA )并不像原先设想的那样稳定, 目前业已证明, 包括基因在内的遗传控制体系可受内、外环境,特别是氧自由基等损伤因素的影响, 从而加速衰老的进程。

关键词:衰老环境遗传

正文

衰老是多因素协同引起的生命渐趋弱化的过程,可引起生理功能相应减弱、适应能力和抵抗力下降等综合表现。揭示衰老的机制, 探索出高效、安全可靠的抗衰老方法,这就是衰老生物学和老年医学研究的重要领域。近几十年来, 随着各边缘学科的飞速发展, 人类对于衰老的认识也从整体动物水平推进到了细胞和分子水平, 在大量实验证据的基础上提出了许多学说, 最终归结为两大类型: 一类为环境伤害衰老研究, 另一类为遗传衰老研究。[1]

1.环境伤害理论

1.1 自由基学说

衰老的自由基学说最早是Denham H arman于1955年提出来的。这种学说认为, 体内许多物质代谢中产生过氧化的自由基, 使机体内的自由基处于不平衡状态, 过量的自由基就会引起机体损伤, 会引起不饱和脂肪酸氧化成超氧化物, 形成脂褐素, 氧自由基过多会破坏细胞膜及其他重要成份, 使蛋白质和酶变性, 当自由基引起的损伤积累战胜了机体的修复能力, 导致细胞分化状态的改变、甚至丧失, 从而导致和加速衰老。这一学说受到了很高的重视, 但随着研究的深入, 自由基学说的核心衰老学说地位已经动摇, 因为这个学说有着许多的牵强之处, 也遇到了许多实验结果造成的困惑和反驳。[2-3]

1.2线粒体学说

自1989 年Linnane[4]等提出线粒体衰老假说以来,人们越来越关注线粒体DNA( mtDNA) 与衰老关系的研究。线粒体学说是近年揭示衰老机制的重要理论。线粒体是氧化磷酸化和细胞内ATP形成的主要场所, 有细胞“动力厂”之称, 在能量的释放和转换中起重要作用。线粒体产生能量的能力随增龄而减弱, mtDNA 易受氧化损伤, mtDNA氧化率高于核内DNA, 当足够数量的线粒体受到严重损伤后, 细胞的功能严重受损, 当器官有足够数量的细胞受损时这个器官的功能就会减弱。Wallaee 推测, 有几种老年人常见病(2型糖尿病、帕金森氏病和阿尔采末病) 能与线粒体功能减弱有关。日前许多国家实验室已把mtDNA 的损伤和抗损伤作为抗衰老药物的重要指标。[5]

1.3免疫功能退化学说

在正常情况下, 机体的免疫系统不会与自身的组织成分发生免疫反应, 但机体在许多因素影响下, 免疫系统把自身的某些组织当作抗原而发生免疫性反应。这种现象对正常机体的细胞、组织和器官产生许多有害的影响, 使机体产生自身免疫性疾病, 从而加速机体的衰老与死亡。随着年龄的增加, 机体免疫系统功能下降, 如T 淋巴细胞功能下降, 导致机体对疾病的抵抗力减弱, 而且免疫系统的可靠性也下降。而人老胸腺退化, 胸腺素分泌减少, 故免疫机能下降, 导致老年自身免疫增加, 产生的抗体不分敌我, 破坏自身的细胞, 这也是衰老的原因之一。[6]

1.4内分泌功能减退学说

胸腺和性腺功能减退与衰老进程是平行的, 芬奇认为脑是内分泌引起衰老的中枢神经内分泌系统, 即丘脑下部与垂体组成的体系, 对全身内分泌有重要作用。神经内分泌系统功能降低与机体衰老有密切关系, 随着年龄的增加, 机体靶组织对某些激素或活性物质的反应性发生改变或明显降低( 如受体表达的的降低) 。内分泌系统合成功能以及分泌、调节功能等都发生某些衰老性改变, 这些因素促使机体整个内分泌系统功能的紊乱和减退, 从而加速了机体衰老过程。其中, 神经- 内分泌系统的影响尤为突出。[6-7]

1.5糖基化衰老学说

糖基化衰老学说是作为分子水平的又一个重要的衰老学说, 可称之为美拉德反应衰老学说[8],在20 世纪80 年代走进了老年医学的实验室, 该学说指出: 糖

基化造成的蛋白质的交联损伤是衰老的主要原因, 由此造成结构蛋白的硬化和功能酶如抗氧化酶和DNA 修复酶等的损伤, 还会造成能量供应的减少, 代谢功能的降低, 平衡机能的失调等等老化过程。糖基化造成的蛋白质的交联硬化、逐渐变性是造成血管、肾脏、肺叶和关节提前老化的关键因素。氧化和糖基化既互相独立, 又互相联系,所以,Kristal和Yu在1992年提出了自由基氧化糖基化衰老学说。[9]这个结果使得某些氧化和糖基化衰老学说单独无法解释的现象得到了很好的解答。

1.6交联学说

交联学说是比约克斯坦提出的。认为体内甲醛、自由基等物质可以引起体内是生物大分子胶原纤维、弹性纤维的交联导致衰老, 还有蛋白质( 包括酶) 和DNA 的交联也导致衰老。DNA 双链的交联可在DNA 解链时形成/ Y0形结构, 使转录不能顺利进行。胶原纤维间的交联可使纤维结缔组织在正常交联的基础上过度交联, 从而使对小分子物质的通透性降低, 可能与结缔组织变性有关, 从而影响了结缔组织的张力及韧性。普遍表现为: 组织失水、皮肤发皱、骨骼变脆、眼球水晶体物理性质改变, 还有动脉硬化等等。故这种交联可能引起各种不良后果而导致衰老, 其与衰老的确切关系尚待进一步证实。

1.7羰基毒化衰老学说

在20世纪90年代, 留学瑞典的中国学者Yin 和Brunk 教授根据老年色素逐步形成的生物化学过程的研究, 提出了羰基毒化衰老学说, 该学说主要认为从非

酶基化、脂质过氧化以及氨基酸的代谢和损伤性生化副反应过程中产生的活性羰基化合物与蛋白质氨基酸残基的羰- 氨交联反应是生物体内典型的和最重要的老化过程, 造成体内脂褐素的逐渐聚积、多种蛋白质的氧化糖基化应激, 并最终导致机体衰老。自由基和氧化造成的早期伤害大部分容易被生物体辨认、吞噬、降解、去弃或修复, 而羰- 氨反应产生的后果, 尤其是组织结构的老化往往难于修复, 不易逆转, 随年聚积。羰基毒化衰老学说与自由基衰老学说、非酶糖基化衰老学说密切相关, 正在引起人们对衰老本质的新思考。羰基毒化与衰老已成为21 世纪衰老理论和应用研究的一个重要的突破点。[10-11]衰老机理研究正走进一个灿烂的新纪元。

1.8 生活速率理论

生活速率理论认为生物个体寿命由以下两个因素决定:(1)能量利用速率,即代谢率;(2)生命过程中所需的能量总和, 即代谢潜力。[18]在时间上延长的寿命和代谢潜力应该在实验中分别测量。例如, 限制家蝇的飞行活动或降低家蝇的生活密度可延长家蝇的寿命,然而氧气的消耗以及代谢潜力在这些家蝇中并没有改变。[19]又如, 某些降低代谢率的措施,如X射线、摄入溴化物、摄入铜锌过氧化物酶抑制剂等, 实际上是有害的, 却能在时间上延长寿命, 但与此同时, 生物体的代谢潜力也下降了。因此无视代谢潜力的下降而把时间上寿命的延长解释为衰老的延缓是不适当的。

1.9 生殖与老化

维持体细胞的正常功能和繁殖后代都需要能量和物质的投入, 二者之间相互竞争。而长寿则是二者之间的最佳妥协方式。在果蝇中, 产卵晚, 生殖能力低的果蝇长寿。在对英国贵族的研究中( 最大可能地排除经济水平不同所造成的干扰) 显示,生育孩子少, 生育第一个孩子晚的妇女长寿。[20]

1.10 氧化应激假设

以上讨论的衰老的原因都是生物体内在的原因, 而一些研究认为, 环境的因素与衰老的关系同样不可忽视。环境包括生物体外部的环境和生物体内部的环境, 氧化应激假设即是从环境因素对衰老的影响的角度提出的。氧化应激假设认为与衰老相关的生理功能的衰减是由分子的氧化破坏造成的, 如果不减轻相应的氧化破坏, 衰老的速率就不会减慢。一些相关的

