当前位置:文档之家› 智能建筑控制设计实验指导书-Alerton-自主

智能建筑控制设计实验指导书-Alerton-自主

智能建筑控制设计实验指导书-Alerton-自主
智能建筑控制设计实验指导书-Alerton-自主

ALERTON楼宇自控实验

一、实验目的

本实验为学生综合课程设计的一部分,在熟悉美国Honeywell楼宇自控系统软硬件的基础上,完成一次回风空调系统楼宇自控系统的初步方案设计,并在ALERTON楼宇自控实验平台上,完成一次回风空调系统楼控系统的软件设计调试。

通过实验,了解楼宇自控系统软硬件系统的构成,掌握建筑设备(特别是空调系统)的控制原理,掌握楼宇自控系统设计的一般方法。

一、实验装置:

ALERTON楼宇自控实验平台:ALERTON实验展板为控制系统,并与局域网相连,实验室的每台计算机均为工作站,监控系统的运行状况。

(一)BACtalk楼宇自控系统简介

BACtalk楼宇自控系统是一个“Native BACnet”系统,具备先进性,开放性和标准化特性。是一套先进、可靠和完善的楼宇监控系统,可以收集、记录、保存和管理各系统中重要信息及数据,从而达到自动化管理和节约能源的效果。下面分别对ALERTON/BACtalk的软硬件系统进行介绍。

BACtalk系统网络结构图

1. BACtalk的硬件系统

BACtalk系统采用分布式结构,分散控制,集中管理。它是由管理层、系统集成层、现场控制器层、传感器/执行器层所构成的一种智能化控制网络。

(1)管理层

操作站设置在主控室及其它重要场所,是楼宇自控系统与操作人员的人机界面,由个人电脑、彩色显示器、鼠标、键盘及打印机等组成。操作人员通过互联网浏览器可以进行BACTalk系统操作,存取或更改系统内的资料及设定数据。其中的网络包括以太网和控制器网。

①以太网:通信协议为BACnet/IP。以太网通讯路由器支持BACnet/IP协议RJ45通讯口及

10Mbyte速度,并连接主控制器网,负责其间路由功能,可和其它路由器及BACtalk Server

通讯交换资料,达成互动的多主控制器网络的系统。而BACtalk Server负责以网页标准和各近端及远程操作工作台通讯。

②控制器网:通信协议为BACnet(MS/TP,76.8kbps),速度相对慢些但造价便宜。子网可以

自由拓扑。传输介质为屏蔽双绞线。

(2)系统集成层:

BCM模块化控制器

①高性能模块化控制器, 可实现独特的处理和全局网络管理需求;完全符合BACnet通讯协

议的模块支持BACnet/IP, BACnet Ethernet, MS/TP, 和PTP等连接。其他的模块提供BACnet 对专有网络通讯协议系统的整合。

②每个模块都具有32MB内存,32位处理器,8MB闪存。

③BCM控制器最大可由8块不同的功能模块组成,最大可以具有7条MS/TP总线,最大可以连

接448个现场控制器。

BTI/BTI-100全局控制器

④高性能全局控制器, 可实现独特的处理和全局网络管理需求;完全符合BACnet通讯协议

的模块支持BACnet/IP, BACnet Ethernet, MS/TP, 和PTP等连接。

⑤具有32MB内存,32位处理器,8MB闪存。

⑥BTI控制器最大可连接4条MS/TP总线,最大可以连接256个现场控制器。

⑦具有10/100M自适应网络接口,PTP接口等。

可扩展型控制器VLX

⑧16K EEPROM,2MB的静态RAM。32MB动态RAM用于执行程序,2MB闪存ROM 为

固化程序存储空间。32位高性能的Motorola CPU。

⑨内置10/100M以太网卡与速率可达76.8Kbps BACnet MS/TP 局域网。

⑩每个VLX控制器可接8个EXP扩展模块,最多可扩展到176个输入/输出点。

?EXP扩展模块提供12位分辨率的通用输入、数字输出、模拟输出(0-10V或0-20Ma)。所有输出可以现场实现手动-停止-自动转换(H-O-A)。

?完全符合BACnet/IP BACnet MS/TP通讯协议。

(3)现场控制器层

现场控制器设置在受控设备的现场,可支持不同性质的监控点:通用输入(AI/BI)、模拟量输出(AO)、数字量输出(BO)。

ALERTON现场控制器常见产品为:VLC系列、V A V系列。

①VLC系列现场控制器:适合多设备控制

VLC系列现场控制器包括:VLC-16160、VLC-1600、VLC-1188、VLC-853、VLC-660R、VLC-550。全部VLC控制器自带BACnet 装置,使用图形编程语言Visual Logic,完全可编程,程序保存在EEPROM中;就地接收现场被控设备的输入信号,通过编程对现场被控设备提供输出控制信号,以达到控制要求;各个DDC有不同的点数容量,适用于任何的应用,各种类型传感器全部使用工业标准输入(干触点、4~20mA,0~5VDC,0~10VDC,3k和10k热敏电阻及Microset)。

②V A V系列现场控制器:适合于变风量系统的控制

V A V系列现场控制器包括:V A V-SD、V A V-SD2A、V A Vi-SD、V A V-DD、V A V-DD7。其中较为常用的V A V-SD控制器是专门为单风管变风量(V A V)风箱提供压力无关型(Pressure-Independent)控制的多功能BACnet终端控制设备,它集成的气流传感器精度已做多风速点调校、最小值、最大值、再热空气流量值可以通过Microset设备或终端操作设备输入。

2. ALERTON/BACTalk的软件系统

BACTalk系统软件包含系统数据库架构工具及图形化编程工具Visual Logic、图形界面设计工具BACTalk for Envision、操作系统BACTalk Server几部分。下面对常用软件进行简介:

(1)图形化编程工具—Visual Logic

Visual Logic是行业内非常先进的图形化编程工具,设计者可以根据实际工程要求,通过控制模块构造不同的控制程序、故障诊断,并通过实时模拟来验证程序的功能。Visual Logic具备如下特点:

?编程简洁,无需复杂的编程语言与计算机代码;

?模块库强大,可以满足开发不同复杂程度的程序;

?程序易懂,图形化模块使表达的程序易于理解;

?研发简单化,实时模拟使开发和检验程序更容易;

?程序可与工作站软件BACTalk Server完全结合,构成无缝的设备编程;

?完全兼容和满足BACnet标准。

(2)图形界面设计工具—BACTalk for Envision

BACTalk for Envision系统操作界面可以自主选择是否使用ALERTON提供的图形页面如典型

的楼面温度图、空气处理设备等图形界面来设计。

(3)操作系统—BACTalk Server

BACTalk Server是功能强大的图形化操作系统,使管理所有的设备异常轻松。系统提供了直

观的操作者接口及强大的控制功能,你可以在世界的任何地方透过一标准的互联网浏览器(不需要

特定的软件或外加组件的浏览器)进行BACTalk系统操作。单单使用了浏览器,你就可以做到远程控制执行楼宇设备管理功能,包括操作者管理、树枝式地理层次引导、动态图形数据显示及操作、设定及改变日程表、趋势图显示、察看及确认报警及事件、系统组态设定及管理、控制网络及控制器管理、组群设定、控制器记忆体下载等。