证据支持这一假设, 例如, 生物大分子的氧化破坏随年龄的增长而增加, 并与生物体的平均寿命相关。其中自由基和活性氧中间体( ROS) 在生物大分子的氧化中起着重要的作用.[19] 然而, 氧化应激和衰老间的直接关系并未建立。

2. 遗传衰老理论

2.1衰老基因学说

衰老基因学说是基于遗传学说而研究的。这种学说认为各种生物的自然寿命是由各自的遗传基因所决定的, 遗传基因中可能有一种特定的衰老基因,专门控制衰老进程。生物成年后, 基因组内衰老基因开放, 其表达产物或可特异地决定生物的寿命和衰老进程。在利用动物模型研究衰老机制中己发现了许多与衰老相关基因, 并且研究了与衰老有关的增殖基因、衰老基因、长寿基因和凋亡

基因等。[12]

2. 2 DNA 损伤积累学说

细胞中的DNA 在内环境( 如自由基) 和外环境( 如自然环境中的紫外线、化学物质等)损伤因素的作用下,会受损而导致DNA 链断裂,使亲代和子代间遗传信息的传递发生错误。但细胞借助于一整套DNA修复系统,不断地纠正复制错误,修补断裂的DNA链,使遗传信息能准确地从亲代传至子代。这种修复能力随着分裂次数的增多而降低, 从而导致损伤积累, 引起基因变异和表达异常, 最终使生物衰老。Bohr 等认为, 免疫系统负责对机体进行整体水平的监管, 而DNA 损伤的修复能力则负责对机体进行DNA水平的监管。因此,增强DNA 损伤的修复能力, 不仅关系到延缓衰老,而且将成为许多疾病的防治手段。这一领域的研究已成为热点, 且已有人将此作为衰老的生物学年龄标志之一。[13]

2. 3 细胞凋亡学说

细胞凋亡即程序化细胞死亡是机体衰老过程中具体到细胞水平的体现,与衰老密切相关。细胞凋亡以两种形式对衰老起作用: 一是清除己经受损的和功能障碍的细胞( 如肝细胞、成纤维细胞) , 被纤维组织替代, 继续保持内环境稳定; 一是清除不能再生的细胞( 如心肌细胞) , 它们不能被替代, 导致病理改变。通过以上机制, 细胞凋亡的结果使体细胞特别是具有重要功能的细胞数量减少, 造成其所组成的重要器官老年性进行性病理过程。问题是衰老过程中细胞凋亡是如何被启动和调控的? 自由基以及辐射、有害物质、DNA 突变各种病理性刺激都可激发细胞凋亡的启动, 但这些因素启动细胞凋亡的具体分子机制尚有待进一步研究。[14-15]

2. 4 端粒学说

1990 年H arley 提出较为完备的端粒- 端粒酶假说, 认为正常细胞的端粒缩短到一定程度时, 会启动终止细胞分裂的信号, 使细胞进入第一死亡期M1, 并退出细胞

周期而老化。该学说的主要内容包括: 1) 生殖系细胞中含有端粒酶, 端粒长度保持稳定; 2) 正常体细胞不含端粒酶, 端粒随细胞分裂逐渐缩短; 3) 病毒癌基因使细胞寿命延长; 4) 端粒继续缩短, 细胞进入危机期, 大多数细胞慢慢死亡, 少数细胞渡过危机期后, 因端粒酶被活化而选择存活, 获得不死性, 端粒

长度保持稳定。位于染色体端部的染色粒( 端粒) 的长度与衰老和寿命密切相关[16] 。

2.5端粒酶与细胞衰老

端粒酶又称端粒末端转移酶,是一种反转录酶,由RNA 成分、催化亚单位和端粒酶相关蛋白三个亚单位组成。近期研究表明,催化亚单位是端粒酶活性所必需的,是RNA 依赖的DNA 聚合酶,其自身携带模板。端粒酶的主要功能有: ①通过自身的RNA 模板,催化亚单位和辅助蛋白将端粒DNA 添加到染色体末端。

②维持和平衡端粒序列长度。③修复断裂的染色体末端。断裂的染色体末端即使没有完整的端粒重复序列存在,但富含G、T 的DNA 存在,也能被端粒酶作为引物DNA 而复制,以维持基因组遗传的稳定性。[17]

2. 6 体细胞突变学说

该学说认为突变引起的细胞形态变化及功能失调或丧失是人体衰老的重要原因。二倍体细胞中两条染色体上等位基因都被某些突变因素击中时, 子代细胞会很快发生形态、功能的改变, 甚至死亡。由此可见, 二倍体细胞的衰老性改变取决于这种等位基因被击中的比率以及所造成缺陷的水平。

总结

人体衰老过程是人体内部环境各因素间、人体与外环境各因素间在生命活动的过程中不断相互作用、相互影响的综合性结果, 衰老的原因是多方面的, 衰老的机理也是极为复杂的。到目前为止, 有关衰老的机理的理论还有很多, 如中毒学说、伤害学说、生物钟学说、微量元素衰老学说等等, 都有其一定的实验基础, 但都是从一个侧面来解释衰老这一复杂现象,都有其局限性, 还没有哪个理论可以全面地解释衰老的全过程。关于衰老机理的研究现在仍然是非常活跃的领域, 并将受到越来越足够的重视, 因为它对于延缓衰老, 保持人体健康长寿有着极为重要的意义。

参考文献

[ 1] 梅慧生. 人体衰老与延缓衰老研究进展- 主要衰老学说介绍及

评价[ J] . 解放军保健医学杂志, 2003, 5( 3) : 182- 184

[ 2] 王锋青, 陈秉初. 生物衰老机理研究进展[ J ] . 生物学教学,

2004, 29( 2) : 4- 7

[ 3] 印大中, 刘希彬. 自由基伤害衰老理论的严重缺陷[ J] . 中国老

年学杂志, 2003, 3( 2) : 123- 126

[ 4] 吴小晶, 吴丽娟, 李晓东, 等. 线粒体DNA 定量分析与衰老关

系初探[ J] . 中国老年学杂志, 1999, 5: 315- 317

[ 5] 张文纪. 衰老与抗衰老的现代认识[ J] . 高等函授学报( 自然科

学版) , 2002, 15( 6) : 1- 6

[ 6] 杨婷, 张冲, 陈清轩. 衰老机制研究进展[ J] . 中国生物工程杂

志, 2005, 25( 3) : 6- 11

[ 7] 杜炎. 衰老学说八种[ J] . 医卫论坛, 1999, 12: 29

[ 8] CERAMI. A. H ypoth esis glucos e as a mediat or of an ing[ J] . J Am Geriat r S oc, 1985, 33: 626- 634

[ 9] Krisl al BS, Yn BP. An emerging synergist ic indu ct ion of aging by f ree radicals an d Maill ard react ions [ J] . J Geront ol, 1992, 47

( 4) : 107- 114

[ 10] 印大中. 衰老研究的新纪元[ J ] . 生命科学研究, 2004, 4 ( 2 ) : 95- 101

[ 11] BAYNES JW, T HORPE S R. Rol e of oxidat ive st ress in diab

et ic compl icat ions : a new perspect ive on an old paradigm[ J ] . Diabet es, 1999, 48: 1- 9

[ 12] 童坦君, 张宗玉. / 衰老基因0 与/ 长寿基因0 [ J ] . 生命的化学, 1995, 15( 3) : 34- 35

[ 13] 陈作舟. 筛选机制与衰老的DNA 损伤假说[ J ] . 激光生物学

报, 2001, 10( 2) : 80- 86

[ 14] 李坚, 王艾琳, 孟繁军. 细胞凋亡与衰老关系的研究[ J] . 华北大

学学报( 自然科学版) , 2005, 6(1) : 43- 46

[ 15] 周海文, 周曾同. 细胞衰老机制的研究进展[ J ] . 中国临床康复, 2004, 8( 10) : 1 934- 1 935

[ 16] 朱武详, 贾春. 端粒、端粒酶与细胞衰老[ J ] . 生物技术通讯, 2002, 13( 5) : 371- 373

[17]李长永,任莆.端粒、端粒酶与衰老及年龄的关系[J].解剖科

学进展, 2005, 11( 3) : 261-264.