(二)ALERTON/ BACTalk楼宇自控实验平台

实验系统以体现美国ALERTON/ BACTalk楼宇自控系统的基本特点和楼宇自控系统中空调系统的一般控制方法为原则,监控内容选择了:冷热源系统、变风量空调系统、新风系统三个部分。

二、实验步骤

(一)熟悉ALERTON/ BACTalk楼宇自控系统

1.ALERTON/ BACTalk楼宇自控系统演示;

2.阅读ALERTON/ BACTalk相关资料。

(二)楼宇自控系统方案设计

1.设计依据:

①综合课程设计设计中暖通、给排水、消防等专业的技术资料和相关图纸。

②楼宇自控系统产品技术资料

③国家和地方的有关标准和规范

?采暖通风与空气调节设计规范(GBJ19-87)

?民用建筑电气设计规范(JGJ/TI-92)

?建筑设计防火规范(GBT16-87)

?安全防范工程程序和要求(GA/T15-94)

智能建筑设计标准(国标 GB/T 50314-2000)等

④根据用户提出的使用功能、管理要求及工程投资,来决定BAS由多少子系统构成、各子系统的

设计标准如何、设备配置如何。例如,对于标准要求高的,要对系统和设备实施完善的监测、控制及管理功能;对于要求较高的,要采取必要的控制和管理功能以及完善的监测功能;对于要求标准一般的,对系统和设备采取必要的控制和监测功能。本次设计要求采用标准要求高的方案进行设计。

2.编写项目简介:

简介一次回风空调系统项目特点,楼宇自控系统的设计范围(暖通空调、给排水、消防),各被控系统的内容、被控机电设备类型和种类,确定楼宇自控系统的监控内容。

3.楼控方案的选择:

阐述所选择的楼宇自控系统产品软硬件的特点。

4.楼宇自控系统具体监控说明:

对BAS各系统的监控原理进行说明,绘制监控原理图。

通过原理图可以更形象的看到各个系统如:空调机组,新风机组,风机盘管,冷、热源系统的监控点数和原理。

5.编写监控点表、设备清单。

根据被控设备台数及每台设备的监控原理,确定监控点的类型及数量,编写系统监控点表,以便确定现场控制器的型号和数量。根据监控点表,确定所需各类设备、传感器、执行器的型号、规格、数量以及需要配置的软件,给出BAS的总设备清单。以下表格形式供参考:

楼宇自控系统监控功能输入/输出点表

楼宇自控系统设备清单

6.绘制监控系统图。

①根据监控点表、被控设备在楼层的分布情况,确定DDC控制箱,给每个DDC控制箱编号。DDC

控制箱用来放置DDC(现场控制器、网络控制器等)、变压器、继电器、接线端子排等部件,一般情况DDC控制箱放置在被控设备附近,应避免传感器与DDC的连线过长,造成信号衰减。

②根据DDC控制箱在楼层内的分布,绘制监控系统图。

7.绘制楼宇自控平面敷设图。

根据监控系统图、监控点表、专业图纸,绘制楼宇自控平面敷设图、机房大样图;根据图,对应编写外部电缆表。

(三)楼宇自控系统软件设计

1.项目系统的搭建

参考Visual Logic、BACTalk for Envision等帮助文件,学习使用编程软件,根据监控内容与选择的控制器,建立项目数据库。

2.设备控制程序编程

学习使用图形化编程工具—Visual Logic软件,根据系统和设备的控制原理,编写控制程序。

3.设计图形界面

学习使用图形界面设计工具,完成项目的各个系统界面、设备界面,与DDC监控点绑定。

4.系统在线调试

学习使用操作系统—BACTalk Server。系统在线下载项目数据库、设备控制程序、图形界面,测试运行状况,对编制的项目系统进行修改完善。学习在操作系统中设定日程表、积累历史数据、产生报表、管理报警信息、密码保护等管理功能。

学习建筑力学心得word精品

学习建筑力学心得 《建筑力学》由理论力学、材料力学、结构力学三部分组成,它是土木工程专业一门重 要的专业基础课。《建筑力学》课程中的基本规律、原理和方法,是人们通过观察生活和生产实践 中的各种现象,进行多次科学实验,经过分析,综合和归纳所总结出来的。从很久以前到日益发展的现代社会,力学总是和人类的发展与进步息息相关。人类在远古时代就开始制作各种和力学相关的物品,例如弓箭、房屋、船以及乐器等等,这些都是简单的结果。随着现代社会的进步,人们对于结构设计的规律以及结构的强度和刚度逐渐有了更深的认识并且积累了经验,这表现在古代建筑的辉煌成就中,如埃及的金字塔、中国的万里长城、北京的故宫等等。虽然在这些结构中隐含力学的知识,但其归根并没有形成一门学科,随着现代社会的进步和发展,人们逐渐从这些结构和实践中总结出经验,形成了现代的力学一建筑力学。 现代社会所有的有关建筑的和力学室密不可分的,没有可靠的力学与结构分析 就没有安全而又实用的建筑物。特别是建筑力学对现代建筑的意义更为重要,每一 座好的建筑在开始建造前都要通过大量的实验验证和安全评估,否则将产生 诸多不良的影响,甚至损失难以估计。首先要考虑建筑结构的合理性,如何在实际 情况下选取合适节省材料的结构方式完成工程很重要。最重要的是要考虑到安全因 素,从整体的静力分析到有线单元的衍架与混凝土结构再到外部环境因素,例如风 载荷、地震、建筑物的本身质量等等以及有特殊设计要求的特殊场地,这 些都是和建筑力学密不可分的。 建筑力学是需要我们认真对待的,他几乎应用到所有角落。建筑是随着人类文 明进一步发展的,再好的。理论都需要可靠的实践来证明,同理好的理论和方法也 尤为重要,例如现代在计算机领域的应用,我们可以通过模拟软件来模拟模块的受 力及有线单元的使用等,很方便的促进了力学的分析和复杂问题的计算,所以他们 是相符发展和影响的。总之,力学和建筑是分不开的,作为一个建筑力学的学习 者,特别是对我这样对建筑工程感兴趣的学生来说,掌握最基本的分析方法和培养 良好的科学习惯尤为重要,并为以后的学习和工作打下坚实的基础,当一个工程在 我们手中像长城一样伫立不随着人类社会的进步和发展,人类逐渐 从建筑建构和实践中总结经验,发展成现代的力学理论与方法。这些理论和方法几 乎被应用到了所用领域。建筑的发展和力学是不可分的,可以说没有可靠的力学与 结构分析就没有安全而又实用的优秀建筑。尤其是对于现代建筑的意义更为重要, 每一座好的建筑建造前都要通过很多次的实验验证。如何用最少的材料建 造最安全适用的房屋是有一套过程的,通过对建筑模型的力学分析,如它的抗弯能 力,弹性性能等。尤其在一些大型桥梁建筑中使用的钢筋结构和拉杆等,在长期的负荷作用下如何保持结构的受力均衡和稳定,在做工程建造前必须有着严密的计算分析及准备方案。例如,在建设青藏铁路时,为了保证铁路地基的长年冷冻状态,在铁路两旁的地基中插入了数千根散热棒,否则地基会由于长期的工作解冻,坍塌裂缝,造成铁轨受力不均,造成不可预计的损失,这些都是要在实际工程中考虑和解决的问题,只有正确地利用力学才能把一座座优美坚固的建筑呈现在地上。 总结,建筑力学是一门技术基础课程,它为土木工程的结构设计及施工现场受 力问题的解决提供基本的力学知识和计算方法,我会努力学好建筑力学这门课程, 通过理论与实践相结合来不断的提高自己的能力,为祖国建设做出更大的贡献。