[18] Pearl R.The rate of living. New York:Knopf A A, Inc, 1928

[19] Sohal R S, Mockett R J, Orr W C. Mechanisms of aging: an appraisal of the oxidative st ress hypothesis. Free Radical Biology & Medicine, 2002, 33 (5) : 575~ 586

[20] Kirkwoos T B L. Sex and ageing. Experimental Gerontology, 2001, 36: 413~ 418

1植物衰老的机理

1植物衰老的机理 1.1植物衰老和细胞的程序性死亡 植物在长期进化和适应环境的基础上有选择性地使某些细胞、组织和器官有序死亡,称之为程序性死亡(programmed celldeath, PCD)[2]。植物PCD是指整个原生质(有细胞壁或无细胞壁)在植物某个生命时期主动撤退、消化过程,它在去除不需要细胞质或整个细胞时主要通过以下机制:自溶、裂解和木质化。植物衰老是涉及PCD的生理过程,两者在发生机制和信号传导上存在较多的共性: (1)植物衰老和PCD都是由基因控制的主动的过程,它们的发生都依赖新基因的转录和蛋白质的合成。(2)PCD和植物衰老都是一程序性事件。(3)植物衰老与PCD 都可以受许多内部发育信号和外部环境信号的影响,从而调节进程的快慢。(4)植物衰老和PCD过程中都存在物质的运转,这在衰老器官中表现为维管束周围组织最后衰老[3]。植物衰老的过程不完全是PCD。完整的植物衰老过程应包括两个阶段:第一阶段为可逆衰老阶段,细胞以活体状态存在;第二阶段为不可逆衰老阶段,细胞器裂解,细胞衰退, PCD发生,其中液泡的裂解和染色质降解形成的DNA片段是PCD开始发生的标志。胞间基质相互作用,为细胞的分化、生长和死亡提供必需的信号。MMP为基质金属蛋白酶(matrix metallopro-tease)可降解基质。Delorme等[4]在黄瓜叶片衰老的后期检测到一种基质金属蛋白酶CS1-MMP,它是一种前体酶,须经过修饰才能活化,其表达早于DNA片段化的出现,但不参与衰老中营养物质的运转,可能与PCD的发生有关。由此认为:PCD可能只在衰老的末期发生,即植物衰老达到一个不可逆的点,这个点的出现标志着PCD的发生。Rao和Davis发现[5]:缺少脱落酸(SA)信号传导途径的拟南芥突变体pad4,其叶片长时间保持黄化状态,细胞死亡速度比野生型慢得多,而野生型拟南芥SA信号传导途径中被诱导表达的一个衰老特异基因SAG12只在衰老晚期的黄化组织中表达,推测植物衰老前期产生的SA信号可诱导下一步的PCD,SAG12可能在衰老后期的PCD过程中起关键作用。 1.2自由基与衰老 植物体内的自由基是指植物代谢过程中产生的O·-2、OH·等活性氧基团或分子,当它们在植物体内引发的氧化性损伤积累到一定程度,植物就出现衰老,甚至死亡。但生物在长期进化过程中在体内形成了一套抗氧化保护系统,通过减少自由基的积累与清除过多的自由基两种机制来保护细胞免受伤害。生物体内的抗氧化剂主要有两大类,一是抗氧化酶类,主要包括超氧化物歧化酶(SOD)、过氧化氢酶(CA T)、过氧化物酶(POX)等;二是非酶类抗氧化剂,主要有维生素E、维生素C、谷胱甘肽(GSH)等。许多研究表明,在缺氧条件下,生物体内SOD、CA T活性下降。对菜豆子叶超氧化物歧化酶活性研究发现,其SOD活性随组织衰老而下降,表明植物组织酶的清除能力随年龄增加而下降[6]。已有的证据显示,自由基、活性氧对植物的损害作用主要表现在生物膜损伤、呼吸链损伤、线粒体DNA损伤等。大多数研究集中在活性氧所引发的膜脂过氧化方面。膜脂过氧化即自由基(O·-2、OH·等)对类脂中不饱和脂肪酸引起的一系列自由基反应。脂氧合酶(lipoxygenase,LOX)是一种氧合酶,专门催化具有顺-1,4戊二烯结构的不饱和脂肪酸的加氧反应,其中间产物自由基和最终产物丙二醛都会严重地损伤生物膜。丙二醛具有强交联性质,能与蛋白质、核酸游离的氨基结合,形成具有荧光的Schif碱,称为类脂褐色素(1ipofuscin-like pigment, LEP),是不溶性化合物,干扰细胞内正常生命活动代谢。同时,丙二醛与生物膜中结构蛋白和酶的交联,破坏它们的结构和催化功能[7]。活性氧、自由基还能直接与核酸分子作用,使碱基羟基化,发生突变,从而改变核酸的结构。用自旋捕集技术和ESR法,通过研究紫外线辐射核黄素产生的超氧阴离子自由基(O·-2)等活性氧与嘧啶碱基及核苷的反应,发现该反应不是直接进行,而是通过羟自由基来实现的。线粒体呼吸链是细胞内自由基的主要发生器之一,它本身易被自由基损伤。在衰老的植物组织中电子传递链的失衡使得部分电子泄露给O2,呼吸链电子传递出现短路,其结果使A TP生成减少,O·-2等活性氧的产生增加,从而影响细胞的功能[8]。

衰老的机制研究进展

衰老的机制研究进展 甘肃医学院赵文俊 摘要: 衰老又称老化, 通常是指在正常状况下生物体发育成熟后, 随年龄增长机体发生的功能性和器质性衰退老化的渐进过程。现代医学对衰老机制的研究涉及到很多方面,从自由基学说看,自由基可形成脂褐素、可造成线粒体DNA(mtDNA)的突变、引起核DNA的受损等;从遗传因素看,衰老是一连串基因激活和阻抑及其通过各自产物相互作用的结果;从免疫功能改变学说看,是由于机体对外来物质免疫反应的下降以及自身免疫反应的增多引起的。 关键词:衰老;自由基;脂褐素;细胞凋亡;线粒体DNA; 遗传基因;免疫系统衰老又称老化,通常是指在正常状况下生物发育成熟后,随年龄增加,自身机能减退,内环境稳定能力与应激能力下降,结构、组分逐步退行性变,趋向死亡的不可逆转的现象。对衰老的研究一直是生命科学领域的最为基本和重要的问题之一,但细节一直知之甚少。衰老是一个持续发展的、动态的、缓慢渐进而复杂的过程。这个过程从生长期结束后逐渐开始,它的影响要到老年期通过人体系统功能失调、器官功能衰退、细胞变性及蛋白质和酶分子结构变化逐渐表现出来。主要表现为机体对环境刺激的适应能力减弱以至丧失,出现多种器官组织功能的衰退并影响健康。影响衰老的因素有很多,各种社会因素、经济、疾病、营养、遗传、生活习惯、环境及精神状态等都起着一定的作用,是很多因素共同作用的结果[1]。目前,随着分子生物学和细胞生物学的研究深入,对衰老机理的研究从整体水平发展到分子水平。有关细胞衰老的学说近年来提出了很多,如细胞损伤学说、生物大分子损伤学说、自由基学说、端粒学说等。对于生物体而言,细胞衰老受到多种因素的影响,有自身遗传因素的影响,也有环境因素的影响,根本的还是受遗传方面的影响。

衰老机制的研究进展

衰老机制的研究进展

姓名:王芝 学号: 2010212810 专业:生物科学 任课老师:王玉凤 发育生物学

衰老机制的研究进展 摘要:不同物种,同一个体的不同组织和细胞,它们的衰老速度并不相同。究其原因,遗传与环境都能影响衰老的进程。个体的平均寿命和物种的最高寿限可以从不同侧面反映衰老的进程。目前认为平均寿命主要与环境相关,而物种最高寿限与遗传相关。从两者的关系看,不良环境影响是通过对遗传物质或其产物的作用而影响衰老的进程。从遗传因素看, 衰老并非由单一基因或单一作用所决定, 而是一连串基因激活和阻抑及其通过各自产物相互作用的结果。DNA (特别是线粒体DNA )并不像原先设想的那样稳定, 目前业已证明, 包括基因在内的遗传控制体系可受内、外环境,特别是氧自由基等损伤因素的影响, 从而加速衰老的进程。 关键词:衰老环境遗传 正文 衰老是多因素协同引起的生命渐趋弱化的过程,可引起生理功能相应减弱、适应能力和抵抗力下降等综合表现。揭示衰老的机制, 探索出高效、安全可靠的抗衰老方法,这就是衰老生物学和老年医学研究的重要领域。近几十年来, 随着各边缘学科的飞速发展, 人类对于衰老的认识也从整体动物水平推进到了细胞和分子水平, 在大量实验证据的基础上提出了许多学说, 最终归结为两大类型: 一类为环境伤害衰老研究, 另一类为遗传衰老研究。[1] 1.环境伤害理论 1.1 自由基学说 衰老的自由基学说最早是Denham H arman于1955年提出来的。这种学说认为, 体内许多物质代谢中产生过氧化的自由基, 使机体内的自由基处于不平衡状态, 过量的自由基就会引起机体损伤, 会引起不饱和脂肪酸氧化成超氧化物, 形成脂褐素, 氧自由基过多会破坏细胞膜及其他重要成份, 使蛋白质和酶变性, 当自由基引起的损伤积累战胜了机体的修复能力, 导致细胞分化状态的改变、甚至丧失, 从而导致和加速衰老。这一学说受到了很高的重视, 但随着研究的深入, 自由基学说的核心衰老学说地位已经动摇, 因为这个学说有着许多的牵强之处, 也遇到了许多实验结果造成的困惑和反驳。[2-3] 1.2线粒体学说