《模糊控制》实验指导书

《模糊控制》实验指导书李士勇沈毅周荻邱华洲袁丽英 实验名称: 实验地点: 指导教师: 联系电话: Harbin Institute of Technology 2005.3

模糊控制实验指导书 一、 实验目的 利用Matlab 软件实现模糊控制系统仿真实验,了解模糊控制的查询表方法和在线推理方法的基本原理及实现过程,并比较模糊控制和传统PID 控制的性能的差异。 二、 实验要求 设计一个二维模糊控制器分别控制一个一阶被控对象1 1 )(11+=s T s G 和二阶被控对象) 1)(1(1 )(212++= s T s T s G 。先用模糊控制器进行控制,然后改变控制对 象参数的大小,观察模糊控制的鲁棒性。为了进行对比,再设计PID 控制器,同样改变控制对象参数的大小,观察PID 控制的鲁棒性。也可以用其他语言编制模糊控制仿真程序。 三、 实验内容 (一)查询表式模糊控制器实验设计 查询表法是模糊控制中的最基本的方法,用这种方法实现模糊控制决策过程最终转化为一个根据模糊控制系统的误差和误差变化(模糊量)来查询控制量(模糊量)的方法。本实验利用了Matlab 仿真模块——直接查询表(Direct look-up table )模块(在Simulink 下的Functions and Tables 模块下去查找),将模糊控制表中的数据输入给 Direct look-up table ,如图1所示。设定采样时间(例如选用0.01s ),在仿真中,通过逐步调整误差量化因子Ke ,误差变化的量化因子Kec 以及控制量比例因子Ku 的大小,来提高和改善模糊控制器的性能。

工程力学实验指导书(建环)

工程力学实验指导书(建环、给排水、包装工程) 2016年 9月

目录 实验一金属材料的拉伸实验 (2) 实验二金属材料的压缩实验 (5) 实验三弯曲正应力电测实验 (8)

实验一金属材料的拉伸实验 一、实验目的和要求 1、 观察低碳钢和铸铁在拉伸过程中的力与变形的关系。 2、测定低碳钢拉伸时的屈服极限s σ;强度极限b σ,伸长率δ和截面收缩率φ 3、测定铸铁的强度极限b σ。 4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的力学性质。 5、了解CMT 微机控制电子万能实验机的构造原理和使用方法。 二、实验装置和原理 实验仪器设备: CMT 微机控制电子万能实验机、游标卡尺、拉伸试件。 试件制备: 实验采用的圆截面短比例试件按国家标准(GB/T 228-2002)制成,如图1-1所示。这样可以避免因试件尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。图中:d 0为试件直径,L 0为试件的标距,并且短比例试件要求L 0=5d 0。 图1-1 实验原理: 试件夹持在夹具上,点击试件保护键,消除夹持力,调节拉力作用线,使之能通过试件轴线,实现试件两端的轴向拉伸。 试件在开始拉伸之前,设置好保护限位圈,微机控制系统首先进入POWERTEST3.0界面。试件在拉伸过程中,POWERTEST3.0软件自动描绘出一条力与变形的关系曲线如图1—2,低碳钢在拉伸到屈服强度时,取下引伸计,试件继续拉伸,直至试件被拉断。 低碳钢试件的拉伸曲线(图1—2a)分为四个阶段―弹性、屈服、强化、颈缩四个阶段。 铸铁试件的拉伸曲线(图1—2b)比较简单,既没有明显的直线段,也没有屈服阶段,变形很小时试件就突然断裂,断口与横截面重合,断口形貌粗糙。抗拉强度σb 较低,无明显塑性变形。与电子万能实验机联机的微型电子计算机自动给出低碳钢试件的屈服载荷Fs 。、最大载荷Fb 和铸铁试件的最大载荷Fb 。

智能控制理论基础实验报告

北京科技大学 智能控制理论基础实验报告 学院 专业班级 姓名 学号 指导教师 成绩 2014 年4月17日

实验一采用SIMULINK的系统仿真 一、实验目的及要求: 1.熟悉SIMULINK 工作环境及特点 2.掌握线性系统仿真常用基本模块的用法 3.掌握SIMULINK 的建模与仿真方法 二、实验内容: 1.了解SIMULINK模块库中各子模块基本功能 微分 积分 积分步长延时 状态空间模型 传递函数模型 传输延迟 可变传输延迟 零极点模型

直接查询表 函数功能块MATLAB函数 S函数(系统函数) 绝对值 点乘 增益 逻辑运算 符号函数 相加点 死区特性 手动开关 继电器特性 饱和特性 开关模块 信号分离模块 信号复合模块 输出端口 示波器模块 输出仿真数据到文件

通过实验熟悉以上模块的使用。 2. SIMULINK 的建模与仿真方法 (1)打开模块库,找出相应的模块。鼠标左键点击相应模块,拖拽到模型窗口中即可。 (2)创建子系统:当模型大而复杂时,可创建子系统。 (3)模块的封装: (4)设置仿真控制参数。 3.SIMULINK仿真实际应用 PID控制器的仿真实现。 控制对象的开环传递函数如下图: 加入PID控制器,求系统单位负反馈闭环单位阶跃响应,要求通过调节器的作用使系统满足超调量20%,上升时间3s,调节时间10s的要求。使输出曲线如下图。要求加入的PID控制器封装成一个模块使用。 三、实验报告要求: 1.针对具体实例写出上机的结果,体会其使用方法,并作出总结。

控制对象的开环传递函数如下图: 加入PID控制器,求系统单位负反馈闭环单位阶跃响应,要求通过调节器的作用使系统满足超调量20%,上升时间3s,调节时间10s的要求。使输出曲线如下图。要求加入的PID控制器封装成一个模块使用。PID如下: 图1-PID控制器仿真 设计的PID控制器参数为,P-0.3,I-0.5,D-0.4,尽可能的达到超调量20%,上升时间3s,调节时间10s的要求,仿真曲线图如下: 图2-PID控制器仿真曲线图 才实验开始的初期,我觉得这个实验过于简单,但是上手之后,我发现它是

建筑力学课程学习指导书.