细胞衰老论文

细胞衰老概括 【引言】人体衰老的实质即为细胞衰老,当前科学家无不探究着生命的奇迹意欲找出防止细胞衰老而延缓生命的方式,然而细胞衰老一方面对人体有着不可替代的作用,领一方面又不为人们所接受。 【The advantage of cell senescence】 1.细胞衰老可抑制肝脏纤维化 人类繁殖后期(post—reproductive)的生命通常与衰退、能力丧失联系在一起,细胞中称为衰老(senescence)的状态,即细胞衰老与此相似。然而近期来自美国冷泉港实验室、霍德华休斯医学院、巴西圣保罗大学研究人员发现一类特殊的衰老肝脏细胞能调控活体小鼠中一系列的生命活动,抑制纤维化(fibrosis)——这是肝脏遇到急剧伤害的时候作出的自然反应。 这一惊人的发现是由这一研究团队去年将肝脏细胞衰老与抵抗肝癌(hepatocellular carcinoma,HCC)的器官功能联系在一起的技术获得的。这一研究成果公布在8月22日的《细胞》(Cell)『1』杂志上。 这项研究成果首次证明了细胞衰老在非癌症性病理中的特殊作用,CSHL研究小组认为这有助于针对一些严重肝脏疾病的前体,譬如肝硬化提出新的治疗方法——肝硬化是美国第12种最常见的致死疾病。 在2003年Scott W.Lowe博士等人就发现细胞衰老机制会让癌细胞停止生长,并且他们成功的让癌细胞在进行治疗后处于无法复制的细胞衰老阶段,并显现出良好的效果。在那项研究中,研究人员还进一步找出了这个使细胞停止生长的分子机制,即细胞衰老是由于一些特殊的染色体区域被紧密的包裹在异染色质内所致。研究人员将这些新发现的区域命名为“衰老相关异染色质基因座”(senescence—associated heterochromatic foci,SAHF)。 去年研究小组又发现诱导衰老的细胞衰老能够有效预防自发性癌症。衰老细胞有异常染色体,上面携带机能不良的端粒和较短的末端,在肿瘤抑制子p53缺失时促进肿瘤发生,可能与老年人癌症高发性有关。研究人员认为衰老途径的活化,足够抑制原发性肿瘤,说明通过阻止细胞增殖,p53介导的衰老是抑制衰老细胞形成肿瘤的一个重要机制。 而近期Lowe研究小组的有关肝脏疾病的相关衰老研究分成了两个不同的方向:哪些伤害对于肝脏组织而言是急性,哪些则是慢性,这种对照性的实验有助于发现衰老是如何帮助抑制损伤的,以及衰老过程是如何和何时被肝脏受到的慢性伤害“打垮”的。 在针对第一项的研究中,研究人员对小鼠肝脏施用一种毒素——急性伤害,发现了与之前实验的一致的结果:在细胞纤维化增多之后,出现肝细胞死亡(纤维化是小鼠,人类中都存在的应对组织损伤的一种天然反应)。之后的研究就越来越有趣了,Low e博士说,“我们观测到肝脏星状细胞(Hepatic stellate cells,HSC)出现增殖激增之后,我们发现这些细胞为了避免更多纤维化反应,最终走向衰老,从肝脏中清除了出去。”

衰老的机制

衰老的机制 摘要 衰老(又称老化),是一种非常复杂的生物学过程,是机体在退化时期功能下降及生理紊乱的综合表现,是一个机体内在的固有特征,同时又是一个不可逆的过程。衰老是生命发展的必然。关于衰老的研究,特别是皮肤衰老,迄今已提出多种学说。本文较系统地从细胞,分子水平上阐述了皮肤衰老的内因和外因,提出基因调控是皮肤衰老的根本,自由基对皮肤细胞的损伤是皮肤衰老的原因,机体代谢紊乱是皮肤老的基础,而目光照射等许多有害因素是外因的皮肤衰老机制。与此同时对器官的衰老,主要有神经内分泌学说,免疫学说,应激学说,为探讨衰老过程及抗衰老药物的研究提供新思路。 关键字:衰老;皮肤衰老;机制;遗传;自由基 前言 抗衰老治疗,尤其是对皮肤的抗衰老治疗一直是研究焦点之一,人们希望能够通过抗衰老治疗来改善和提高生活质量。皮肤老化可影响美观,引发抑郁、自卑等心理问题,与某些疾病也有关,比如郎格汉斯细胞减少,免疫能力下降,易患感染性疾病。因此延缓皮肤衰老一直是研究热点。目前关于皮肤衰老的机理有三十几个学说。本文从内源性生理衰老和外源性环境衰老两个方面阐述皮肤衰老机制。以神经内分泌学说,免疫学说,应激学说阐述了器官衰老的机制。 正文 一.有关皮肤衰老的几种学说: 1.皮肤内源性生理衰老作用机制 1.1 皮肤衰老基因调控学说:皮肤衰老的基因调控学说是以遗传控制程序论为代表的。Ha- yflik最早的细胞体外培养发现了细胞传代规律,认为发育进程有时间顺序性,这个控制机制随着年龄增长而减弱,最终导致衰老。皮肤衰老主要是皮肤细胞染色DNA及线粒DNA 中合成抑制物基因表达增加,许多与细胞活性有关的基因受抑制,及氧化应激对DNA 的损伤而影响其复制、转录及表达的结果,故基因调控是皮肤及其它细胞衰老的根本。Spierng 等实验证实了DNA复制与皮肤衰老直接相关。Isobe 、Chung等研究证明随着年龄增长,控制 DNA 合成的抑制物增多,致使 rRNA、tRNA、 mRNA含量渐下降,蛋白合成进一步减少,胶原含量减少导致皮肤衰老。 L.2 皮肤衰老的自由基学说:体内许多物质代谢过程中都能产生过氧化的自由基,使机体内的自由基处于不平衡状态,过量的自由基就会引起机体损伤,当自由基引起的损伤积累战胜了机体的修复能力,就会导致细胞分化状态的改变、甚至丧失,从而引起皮肤衰老。Sohl 等近期在传统的自由基衰老学说基础上提出了“氧化应激( Oxidativstress ) 衰老学说”,他认为除了超氧阴离子外其他的活性氧也能引起皮肤衰老,只有当活性氧的产生和清除之间的平衡被打破时才会导致皮肤衰老,而延缓皮肤衰老不仅可以通过补充人工合成的抗氧化剂来实现,也可以通过调动体内的抗氧化酶活性来实现。 Hoo pe、Blatt等实验发现皮肤衰老与抗氧化辅酶Q1O的减少有关,实验证明辅酶“Q”可以渗透表皮的活性层,局部应用可提高表皮的抗氧化能力。Kitazawa等发现某些氨基酸如甘氨酸、丝氨酸与水杨醛缩合产物可与铁形成 2:1的复合物,通过此反应可抑制与铁有关的羟自由基产生,并能抑制脂质过氧化,预防皮肤衰老。但是一般的抗氧化剂常具有不稳定性,有些酶性抗氧化剂(如 sOD)是较为经典的自由基清除剂,它是生物大分子,长期应用可能会产生抗原问题”。 1.3 皮肤衰老的代谢失调学说:郑集于1983年提出了衰老的代谢失调学说,认为生物体的衰老虽然由遗传基因所决定,但其规律性是通过细胞代谢过程来表达的。无论内在或外