大学现代远程教育 《建筑力学》课程 学习指导书 宁永胜编

■课程容与基本要求 《建筑力学》主要包括静力学基础,平面任意力系的简化与平衡,平面体系的几何组成分析,各类基本构件的强度、刚度及稳定性问题,静定结构的力计算和位移计算,超静定结构的力计算等容。通过本课程的学习,要求学生熟悉各类常用杆类构件的受力特性,能够利用建筑力学的基本原理和方法,解决实际建筑工程中一些杆件结构构件的强度、刚度和稳定性设计问题等,并为后续的结构类专业课程打下坚实的力学知识基础。 ■课程学习进度与指导 章节课程容建议学时学习指导 模块一 导学、静力学基础及平 面任意力系的平衡6学时 以课件学习为主,重点掌握静力学基本 公理及平面任意力系的平衡计算 模块二 平面体系的几何组成 分析2学时 以课件学习为主,重点掌握无多余约束 几何不变体系的组成规则并能够利用 这些规则进行体系的几何组成分析。 模块三 各类基本构件的强度、 刚度和稳定性问题6学时 以课件学习为主,重点掌握拉压杆的应 力、变形及强度计算和平面弯曲杆件的 应力及强度计算。 模块四 静定结构的力、位移计 算* 9学时 以课件学习为主,重点掌握静定梁、静 定刚架的力图绘制、静定桁架的力计算

和静定结构的位移计算。 模块五超静定结构的力计算* 8学时以课件学习为主,重点掌握超静定梁和刚架力计算的力法、位移法和力矩分配法。 模块一静力学基础及平面任意力系的平衡 一、学习目标:了解建筑力学的研究对象与任务;掌握刚体、力、平衡、力矩、力偶、约束等基本概念;熟练掌握静力学的四个基本公理及其两个推论;了解工程中常见的约束类型,并掌握各类约束的约束特点及其约束力;熟练掌握平面任意力系的简化及平衡计算。 二、学习容:建筑力学的研究对象与任务;刚体、弹性体及其基本假定;力、力矩、力偶及其性质;约束与约束反力;受力分析与受力图;平面任意力系的简化;平面任意力系的平衡条件及平衡计算。 三、本章重点、难点:静力学的四个基本公理及其推论;平面任意力系的简化与平衡计算。 四、建议学习策略:听视频课件、做在线测试、讨论交流等。 模块二平面体系的几何组成分析 一、学习目标:领会几何不变体系、几何可变体系、瞬变体系和刚片、约束、自由度等基本概念;熟练掌握无多余约束几何不变体系的组成规则及体系几何组成分析的方法;了解结构的几何特性与静力特性的关系。 二、学习容:几何组成分析的基本概念;无多余约束几何不变体系的组成规则;体系几何组成分析的方法及示例;结构的几何特性与静力特性的关系。 三、本章重点、难点:利用无多余约束几何不变体系的组成规则进行体系几何组成分析的方法。

智能控制实验指导书

智能控制理论及应用 (实验指导书) 实验一模糊控制的理论基础实验 实验目的: 学习隶属函数编程;模糊矩阵合成运算编程;模糊推理运算编程。 1隶属函数编程 学习P39 例2-12 (以下为例程) 完成思考题P80 2-2 写出W及V两个模糊集的隶属函数,并绘出“非常老,很老,比较老,有点老”的四个隶属度函数仿真后的曲线。 %Membership function for old People clear all; close all; for k=1:1:1001 x(k)=(k-1)*0.10; if x(k)>=0&x(k)<50 y(k)=0; else y(k)=1/(1+(1/((x(k)-50)/5)^2)); end end plot(x,y,'k'); xlabel('X Years');ylabel('Degree of membership'); 2 模糊矩阵合成仿真程序 学习P31例2-10,仿真程序如下。 完成思考题P81 2-5,并对比手算结果。 clear all; close all; A=[0.2,0.8; 0.6,0.1]; B=[0.5,0.7; 0.1,0]; %Compound of A and B for i=1:2 for j=1:2 AB(i,j)=max(min(A(i,:),B(:,j)')) end end

3 模糊推理仿真程序 学习P47 例2-16,仿真程序如下。 完成思考题2-9,并对比手算结果。 clear all close all a=[1;0.5] b=[0.1;0.5;1] c=[0.2;1] for i=1:2 for j=1:3 ab(i,j)=min(a(i),b(j));%求出D end end t1=[]; for i=1:2 t1=[t1;ab(i,:)']; end %准备好DT; for i=1:6 for j=1:2 r(i,j)=min(t1(i),c(j)); end end %求出R a1=[0.8;0.1] b1=[0.5;0.2;0] for i=1:2 for j=1:3 ab1(i,j)=min(a1(i),b1(j)); %求出D1 end end t2=[]; for i=1:2 t2=[t2;ab1(i,:)']; end for i=1:6 for j=1:2 d(i,j)=min(t2(i),r(i,j)); c1(j)=max(d(:,j)); end end

工程力学实验指导书.

第一章绪论 §1.1 工程力学实验的内容 实验是进行科学研究的重要方法,科学史上许多重大发明是依靠科学实验而得到的,许多新理论的建立也要靠实验来验证。例如材料力学中应力应变的线性关系就是虎克于1668年到1678年间作了一系列的弹簧实验之后建立起来的。不仅如此,实验对材料力学有着更重要的一面。因为材料力学的理论是建立在将真实材料理想化,实际构件典型化,公式推导假设化基础之上的,它的结论是否正确以及能否在工程中应用,都只有通过实验验证才能断定。在解决工程设计的强度,刚度等问题时,首先要知道材料的力学性能和表达力学性能的材料常数。这些常数只有靠材料试验测试才能得到。有时实际工程中构件的几何形状和载荷都十分复杂,构件中的应力单纯靠计算难以得到正确的数据,这种情况下必须借助于实验应力分析的手段才能解决。因此,材料力学实验是学习材料力学课程不可缺少的重要环节。材料力学实验包括以下三个方面的内容: 1.测定材料的力学性能材料的力学性能是指在力或能的作用下,材料在变形、强 度等方面表现出的一些特性,如弹性极限、屈服极限(屈服强度)、强度极限、弹性模量、疲劳极限、冲击韧性等。这些强度指标或参数都是构件强度、刚度和稳定性计算的依据,而它们一般要通过实验来测定。此外,材料的力学性能测定又是检验材质、评定材料热处理工艺、焊接工艺的重要手段。随着材料科学的发展,各种新型合金材料、合成材料不断涌现,力学性能的测定,是研究每一中新型材料的重要任务。 2.验证理论公式的正确性材料力学的一些理论是以某些假设为基础的,例如杆件 的弯曲理论就以平面假设为基础。用实验验证这些理论的正确性和适用范围,有助于加深对理论的认识和理解。至于新建立的理论和公式,用实验来验证更是必不可少的。实验是验证、修正和发展理论的必要手段。 3.实验应力分析某些情况下,例如因构件几何形状不规则,受力复杂或精确的边 界条件难以确定等,应力分析计算难于获得准确结果。这时,用诸如电测、光弹性等实验应力分析方法直接测定构件的应力,便成为有效的方法。对经过较大简化后得出的理论计算或数值计算,其结果的可靠性更有赖于实验应力分析的验证。§1.2 材料力学试验的标准、方法和要求 材料的强度指标如屈服极限、强度极限、持久极限等,虽是材料的固有属性,但往往与试样的形状、尺寸、表面加工精度、加载速度、周围环境(温度、介质)等有关。为使实验结果能相互比较,国家标准对试样的取材、形状、尺寸、加工精度、试验手段和方法以及数据处理都作了统一规定。

智能控制技术实验报告

《智能控制技术》实验报告书 学院: 专业: 学号: 姓名:

实验一:模糊控制与传统PID控制的性能比较 一、实验目的 通过本实验的学习,使学生了解传统PID控制、模糊控制等基本知识,掌握传统PID控制器设计、模糊控制器设计等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续模糊控制理论研究以及控制仿真等学习奠定基础。 二、实验内容 本实验主要是设计一个典型环节的传统PID控制器以及模糊控制器,并对他们的控制性能进行比较。主要涉及自控原理、计算机仿真、智能控制、模糊控制等知识。 通常的工业过程可以等效成二阶系统加上一些典型的非线性环节,如死区、饱和、纯延迟等。这里,我们假设系统为:H(s)=20e0.02s/(1.6s2+4.4s+1) 控制执行机构具有0.07的死区和0.7的饱和区,取样时间间隔T=0.01。 设计系统的模糊控制,并与传统的PID控制的性能进行比较。 三、实验原理、方法和手段 1.实验原理: 1)对典型二阶环节,根据传统PID控制,设计PID控制器,选择合适的PID 控制器参数k p、k i、k d; 2)根据模糊控制规则,编写模糊控制器。 2.实验方法和手段: 1)在PID控制仿真中,经过仔细选择,我们取k p=5,k i=0.1,k d=0.001; 2)在模糊控制仿真中,我们取k e=60,k i=0.01,k d=2.5,k u=0.8; 3)模糊控制器的输出为:u= k u×fuzzy(k e×e, k d×e’)-k i×∫edt 其中积分项用于消除控制系统的稳态误差。 4)模糊控制规则如表1-1所示: 在MATLAB程序中,Nd用于表示系统的纯延迟(Nd=t d/T),umin用于表示控制的死区电平,umax用于表示饱和电平。当Nd=0时,表示系统不存在纯延迟。 5)根据上述给定内容,编写PID控制器、模糊控制器的MATLAB仿真程序,

建筑力学课程学习指导书创新教材

郑州大学现代远程教育《建筑力学》课程 学习指导书 宁永胜编

■课程内容与基本要求 《建筑力学》主要包括静力学基础,平面任意力系的简化与平衡,平面体系的几何组成分析,各类基本构件的强度、刚度及稳定性问题,静定结构的内力计算和位移计算,超静定结构的内力计算等内容。通过本课程的学习,要求学生熟悉各类常用杆类构件的受力特性,能够利用建筑力学的基本原理和方法,解决实际建筑工程中一些杆件结构构件的强度、刚度和稳定性设计问题等,并为后续的结构类专业课程打下坚实的力学知识基础。 ■课程学习进度与指导 章节课程内容建议学时学习指导 模块一导学、静力学基础及平 面任意力系的平衡 6学时 以课件学习为主,重点掌握静力学基本 公理及平面任意力系的平衡计算 模块二平面体系的几何组成 分析 2学时 以课件学习为主,重点掌握无多余约束 几何不变体系的组成规则并能够利用 这些规则进行体系的几何组成分析。 模块三各类基本构件的强度、 刚度和稳定性问题 6学时 以课件学习为主,重点掌握拉压杆的应 力、变形及强度计算和平面弯曲杆件的 应力及强度计算。 模块四静定结构的内力、位移 计算* 9学时 以课件学习为主,重点掌握静定梁、静 定刚架的内力图绘制、静定桁架的内力 计算和静定结构的位移计算。 模块五超静定结构的内力计 算* 8学时 以课件学习为主,重点掌握超静定梁和 刚架内力计算的力法、位移法和力矩分 配法。 模块一静力学基础及平面任意力系的平衡 一、学习目标:了解建筑力学的研究对象与任务;掌握刚体、力、平衡、力矩、力偶、约束等基本概念;熟练掌握静力学的四个基本公理及其两个推论;了解工程中常见的约束类型,并掌握各类约束的约束特点及其约束力;熟练掌握平面任意力系的简化及平衡计算。

非常经典的工程力学实验指导书+题.

《工程力学》实验指导书 主编:2011年11月

目录 实验一拉伸和压缩实验 (3) 实验二梁弯曲正应力实验 (8) 实验三金属材料扭转实验 (12)

实验一 拉伸和压缩实验 拉伸实验 一、实验目的 1.观察与分析低碳钢、灰铸铁在拉伸过程中的力学现象并绘制拉伸图。 2.测定低碳钢的σs 、σb 、δ、ψ 和灰铸铁的σb 。 3.比较低碳钢与灰铸铁的机械性能。 二、实验内容 1.低碳钢拉伸实验 材料的机械性能指标σs 、σb 、δ 和ψ 由常温、静载下的轴向拉伸破坏试验测定。整个试验过程中,力与变形的关系可由拉伸图表示,被测材料试件的拉伸图由试验机自动记录显示。低碳钢的拉伸图比较典型,可分为四个阶段 : 直线阶段OA ——此阶段拉力与变形成正比,所以也称为线弹性变形阶段,A 点对应的载荷为比例极限载荷Fp ; 屈服阶段BC ——曲线常呈锯齿形,此阶段拉力的变化不大,但变形迅速增加,此段内曲线上的最高点称为上屈服点B ,,最低点称为下屈服点B ,因下屈服点B 比较稳定,工程上一般以B 点对应的力值作为屈服载荷Fs ; 强化阶段CD ——此阶段拉力增加变形也继续增加,但它们不再是线性关系,其最高点D 对应的力值为最大载荷Fb ; 颈缩阶段DE ——过了D 点,试件开始出现局部收缩(颈缩),直至试件被拉断。 图1-1为低碳钢拉伸图。 图1-1 图1-2 F