衰老机制的研究进展

发育生物学 (双语课堂) 姓名:王芝 学号:2010212810 专业:生物科学 任课老师:王玉凤

衰老机制的研究进展 摘要:不同物种,同一个体的不同组织和细胞,它们的衰老速度并不相同。究其原因,遗传与环境都能影响衰老的进程。个体的平均寿命和物种的最高寿限可以从不同侧面反映衰老的进程。目前认为平均寿命主要与环境相关,而物种最高寿限与遗传相关。从两者的关系看,不良环境影响是通过对遗传物质或其产物的作用而影响衰老的进程。从遗传因素看, 衰老并非由单一基因或单一作用所决定, 而是一连串基因激活和阻抑及其通过各自产物相互作用的结果。DNA (特别是线粒体DNA )并不像原先设想的那样稳定, 目前业已证明, 包括基因在内的遗传控制体系可受内、外环境,特别是氧自由基等损伤因素的影响, 从而加速衰老的进程。关键词:衰老环境遗传 正文 衰老是多因素协同引起的生命渐趋弱化的过程,可引起生理功能相应减弱、适应能力和抵抗力下降等综合表现。揭示衰老的机制, 探索出高效、安全可靠的抗衰老方法,这就是衰老生物学和老年医学研究的重要领域。近几十年来, 随着各边缘学科的飞速发展, 人类对于衰老的认识也从整体动物水平推进到了细胞和分子水平, 在大量实验证据的基础上提出了许多学说, 最终归结为两大类型: 一类为环境伤害衰老研究, 另一类为遗传衰老研究。[1] 1.环境伤害理论 1.1 自由基学说 衰老的自由基学说最早是Denham H arman于1955年提出来的。这种学说认为, 体内许多物质代谢中产生过氧化的自由基, 使机体内的自由基处于不平衡状态, 过量的自由基就会引起机体损伤, 会引起不饱和脂肪酸氧化成超氧化物, 形成脂褐素, 氧自由基过多会破坏细胞膜及其他重要成份, 使蛋白质和酶变性, 当自由基引起的损伤积累战胜了机体的修复能力, 导致细胞分化状态的改变、甚至丧失, 从而导致和加速衰老。这一学说受到了很高的重视, 但随着研究的深入, 自由基学说的核心衰老学说地位已经动摇, 因为这个学说有着许多的牵强之处, 也遇到了许多实验结果造成的困惑和反驳。[2-3] 1.2线粒体学说 自1989 年Linnane[4]等提出线粒体衰老假说以来,人们越来越关注线粒体

细胞衰老与肿瘤的发生的研究进展

细胞衰老与肿瘤的发生的研究进展 广东药科大学公共卫生学院卫生检验与检疫15 戚嘉铭 【摘要】近几年,细胞衰老成为一种针对癌细胞永久性生长的治疗肿瘤新途径,一直是细胞生物学家的研究重点。研究发现,细胞衰老可以作为阻碍癌细胞致癌的抑制机制。原因在于癌基因诱导具有双向性,癌基因的活化可以诱导细胞衰老。但研究发现,细胞衰老同样可能促使癌细胞的增值。 【关键词】细胞衰老肿瘤癌细胞 细胞衰老是生物体中普遍存在的一种永久性生长抑制现象,能够防止老化的或非正常细胞的进一步生长,对抗细胞的无限增殖能力而对机体起到保护作用。因此,死亡的细胞衰老与无限增殖的癌细胞一直都是细胞生物学家们致力研究的重点。本文主要是描述探究决定细胞走向衰老还是转为癌细胞的因素的相关研究进展。 1、细胞衰老:一种阻碍癌细胞致癌的机制 在多种衰老细胞中,某些抑癌基因的过表达会引起细胞进入衰老程序,细胞绕过衰老途径是其永生化及癌变的必要条件,因而细胞复制性衰老是抑制肿瘤的一种可能机制.这样对衰老细胞的研究将为肿瘤的预防和治疗方法提供新的策略[12]。细胞衰老是人体防癌的机制之一,研究细胞衰老对于抗肿瘤是很有意义的,同时为打开抗肿瘤药物治疗和新药的研发提供了依据。 1961年,Hayflick在体外培养成纤维细胞的研究中发现,正常二倍体细胞在体外条件下增殖分裂50~70代即进入一种衰老的状态,无法进一步传代培养,但仍然存活.正常的动物细胞无论是在体内生长还是在体外生长,其分裂次数总存在一个"极限值",此值被称为"Hayflick"极限,亦称最大分裂次数[11].研究表明,恶性肿瘤细胞系会发生自发性老化,其程度与细胞系种类有关.短期饥饿培养会明显增加老化细胞所占的比率,提示饥饿诱发细胞老化可能是抗肿瘤治疗的又一快速、简单且有效的途径[13]。 2、癌基因诱导的双向性 在人部分的肿瘤中都发现有癌基因的活化,癌基因的活化被认为是导致肿瘤发生的重要原因。然而,在野生型细胞内,癌基因的活化可以诱导细胞衰老,称为癌基因诱导的细胞衰老(oncogene-induced senescence, OIS)[1]。癌基因诱导的衰老( OIS)是指癌基因突变所产生的异常增殖信号,通过MAPK和PI3 K信号通路,使细胞处于生长停

皮肤衰老机制及抗衰老研究进展

皮肤衰老机制及抗衰老研究进展 发表时间:2010-8-2 16:16:16 来源:创新医学网推荐作者:赵俊超作者单位:中国地质大学,湖北武汉430074 【关键词】衰老机制;皮肤;抗衰老研究 皮肤是衰老过程中最易显露的器官,皮肤衰老主要表现为自然衰老和光老化两种形式〔1〕。近来随着各种边缘学科的飞速发展,人类对于衰老的认识已从整体水平推进到细胞分子水平〔2〕,关于衰老机制的研究已取得了很大进展,但是针对皮肤衰老机制的报道却很少。因此,本文从内源性生理衰老和外源性环境衰老两个角度出发,就当前有关皮肤衰老的主要机制和相应对策进行阐述,希望为抗衰老化妆品的开发提供参考。 1 内源性生理衰老机制及对策 内源性生理衰老机制大体上包括细胞水平的衰老理论如自由基理论、遗传理论、线粒体理论、端粒理论等和器官水平的衰老理论如免疫衰退理论、神经内分泌损伤理论等〔3〕。 1.1 自由基理论及清除过量自由基的对策 自由基理论由英国学者Harman于1956年在美国原子能委员会上首次提出,并逐渐成为衰老理论中的核心理论之一〔4〕。其内容为:①机体在正常代谢中会产生自由基,它参与机体的正常生理运行,体内的抗氧化防御系统维持着体内自由基的动态平衡。②随着增龄,体内抗氧化系统功能衰退,抗氧化酶的活性不断降低,自由基过量积聚,发生清除障碍,引发体内氧化性不可逆损伤的积累,最终导致一系列衰老损伤。③维持体内一定水平的抗氧化系统功能可延缓机体衰老〔5〕。 自由基过量积聚对皮肤的损伤主要表现在如下几个方面:①对核酸的损伤:活性氧加成到碱基的双键中或从戊糖部分抽提氢,可破坏碱基生成嘧啶、嘌呤自由基,碱自由基相互结合或被过氧化,使碱基缺失甚至主链断裂,产生遗传突变。②对蛋白质的损伤:活性氧与氨基酸或直接与蛋白质反应使多肽链断裂,促使皮肤中胶原、弹性蛋白和表皮生长因子受体蛋白受到自由基攻击产生交联变性,使皮肤变薄、起皱,弹性降低,细胞生长变缓。③对糖的损伤:皮肤中的黏多糖透明质酸极易被活性氧解聚氧化为糖醛类产物,进而与DNA、RNA、蛋白质发生进一步交联变性。 ④对脂质的损伤:活性氧攻击生物膜上的不饱和脂肪酸(polyunsaturated fatty acid,PUFA)引起膜通透性和硬度增加,胞内环境改变,形成多种脂质过氧化物及其代谢产物丙二醛(MDA),MDA是强效交联剂,易与蛋白质或核酸交联形成溶酶体无法消化的脂褐质(LPF),累积在皮肤结缔组织中形成老年斑〔6〕。 开发有效的活性物质来清除体内积聚的有害自由基是抵抗衰老的有力手段,目前常用的具有抗氧化作用的活性原料有3类:①生物制剂类,如超氧化物歧化酶(SOD),谷胱甘肽过氧化酶(GSH Px),过氧化氢酶(CAT),金属硫蛋白(MT),木

衰老机制的研究进展

姓名:王芝 学号: 2010212810 专业:生物科学 任课老师:王玉凤 发育生物学 (双语课堂)