2.灰铸铁拉伸实验 对于灰铸铁,由于拉伸时的塑性变形极小,在变形很小时就达到最大载荷而突然断裂,没有明显的屈服和颈缩现象,其强度极限即为试件断裂时的名义应力。图1-2为铸铁拉伸图。 三、实验仪器、设备 1.600KN 微机屏显式液压万能试验机; 2.游标卡尺。 四、实验原理 1.根据低碳钢拉伸载荷F s 、F b 计算屈服极限σs 和强度极限σb 。 2.根据测得的灰铸铁拉伸最大载荷F b 计算强度极限σb 。 3.根据拉断前后的试件标距长度和横截面面积,计算低碳钢的延伸率δ和截面收缩率ψ。 %100001?-= L L L δ %1000 1 0?-=A A A ψ 五、实验步骤 (一)实验准备 1.打开计算机,双击计算机桌面上的TestExpert 图标,试验软件启动。 2.打开控制系统电源,系统进行自检后自动进入PC-CONTROL 状态。 3.软件联机并启动控制系统: (1)点击“联机”按钮.出现联机窗口,当此窗口消失证明联机成功。 (2)按下启动按钮,控制系统“ON ”灯亮后,软件操作按钮有效。 4.测量并记录试件的尺寸:在刻线长度内的两端和中部测量三个截面的直径d 0,取直径最小者为计算直径,并量取标距长度L 0。 5.调节横梁位置并安装试样。 (二)进行实验 1.设置试验条件。 2.开始试验: (1)按下“试验”按钮,试验机开始按试验程序对试件进行拉伸。仔细观 A F s s =σ0 A F b b =σ4 2 00d A ?= π

【建筑工程管理】建筑力学实验指导书

《建筑力学》实验指导书 基本实验1 低碳钢和灰口铸铁的拉伸、压缩实验 一、实验目的 1.试样在拉伸或压缩实验过程中,观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。 2.测定该试样所代表材料的PS、Pb和ΔL等值。 3.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。 4.学习、掌握电子万能试验机的使用方法及其工作原理。 二、仪器设备和量具 电子万能材料试验机,x-y函数记录仪,钢板尺,游标卡尺。 三、低碳钢的拉伸和压缩实验 1.低碳钢的拉伸实验 在拉伸实验前,测定低碳钢试件的直径d和标距L。试件受拉伸过程中,观察屈服(流动)、强化,卸载规律、颈缩、断裂等现象;绘制p——ΔL曲线如图2—1(a)所示;记录试件的屈服抗力Ps和最大抗力Pb。试件断裂后,测量断口处的最小直径d1和标距间的距离L1。依据测得的实验数据,计算低碳钢材料的强度指标和塑性指标。 图2—1 低碳钢拉伸图及压缩图 强度指标: 屈服极限 强度极限

塑性指标: 延伸率 断面收缩率 2.低碳钢的压缩实验 实验前,测量试件的直径d和高度h。实验时,观察低碳钢试件压缩过程中的现象,绘出P—ΔL曲线,测定试件屈服时的抗力Ps,从而计算出低碳钢的屈服极限: 四、灰口铸铁的拉伸和压缩实验 1.灰口铸铁的拉伸实验 实验前测定试件的直径d。试件在拉伸过程中注意观察与低碳钢拉伸试验中不同的现象(如变形小、无屈服、无颈缩、断口平齐等);绘出P——ΔL曲线如图2—2(a)所示;记录断裂时的最大抗力Pb,从而计算出灰口铸铁的拉伸强度极限: 。 图2—2 灰口铸铁拉伸图及压缩图 2.灰口铸铁的压缩实验 实验前测定试件的直径d和高度h。实验时观察灰口铸铁试件在压缩过程中的现象,尤其是断口形状;绘出P——ΔL曲线如图2—2(b)所示;记录压缩破坏时的最大抗力Pb,计算灰口铸铁压缩强度极限。即 五、实验操作 1.准备工作 (1)打开试验机总电源和负载测量单元、位移测量单元、x-y记录仪的电源开关进行预热。 (2)测量拉伸试样的标距长度L和直径d,测量低碳钢压缩试样的长度H和直径d,作

过程控制系统实验指导书

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

《工程力学》实验指导书

工程力学实验指导书力学与机械学研究所编 天津理工大学机械工程学院

2005.7 学生实验守则 1.学生应按照课程教学计划,准时上实验课,不得迟到早退。 2.实验前认真阅读实验指导书,明确实验目的、步骤、原理,预习有关的理论知识,并接受实验教师的提问和检查。 3.进入实验室必须遵守实验室的规章制度。不得高声喧哗和打闹,不准抽烟、随地吐痰和乱丢杂物。 4.做实验时必须严格遵守仪器设备的操作规程,爱护仪器设备,节约使用材料,服从实验教师指导。未经许可不得动用与本实验无关的仪器设备及其它物品。 5.实验中要细心观察,认真记录各种试验数据。不准敷衍,不准抄袭别组数据,不得擅自离开操作岗位。 6.实验时必须注意安全,防止人身和设备事故的发生。若出现事故,应立即切断电源,及时向指导教师报告,并保护现场,不得自行处理。 7.实验完毕,应主动清理实验现场。经指导教师检查仪器设备、工具、材料和实验记录后方可离开。 8.实验后要认真完成实验报告,包括分析结果、处理数据、绘制曲线及图表。在规定时间内交指导教师批改。 9.在实验过程中,由于不慎造成仪器设备、工具损坏者,应写出损坏情况报告,并接受检查,由领导根据情况进行处理。 10.凡违反操作规程,擅自动用与本实验无关的仪器设备、私自拆卸仪器而造成事故和损失的,肇事者必须写出书面检查,视情节轻重和认识程度,按章程预以赔偿。

目录 引言..................................................(4)实验一金属拉伸实验....................................(5)实验二金属压缩实验.....................................(8)实验三金属(园轴)扭转试验..............................(17)

同济智能控制实验报告 基于BP神经网络的自整定PID控制仿真

同济大学电子与信息工程学院实验报告 姓名:学号: 学院:专业: 实验课程名称: 任课教师: 实验项目名称:基于BP神经网络的自整定PID控制仿真实验日期:

一、实验内容: 1.熟悉神经网络的特征、结构及学习算法。 2.通过实验掌握神经网络自整定PID的工作原理。 3.了解神经网络的结构对控制结果的影响。 4.掌握用MATLAB实现实现神经网络控制系统仿真的方法。 二、实验步骤及结果演示 1.实验步骤: (1)被控对象为一时变非线性对象,数学模型可表示为 式中系数a(k)是慢时变的, (2)如图5所示确定BP网络的结构,选4-5-3型的BP网络,各层加权系数的初值取区间[-0.5,0.5]上的随机数,选定学习率η=0.25和惯性系数α=0.05. (3)在MATLAB下依据整定原理编写仿真程序并调试。 (4)给定输入为阶跃信号,运行程序,记录实验数据和控制曲线。 (5)修改神经网络参数,如学习速率、隐含层神经元个数等,重复步骤(4)。 (6)分析数据和控制曲线。 图5 BP神经网络结构

2.结果展示: (1)实验代码: xite=0.25; alfa=0.02; IN=4; H=10; Out=3; wi=[ 0.4634 -0.4173 0.3190 0.4563; 0.1839 0.3021 0.1112 0.3395; -0.3182 0.0470 0.0850 -0.0722; -0.6266 0.0846 0.3751 -0.6900; -0.3224 0.1440 -0.2873 -0.0193; -0.0232 -0.0992 0.2636 0.2011; -0.4502 -0.2928 0.0062 -0.5640; -0.1975 -0.1332 0.1981 0.0422; 0.0521 0.0673 -0.5546 -0.4830; -0.6016 -0.4097 0.0338 -0.1503]; wi_1=wi;wi_2=wi;wi_3=wi; wo=[ -0.1620 0.3674 0.1959; -0.0337 -0.1563 -0.1454; 0.0898 0.7239 0.7605; 0.3349 0.7683 0.4714; 0.0215 0.5896 0.7143; -0.0914 0.4666 0.0771; 0.4270 0.2436 0.7026; 0.0215 0.4400 0.1121; 0.2566 0.2486 0.4857; 0.0198 0.4970 0.6450 ]'; wo_1=wo;wo_2=wo;wo_3=wo; x=[0,0,0]; u_1=0;u_2=0;u_3=0;u_4=0;u_5=0; y_1=0;y_2=0;y_3=0; oh=zeros(H,1); I=oh; error_2=0; error_1=0; ts=0.001; for k=1:1:6000 time(k)=k*ts; rin(k)=1; a(k)=1.2*(1-0.8*exp(-0.1*k));

工程力学实验指南

工程力学实验指导书 仲恺农业工程学院机电工程系 2008.1

前言 材料力学是研究工程材料力学性能和构件强度、刚度和稳定性计算理论的科学,主要任务是按照安全、适用与经济的原则,为设计各种构件(主要是杆件)提供必要的理论和计算方法以及实验研究方法。 要合理地使用材料,就必须了解材料的力学性能,各种工程材料固有的力学性质要通过相应的试验测得,这是材料力学实验的一个主要任务。 另外,材料力学的理论是以一定的简化和假设为基础。这些假设多来自实验研究,而所建立理论的正确性也必须通过实验的检验,这是材料力学实验的第二个任务。 材料力学实验的第三个任务是通过工程结构模型或直接在现场测定实际结构中的应力和变形,进行实验应力分析,为工程结构的设计和安全评估提供可靠的科学依据。 从以上所述各项任务中,不难看到材料力学实验的重要性,它与材料力学的理论部分共同构成了这门学科的两个缺一不可的环节。 学生在学习并进行材料力学实验时,应注意学习实验原理、试验方法和测试技术,逐步培养科学的工作习惯和独立分析、解决问题的能力,要善于提出问题,勤于思考,勇于创新。这样才能牢固地掌握材料力学课程的基本内容,为将来参加祖国社会主义现代化建设打下坚实的基础。 指导书中将实验内容分为“基本实验”和“选做实验”两个层次,这样既可保证实验教学的基本要求,又可根据不同的需求进行选择,以期在培养学生的综合分析能力和创新能力方面发挥重大作用。 本实验指导书中难免存在缺点和错误之处,请师生们指正,以便今后进一步修改和完善。

基本实验 1 低碳钢和灰口铸铁的拉伸、压缩实验 一、实验目的 1.试样在拉伸或压缩实验过程中,观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。 2.测定该试样所代表材料的P S、P b和ΔL等值。 3.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。 4.学习、掌握电子万能试验机的使用方法及其工作原理。 二、仪器设备和量具 电子万能试验机,引伸计、钢板尺,游标卡尺。 三、低碳钢的拉伸和压缩实验 1.低碳钢的拉伸实验 在拉伸实验前,测定低碳钢试件的直径d和标距L。试件受拉伸过程中,观察屈服(流动)、强化,卸载规律、颈缩、断裂等现象;绘制p——ΔL曲线如图2—1(a)所示;记录试件的屈服抗力P s和最大抗力P b。试件断裂后,测量断口处的最小直径d1和标距间的距离L1。依据测得的实验数据,计算低碳钢材料的强度指标和塑性指标。 7 图1—1 低碳钢拉伸图及压缩图 强度指标:

浙工大过程控制实验报告

浙工大过程控制实验报告 202103120423徐天宇过程控制系统实验报告 实验一:系统认识及对象特性测试 一实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。二实验内容 1 熟悉用MCGS组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。三实验设备 1 AE2000B型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。四实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得:

式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数, R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h。电动调节阀的开度op通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op,近似看成与流量Q1成正比,当电动调节阀的开度op为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op的变化,则输出表达式是对应原来输出值得基础上的增

《建筑力学》课程教学大纲

精心整理 《建筑力学》课程教学大纲 (适用专业:建筑类专业) 一、课程的性质与要求 建筑力学是研究结构受力及构件承载能力的课程,是中等职业学校工业与民用建筑专业的重要基础课,它包含静力学、材料力学及结构力学三部分内容.根据大专建筑类专业教育标准和培养方案提出的目标及对本课程的要求,课程的任务是使学生具有对一般结构作受力分析的能力;对构件作强度、刚度、稳定性核算的能力;了解材料的主要力学性能并有测试强度指标的初步能力。为今后直接应用于设计、施工实践和学习结构课程打下必要的力学基础。 第一部分建筑力学(上) 课题一绪论 建筑力学的研究对象和任务、建筑力学的内容简介、建筑力学的学习方法。 课题二静力平衡 力和平衡的概念;静力学基本公理,力的可传性原理;三力平衡汇交定理;力系的分类及特征。