衰老机制的研究进展 摘要:不同物种,同一个体的不同组织和细胞,它们的衰老速度并不相同。究其原因,遗传与环境都能影响衰老的进程。个体的平均寿命和物种的最高寿限可以从不同侧面反映衰老的进程。目前认为平均寿命主要与环境相关,而物种最高寿限与遗传相关。从两者的关系看,不良环境影响是通过对遗传物质或其产物的作用而影响衰老的进程。从遗传因素看, 衰老并非由单一基因或单一作用所决定, 而是一连串基因激活和阻抑及其通过各自产物相互作用的结果。DNA (特别是线粒体DNA )并不像原先设想的那样稳定, 目前业已证明, 包括基因在内的遗传控制体系可受内、外环境,特别是氧自由基等损伤因素的影响, 从而加速衰老的进程。关键词:衰老环境遗传 正文 衰老是多因素协同引起的生命渐趋弱化的过程,可引起生理功能相应减弱、适应能力和抵抗力下降等综合表现。揭示衰老的机制, 探索出高效、安全可靠的抗衰老方法,这就是衰老生物学和老年医学研究的重要领域。近几十年来, 随着各边缘学科的飞速发展, 人类对于衰老的认识也从整体动物水平推进到了细胞和分子水平, 在大量实验证据的基础上提出了许多学说, 最终归结为两大类型: 一类为环境伤害衰老研究, 另一类为遗传衰老研究。[1] 1.环境伤害理论 1.1 自由基学说 衰老的自由基学说最早是Denham H arman于1955年提出来的。这种学说认为, 体内许多物质代谢中产生过氧化的自由基, 使机体内的自由基处于不平衡状态, 过量的自由基就会引起机体损伤, 会引起不饱和脂肪酸氧化成超氧化物, 形成脂褐素, 氧自由基过多会破坏细胞膜及其他重要成份, 使蛋白质和酶变性, 当自由基引起的损伤积累战胜了机体的修复能力, 导致细胞分化状态的改变、甚至丧失, 从而导致和加速衰老。这一学说受到了很高的重视, 但随着研究的深入, 自由基学说的核心衰老学说地位已经动摇, 因为这个学说有着许多的牵强之处, 也遇到了许多实验结果造成的困惑和反驳。[2-3] 1.2线粒体学说 自1989 年Linnane[4]等提出线粒体衰老假说以来,人们越来越关注线粒体

皮肤衰老机制的研究进展

皮肤衰老机制的研究进展 发表时间:2011-05-12T14:45:44.503Z 来源:《中外健康文摘》2011年第4期供稿作者:祝司霞 [导读] 1.2 皮肤衰老的自由基学说随着增龄,体内抗氧化系统功能衰退,自由基过量积聚。 祝司霞 (攀枝花学院医学院四川攀枝花 617000) 【中图分类号】R751 【文献标识码】A 【文章编号】1672-5085 (2011)04-0032-02 【摘要】皮肤浅表外露可为研究衰老提供良好的材料,有利于在分子和细胞水平上更深入研究机体的衰老。文章阐述了皮肤衰老的机制,内源性因素是根本,外源性因素影响衰老的进程。为寻找延缓衰老的措施和开发抗衰老药物提供新思路。【关键词】皮肤衰老遗传自由基代谢 Research Progress about mechanism of skin aging Zhu si xia(Medical College of Panzhihua University,Panzhihua Sichuan 617000) 【Abstract】 Superficial skin exposed may provide a good material for the study of aging which is useful for more in-depth study of the aging body at the molecular and cellular level.This paper systematically describes the mechanisms of skin aging that endogenous factors are fundamental and exogenous factors affect the aging process.It would be a new idea of finding the measures of anti-aging and developing anti-aging drug. 【Key words】 Skin aging Genetic free radical metabolic 皮肤老化可影响美观,引发抑郁、自卑等心理问题,与某些疾病也有关,比如郎格汉斯细胞减少,免疫能力下降,易患感染性疾病。因此延缓皮肤衰老一直是研究热点。目前关于皮肤衰老的机理有三十几个学说[1]。本文从内源性生理衰老和外源性环境衰老两个方面阐述皮肤衰老机制。 1 皮肤内源性生理衰老机制 1.1 皮肤衰老遗传学说遗传因素是皮肤衰老的最主要原因[2]。随着增龄,皮肤细胞中基因合成抑制物表达增加,与细胞活力有关的基因受抑制不能表达,如Spiering[3]在皮肤成纤维细胞的培养物中发现了DNA合成抑制因子,DNA合成下降,蛋白质合成减少,尤其是胶原蛋白减少导致皮肤老化;机体对DNA损伤的修复能力越来越弱,DNA的损伤越来越严重;端粒逐渐缩短,短至一定程度体细胞开始衰老死亡。 1.2 皮肤衰老的自由基学说随着增龄,体内抗氧化系统功能衰退,自由基过量积聚。自由基可使皮肤细胞膜中的不饱和脂肪酸,形成过氧化脂质,膜结构破坏,功能受损。脂质过氧化物(LPO)的降解产物丙二醛是强效交联剂,易与蛋白质或核酸交联形成溶酶体无法消化的脂褐素(LPF),累积在皮肤结缔组织中形成老年斑[4]。 1.3 皮肤衰老的代谢失调学说年龄增长,血液循环功能下降、新陈代谢减慢,细胞和组织逐渐退化和衰老。王红丽等[5]研究表明,通过扩张血管、改善微循环、使血流加速等,可促进细胞的新陈代谢,加快衰老皮肤细胞核酸和蛋白质的合成;增加皮肤中SOD(超氧化物岐化酶)含量和活性,羟脯氨酸含量显著升高,MDA(丙二醛)含量显著降低,而发挥其抗氧化和清除自由基作用,恢复细胞正常的生理功能;或可明显刺激皮肤成纤维细胞的活性,促进胶原蛋白合成,使皮肤趋于年轻化,从而延缓皮肤衰老进程。 1.4 免疫功能退化学说[6] 衰老时免疫功能逐渐衰退,主要表现在两个方面:①正常免疫功能减退:胸腺萎缩、纤维化,胸腺素分泌下降,免疫细胞减少,比例失调,细胞免疫功能下降;②自身免疫反应增强:体液免疫功能紊乱,机体对抗外来性抗原能力下降,而对抗自身细胞的能力提高。机体免疫功能失常会使机体自由基代谢失去平衡,二者相互作用,加速机体的衰老。实验证明,提高机体免疫功能,能增强SOD活性。 1.5 神经内分泌功能减退学说[7] 衰老时下丘脑-垂体-性腺功能衰退,性激素水平降低。雌激素能促进成纤维细胞的胶原合成和成熟,抑制胶原降解,促进透明质酸的合成。因此雌激素降低,皮肤胶原含量下降,皮肤弹性降低。 2 皮肤外源性环境衰老机制 皮肤暴露于体表,最容易受外界环境因素的影响。日光可使皮肤小血管减少,汗腺减少,分泌汗液能力下降,皮脂分泌减少,皮肤干燥,产生皱纹,甚至皮革样改变[8]。大气中的污染物,如汽车排出的尾气,可加速皮肤氧化,促进皮肤衰老。寒冷、干燥可使皮肤角质层失水过多,促进皱纹的生成。 本文综述了皮肤衰老的机制,内源性因素是根本,外源性因素影响衰老的进程,抗衰老研究应注重内源性因素,同时兼顾外源性因素,找到预防和延缓衰老的措施,并作为开发抗衰老药物的突破方向。 参考文献 [1]来吉祥,何聪芬,董银卯,等.皮肤衰老机理和抗衰老化妆品的研究进展[J]. 北京日化,2009,3:11-17. [2]王红丽,吴铁.皮肤衰老分子生物学机制的研究进展[J]. 国外医学皮肤性病学分册,2003,29(2):114-116. [3]Spiering AL,Pereira—Smith QM ,Smith JR.Correlation between complementation group for immortality and DNA synthesis inhibitors[J].Exp Cell Res,1991;195(2):541—545. [4]李素云,王立芹,郑稼琳.自由基与衰老的研究进展[J].中国老年学杂志,2007,27(20):2046-2047. [5]王红丽,吴铁,吴志华.人参皂苷、丹参酮和川芎嗪抗小鼠皮肤衰老作用研究[J].第二军医大学学报,2006,27(5):525-527. [6]陈飞飞,蔡东联.活性多糖延缓衰老的研究进展[J].中西医结合学报,2009,7(7):674. [7]王坤,张洁,于文会.针灸抗衰老作用研究进展[J].中兽医医药杂志,2009,28(3):24-25. [8]姚春丽,刘姝.皮肤光老化与骨髓间充质干细胞移植[J].中国美容医学,2008,17(4):601-602.