平面汇交力系合成的几何法及平衡的几何条件。 力在直角坐标轴上的投影,投影与分力的区别,合力投影定理;平面汇交力系合成的解析法及平衡的解析条件。平衡方程及其应用。 力对点之矩;合力矩定理。 力偶;力偶矩、力偶的性质;平面力偶系的合成和平衡条件。 课题三支座反力 支座的类型,各种支反力的求解方法。 课题四材料力学概论 材料力学的基本概念,材料力学的研究对象---杆件,性质和任务,强度、刚度、稳定性的概念 变形固体的概念及其基本假定;杆件变形的基本形式; 课题五轴向拉伸和压缩 课题九梁的弯曲 弯曲变形的分类;梁的计算简图的典型形式. 直梁平面弯曲时横截面上的内力一弯矩和剪力,内力正负号规定;截面法求指定截面上的内力,用剪力方程、弯矩方程作简单梁的剪力图和弯矩图;荷载集度、剪力和弯矩之间的微分关系及其在绘制内力图上的应用;叠加法绘制弯矩图;区段叠加法绘制弯矩图。 纯弯曲时的正应力公式及其推导;弯矩与挠曲线曲率间的关系,抗弯刚度;梁的正应力强度条件及强度计算;矩形截面与工字形截面梁剪应力的计算公式介绍,常用截面梁的最大剪应力公式;梁的剪切强度条件;梁的强度条件;梁的合理截面形状及变截面梁,提高梁抗弯强度的措施. 课题十应力状态 梁内任一点的应力状态、单元体,平面应力状态,主应力、主平面,最大剪应力,强度理论简介。 梁变形的概念;叠加法求梁的变形;梁的刚度条件;提高梁刚度的措施。

沈阳SCARA机器人实验指导书

SCARA机器人实验指导书哈尔滨科利达智能控制技术有限公司

SCAR/教学机器人简介 KLD—400教学机器人有3个旋转关节,其轴线相互平 行,在平面内进行定位和定向。另一个关节是移动关节,用于完 成末端件在垂直平面的运动。手腕参考点的位置由两旋转关节的 角位移①1和①2,及移动关节的位移Z决定的,即P= f(①1,①2, Z), SCARA教学机器人为平面关节型机器人,本机器人采用 伺服电机和步进电机驱动,控制简单,编程方便, KLD—400 教学机器人是专为满足高等院校机电一体化、自动控制等专业 进行机电及控制课程教学实验需要和相关工业机器人应用培训 需要而最新开发的四自由度机器人,它是一个多输入多输出的动 力学复杂系统,是进行控制系统设计的理想平台;它具有高度的 能动性和灵活性,具有广阔的可达空间,是进行运动规划和编程系统设计的理想对象。除教学和培训外,KLD—400还可用于细小零件的搬运和电子元件的装配等工业作业。 系统特点 ?机构采用平面关节型(SCAR)结构,按工业标准要求设计,速度快、柔性好; ?采用交流伺服电机和谐波减速器等,模块化结构,简单、紧凑,完全满足实验的要求; ; ?控制系统采用Windows系列操作系统,二次开发方便、快捷,适于教学实验 ?提供通用机器人语言编程系统,可通过图形示教自动生成机器人语言等程序; ?提供实验教材,内容涵盖机器人运动学、动力学、控制系统的设计、机器人轨迹规划等。用户可以从中选择相关内容满足不同层次的教学实验需要。 ?性价比高;适于在高等院校大范围推广。 系统配置 ?硬件平台:KLD—400系列伺服运动控制器和微机平台(PC用户自备,带 ISA插槽) ?软件平台:1)Windows操作系统;2)KLD—400机器人图形示教软件 技术参数 结构形式平面关节式(SCARAB) 负载能力1kg 运动精度(脉冲当量/转)关节112800 关节212800 关节3800pulse/mm 关节41600 未端重复定位精度± 0.1mm 每轴最大运动范围关节10~270° 关节20~200° 关节30~60mm 关节40~345°

《建筑力学与结构》学习指南

《建筑力学与结构》学习指南 1.课程简介 1.1课程性质 《建筑力学与结构》课程以力学知识为基础,学习结构和构件设计工作任务及有关知识与技能,是一门以培养学生的实际工作能力为目标的应用技术课程;是一门实践性较强,同时理论与实践联系专门紧密的应用技术课程。是工程监理专业的专业核心基础课,本课程以结构设计工作任务来组织有关知识与技能的学习,培养学生混凝土结构构件的设计运算能力、绘制与识读结构施工图能力。 本课程的前导课程有《建筑制图》、《建筑CAD》、《建筑构造》、《建筑材料等》,后续课程有土《力学与地基基础》、《建筑施工》、《建筑工程计量与计价》、《建筑抗震》、《建筑施工组织与治理》、《工程质量检验与验收》等。 1.2课程作用 本课程要紧学习力学差不多知识和建筑结构一样结构构件的运算方法和构造要求,通过学习让学生会设计混凝土结构和砌体结构常用构件,会绘制与识读混凝土结构施工图,同时培养学生具备对常见工程事故分析与处理的能力。为进一步学习建筑施工、工程质量检验与验收、建筑工程计量与计价等课程提供有关建筑结构的差不多知识,为今后从事施工技术和治理工作奠定基础。 该课程是学生职业素养养成的重要平台。有利于对学生进行标准意识、规范意识、质量意识及态度意识的培养。此外,混凝土结构设计涉及到方案拟定、数据运算和绘图等诸多环节,能够为学生制造沟通、表达、协作的素养。 2学习目标 2.1能力目标:

具有对一样结构进行受力分析、内力分析和绘制内力图的能力;了解材料的要紧力学性能并有测试强度指标和构件应力的初步能力;把握构件强度、刚度和稳固运算的方法;把握各种构件的差不多概念、差不多理论和构造要求,能进行各种结构差不多构件的设计和一样民用房屋的结构设计,具有熟练识读结构施工图和绘制简单结构施工图的能力,并能处明白得决与施工和工程质量有关的结构咨询题。 2.2知识目标 在整个教学过程中应从高职培养目标和学生的实际动身,重点学习建筑力学与结构的差不多理论和差不多知识、常用杆件及结构的受力分析方法、结构的内力运算及内力图的绘制方法、结构位移的运算方法及常用结构构件的设计方法。 2.3素养目标 (1)培养差不多职业素养和良好的劳动纪律观念; (2)具有猎取、分析、归纳、交流、使用信息的能力。 (3)具有合理利用与支配资源的能力 (4)具有自学能力、明白得能力、表达能力和沟通与交流能力 (5)培养认真做事,细心做事的科学态度; 6 .培养学生的团队协作能力,按照工作任务合理分工,互有关心、协作完成任务; 7 .培养学生正确描述工作任务、工作要求,任务完成后独立完成技术总结。 3学习内容及要求 建筑施工技术专业要紧为建筑企业、施工单位培养服务于生产一线的高素养技能型人才,即具有结构设计差不多知识,能够明白得设计意图,正确指导现场施工的技能型人才。为此,课程组与行业、企业专家合作,在“工作流程模块化、模块内容项目化、项目实施情形化、情形模拟任务化、任务考核行业化”的课程开发理念的指导下,针对土建施工企业生产一线施工员为主的职业岗位对建筑力学与结构所需要的钢筋、混凝土材料的种类和性能,结构构件的运算和验算,配筋图的绘制与识读,钢筋的绑

相关主题
文本预览
相关文档 最新文档