细胞衰老研究进展

细胞衰老研究进展 吴其俊 (安徽建筑工业学院,土木学院地质专业,11地质①班)[摘要]细胞衰老的机理不详。综观至目前的各种研究,主要与以下三方面因素有关: (1)基因损伤的积累效应。自由基不断作用导致基因积累的错误信息超出了机体的修复能力,引起细胞衰竭死亡。(2) 生命钟基因控制着细胞程序衰老。生物体细胞内存在一系列基因,它们控制着细胞的生长、分化、老化和死亡。(3) 染色体端粒的缩短。端粒的长度随细胞的不断分裂而缩短,当DNA 丢失到一定程度,细胞随之发生衰老和死亡。端粒酶能延长被缩短的端粒,延迟细胞的衰老,端粒酶的活性受到许多因素影响,其中包括与衰老有关的基因。 [关键词]细胞衰老; 自由基; 生命钟基因; 端粒 衰老是生物界的普遍现象,对多细胞有机体来说,由受精卵开始,通过分裂分化出执行不同功能的细胞,这些细胞从产生时始,就处在衰老的过程中,直至死亡。多细胞有机体的体细胞大致可分为两类, (1) 干细胞:是已发生了分化但仍可产生同类型子细胞的细胞,在个体一生中,保持有丝分裂能力,能不断补充被消耗的细胞,如表皮生发层细胞、造血干细胞、消化道的隐窝上皮生发细胞等,这类细胞衰老缓慢。(2) 功能细胞:是不能分裂的高度特化细胞,常执行一定细胞的功能后死亡,这些细胞一般不再分裂,但在受到某种刺激或再生时,可恢复分裂能力,如上皮细胞、红细胞等,这类细胞在执行功能过程中可明显地表现出衰老的征象。影响细胞衰老的因素很多,涉及到细胞内基因及细胞外因素

的影响,本文就目前细胞衰老的研究进展从分子水平上进行综述。 细胞衰老是细胞结构和功能的改变积累至一定程度的后果。功能上,表现氧化磷酸化减少,呼吸速率减慢,酶活性及受体蛋白降低,导致细胞功能降低,细胞的增殖出现抑制,其生长停滞在细胞G1 期,不能进入S期[1 ] ,或停滞在有丝分裂后期[2 ] 。形态上,不规则的和不正常分叶的核、多形性空泡状线粒体、内质网减少,高尔基体变形,色素、钙、各种惰性物质沉积,常有细胞膜性结构改变,如膜脂过氧化[3 ] 。近年的研究发现,某些衰老的细胞,有异常染色体、染色体端粒缩短及基因组的改变[4 ,5 ] ,细胞早衰现象也可见一些遗传性疾病[6 ] ,表明细胞衰老是基因变化的后果。目前发现很多与细胞衰老有关的基因,如 P53 、P16ARF 、P16INK4a 、P19ARF 、P18INK4a 、Cip/ k family、cdk2、cdk4、cyclins D、cyclins D3 、cyclones E 等[6 ,7 ] 。细胞衰老是多因素的,关于细胞衰老的机制方面的学说,主要体现在三方面。 1 基因损伤的积累效应 一些学者认为,细胞衰老是由物种的遗传因素所决定的,由于基因中的遗传密码逐渐积累了一些错误信息或基因的丢失,造成蛋白质合成错误。开始,染色体中存在着密码复制错误的修复系统,不断地纠正复制错误,但这种修复能力随着分裂次数的增多而降低,同时修复系统本身的编码也可发生错误,导致编码出错误的修复酶,这方面最有代表性的是自由基导致细胞的衰老[8 ,9 ] 。衰老的自由基理论是Harman 于1995 年在美国的原子能委员会提出的,他认为衰老是自由基(主要是

衰老理论和衰老学说

衰老理论和衰老学说 目录 衰老学说概述 衰老学说研究 自然交联学说及其对经典生命难题的解释 生物分子自然交联学说与其他衰老学说 其他衰老学说简介 衰老理论和衰老学说无论是英汉词典还是汉英词典,“理论”和“学说”的英文释义都是“Theory”,这说明理论和学说在英文语境中没有明显的差异。与英文不同,中文语境中理论等同于真理;学说则相等于假设。因此,用中文评价衰老说,就应当区分理论和学说两种类型。本文尝试以理论和学说为两极,理性分析现在流行的各种衰老学说,希望能折射它们在这一直线座标系的相对位置及其到达理论顶点的“距离”。衰老学说概述 自19世纪末应用实验方法研究衰老以来,先后提出的学说不下数十种,有些学说已被否定(如大肠中毒说),近年来比较流行的有代表性的学说大致有:程序衰老说、密码子限制说、DNA修复缺陷说、生物分子自然交联学说、免疫机能退化说、大分子交联说、神经内分泌学说、体细胞突变学说、自由基学说、交联学说、生物钟学说、基因调节学说(细胞分裂速度逐渐减慢最终停止说)、剩余信息学说、衰老的免疫学说、端粒学说、基因阻遏平衡论等十几种。 毫无疑问,这些学说的许多观点是正确的,由于生命过程太过繁杂,研究者的观察角度不同、位置不同以及研究方法的不同,得出的结果就会不同,准确程度也就不同。就象饮水思源,长江的源头在哪里?虽然模糊了几千年,直到1978年才得出至今仍存争议的沱沱河,即使沱沱河就是长江源头,那么汇聚成沱沱河源头的山涧哪一条最长?离长江出口最远的一股泉水出自长江上游的哪一条山沟!至此,我想传统意义的饮水思源到此可以为止了;如果要寻找更深层次的源头,应该还可以追溯到某个山顶的某一颗树,那么这树上的水又是哪里来的呢?于是会追溯到某一团云彩,会追溯到生成这一团云彩的是某某水,会追溯到水的物理循环、水的理化性质。这许多因素中对我们饮水思源最重要的是什么呢?从社会层面说我们应该饮水不忘挖井人,从更深层次我们应该感谢自然界赋予水的自然属性,是水的理化性质和自然环境以及地形地貌、万有引力等多种因素的相互作用,才得以形成清澈的山泉,汇聚成奔腾的长江,周而复始,永不枯竭。虽然我们不希望把衰老的原因描述成一个哲学问题,但是让我们带着哲学的思维方式来探讨这个问题是必须的,在饮水思源的例子中,长江之水永不枯竭的原因有多种,但最核心的原因还是水的自然属性,正所谓外因通过内因起作用。生物的衰老也是如此,有很多种衰老的原因:有内在的原因、也有外在的原因。因此,一切有意义的衰老学说所证明的原因应该也不会超出内因和外因这样两种

人体细胞衰老机理

基因与长寿g J Immunol:阿克巴尔等发现控制白血细胞老化新机制 作者:何屹来源:科技日报2011-8-24 据美国每日科学网站报道,英国研究人员发现了一种可控制白血细胞老化的新机制,可扭转免疫系统衰退,提高老年人的免疫力。 随着年龄的增长,老年人免疫系统的效率开始下降,因而容易感染重症。这对他们的生活健康构成了威胁,也使其生活质量明显下降。 由伦敦大学学院阿恩·阿克巴尔教授领导的研究小组发现,人类免疫系统逐渐衰弱的原因是由于每次感染后会有一定比例的白血细胞失活。虽然这种机制是进化而来,可以起到预防某些癌症的作用,但随着失活的白血细胞的比例不断提高,人体的防御系统也被削弱。 研究表明,白血细胞失活是由一种尚不确定的免疫系统老化机制所导致。此前科学家认为,免疫细胞老化与染色体端粒的长度有关。随着白血细胞的不断增殖,染色体端粒不断缩短,直至最后细胞永久失活。这意味着,免疫细胞有一种内置的寿命机制。随着人类寿命的延长,免疫细胞将无法提供有效的保护。 阿克巴尔教授的研究小组在采集的血液样本中发现,一些失活的白血细胞却有着较长的端粒,这表明白血细胞失活存在其他机制。而更令人兴奋的是,这些有着较长端粒的白血细胞不会处于永久失活状态。 当研究人员阻断在实验室中新确定的白血细胞的某个途径时发现,白血细胞可以被重新激活,而阻断该途径的药物早已被开发出来,用于治疗其他疾病。所以研究人员下一步将研究重新激活老年人的白血细胞会带来什么好处。 研究人员表示,虽然这种方法还不能让人类永葆青春,但它可以提高老年人的免疫力,帮助老年人战胜各种感染性疾病。此外,该研究还深化了人类对细胞生物学的认识,为控制人类的免疫系统开拓出全新的无法预见的未来,对提高人类的生活质量价值重大。 Nature:节食真能使人更长寿? 作者:何嫱来源:生物通2011-5-13 17:50:02分享到: 2 关键词:信号通路节食衰老 众所周知节食在如线虫、酵母、果蝇与啮齿动物等多种模型生物中可以延长寿命,延迟衰老相关疾病发生。虽然在寿命延长中发挥作用的若干关键因素已被识别出来,但人们对于协调生物代谢反应的信号却知之甚少。 近日由美国佛罗里达州斯克里普斯研究院的科学家领导的一个研究小组证实一条调控营养吸收和能量平衡生物信号可影响线虫寿命的长短。这一研究发现在线发布在5月12日的《自

细胞衰老的分子生物学机制

细胞衰老的分子生物学机制 衰老是机体退化时功能下降及生理紊乱的综合表现。衰老与机体的多种疾病有着密切的关系,是当前生物医学界研究的热门话题。机体衰老与细胞衰老密切相关,细胞衰老是指细胞生理功能的衰减。衰老在组织细胞水平上表现为DNA、蛋白质、脂类及细胞器等的损伤和有害物质积累。本篇文章对衰老的分子水平研究进行综述。 一、细胞衰老相关假说 随着衰老研究的发展,学者们提出了越来越多的有关衰老机制的学说:端粒假说,氧自由基学说、神经内分泌学说、DNA损伤修复学说、细胞凋亡学说、分子交联学说、失衡中毒学说以及生物膜损伤学说等。【1】 二、细胞衰老相关信号通路 目前研究最多的与细胞衰老相关的信号通路有p53-p21-pRb【2】和p16-pRb通路,【3】SIRT1通路,胰岛素/IGF-1通路,mTOR通路等。与细胞衰老相关的分子参与这些信号通路进行细胞衰老的调控。 三、细胞衰老相关基因 人类衰老相关基因大多是抑癌基因、原癌基因或静止期细胞表达的基因。诸如P16、P21、P53、P33、PTEN、Rb,ras、raf、c-jun、c—fos、myc、bcl—2、cyclinDl等基因。人类“长寿基因”与“衰老基因”相比模式更为复杂,且绝非一种基因在起作用,可能是一个基因群。犹如癌基因与抑癌基因.凋亡与抗凋亡基因,一正一负、既联系又制约,调控衰老的进程。【4】

四、细胞衰老相关RNA IncRNA参与细胞衰老调控的机制包括:参与细胞周期的调控、调控端粒长度、参与表观遗传学调控。同时,IncRNA还参与了衰老相关重要信号通路的调控,如p53/p21,与许多衰老相关重大疾病密切相关。【5】 MicroRNA(miRNA)是一类在基因转录后水平发挥重要调控功能的非编码单链小分子RNA。近年来随着研究的深入,发现miRNA可以通过调控衰老信号通路中的蛋白,调节端粒酶逆转录酶的活性从而调节端粒酶的活性和端粒长度,调节活性氧自由基的生成以及调节线粒体的氧化损伤等多种途径来调控细胞衰老的过程。【6】 五、衰老有关因子 1、p21是细胞周期抑制因子,活化的p53转录激活p21表达,是引发细胞衰老的重要分子通路;p21是p53肿瘤抑制作用中的主要决定因子,在肿瘤中的表达降低。p21缺失不会促进肿瘤形成。【7】 2、CKI分为两类:一类为INK4即pl6家族。包括 p15、pl6、pl8 和pl9,这些蛋白均含有独特的4级锚蛋白结构(ankyrin),能特异性地抑制cyiclnD-CDK4/6-RB的磷酸化过程;另一类为CIP/KIP即p21家族,包括p21、p27和p57,对CDK有广泛抑制作用。cyclin过表达或CKI失活均可引起细胞增殖失控,使细胞持续性增殖向恶变发展。【8】 3、BRCAI(DNA损伤修复因子/肿瘤抑制因子)功能缺陷导致DNA损伤以及基因组不稳定, 并由此激活ATM/CHK2/p53( DNA损伤修复反应途径)通路 ,进而触发细胞周期阻滞/细胞凋亡/细胞老化,加速生物

成纤维细胞衰老研究进展

成纤维细胞衰老的研究进展 王文浩胡火珍 四川大学生命科学院 摘要:皮肤是人体最大的器官,是机体最外观的表现,而随着人们生活水平的提高,人们对于皮肤抗衰老的意识较前增强,因此皮肤抗衰老的研究已经成为时代的热点。皮肤是由三部分组成:表皮层,真皮层以及角质层组成,而表皮层和真皮层是由结缔组织细胞—成纤维细胞构成。所以成纤维细胞的衰老会使表皮和真皮的功能紊乱从而导致了色斑以及皱纹的产生。目前的研究已经表明,成纤维细胞的老化,其特征在于作为损失的稳定性和生理完整性和增加细胞损伤死亡并且细胞的老化至少在某些方面是被调控的。一般来说,我们将细胞损伤导致细胞增殖能力下降作为细胞衰老的依据。对于成纤维细胞的衰老,其不仅受到了遗传学调控如一些衰老相关特定基因的调控,也受表观遗传学调控。在这篇综述中,我们总结了之前对于成纤维细胞衰老的研究和可能的衰老机制以及对抗衰老的展望。 关键词:成纤维细胞;衰老;皮肤老化 Research progress of fibroblasts’ aging mechanisms Abstract: Skin consist of three parts:epidermis dermal and hypodermic.And the dermal and hypodermic is composed of syndesm cells—fibroblasts .Fibroblasts’ senescence will cause dysfunction of dermal and hypodermic which may contribute to wrinkles and chloasma’s appearance on the surface of skins.Current study has suggested that fibroblasts’ aging is characterized as loss of stability and physiological integrity and increase cell damage to death.Over recent years,aging research showed that aging is a controlled progress—at least in some aspects. Generally,we consider cellular senescence as disabled proliferation due to cellular damage.As for fibroblast,we emphasis not just on intracellular such as genomic instability,epigenetic alteration,and also on its function such as collagen secretion. In this review we conclude several candidate mechanism of fibroblasts’ aging and prospect of some classic or evolutionary way to anti-aging. key words : Fibroblasts,anti-aging,senescence,skin’s aging 引言 从古代开始,长寿一直是人们不断追求的一个目标。人类衰老的异质性和寿命周期[1]的差异说明衰老过程是基因和环境因素共同作用的结果。细胞衰老是细胞周期重要的一个阶段。生物学家将衰老定义为年龄相关的或年龄渐进的内在生理功能下降,导致与年龄相关的死亡率的增加和年龄相关生殖再生率的下降.细胞衰老则是年龄相关的细胞固有功能的丧失,如细胞分裂复制、细胞内和细胞间的运输及通讯功能丧失,最后导致衰老的细胞死亡或被其他细胞清除。在细胞的生长过程中,积累的有害物质增多比如活性氧浓度导致细胞受损,从而激活相应的细胞信号通路,使细胞周期停滞或者诱导细胞凋亡。所以在衰老的过程中,一些蛋白或者特异性的基因表达可以作为检测细胞衰老的指标。 细胞衰老的研究始于第一次在秀丽隐杆线虫分离得到一个长寿的株系[2]。大量的研究表明了许多因素可导致衰老,如紫外线光老化[3]、活性氧簇和DNA损伤[4]、炎症因子[5]诱导均可导致衰老。最近的研究表明,成纤维细胞的老化有几个显著的特点,我们找出和分类了衰老的细胞和分子特征。我们考虑六个可能的通常被认为是与衰老相关的或是导致衰老的特殊标记。 基因组不稳定性(Genomic Instability) 基因组不稳定性常见类型有两种,即核苷酸水平的不稳定性与染色体水平的不稳定性[6]。核苷酸水平的不稳定性主要包括DNA 修复基因功能障碍与微卫星不稳定性 ( MSI)[7] 。DNA 修复基因功能障碍主要是与错配修复[8]、核苷酸切除修复(NER)[9]、碱基切除修复(BER)[10] 和双链断裂修复(DSB)[10]相关的基因障碍。微卫星是由1~5个核苷酸组成的具有高度多态性的简单串联重复序列,MSI 是这些简单重复序列的异常改变,多由 DNA 错配修复基因(hMSH2,hMLH1,hPMS2,hMSH6)失去正常修复能力引起[8]。染色体不稳定 [9](CIN) 是指细胞在有丝分裂过程中发生的染色体数目或

相关主题
文本预览
相关文档 最新文档