当前位置:文档之家› 真核细胞与原核细胞转录翻译的区别复习过程

真核细胞与原核细胞转录翻译的区别复习过程

真核细胞与原核细胞转录翻译的区别复习过程
真核细胞与原核细胞转录翻译的区别复习过程

精品文档

精品文档真核细胞与原核细胞的区别

1 真核细胞与原核细胞共有的细胞器是核糖体

2原核生物的mRNA通常在转录完成之前便可启动蛋白质的翻译,但真核生物的核基因必须在mRNA形成之后才能翻译蛋白质,针对这一差异的合理解释是 D

A.原核生物的tRNA合成无需基因指导

B.真核生物tRNA呈三叶草结构

C.真核生物的核糖体可进入细胞核

D.原核生物的核糖体可以靠近DNA

3甲、乙图示真核细胞内两种物质的合成过程,下列叙述正确的是 D

A、甲、乙所示过程通过半保留方式进行,合成的产物是双链核酸分子

B、甲所示过程在细胞核内进行,乙在细胞质基质中进行

C、DNA分子解旋时,甲所示过程不需要解旋酶,乙需要解旋酶

D、一个细胞周期中,甲所示过程在每个起点只起始一次,乙可起始多次

翻译时,一个核糖体从起始密码子到达终止密码子约需4秒钟,实际上合成100个瘦素蛋白分子所需的时间约为1分钟,其原因是。

一条mRNA上有多个核糖体同时翻译

原核生物和真核生物中基因的转录

原核生物和真核生物中基因的转录、翻译和后修饰 摘要:原核生物和真核生物中基因的转录、翻译和后修饰,是各种功能蛋白质生物合成的一系列程序。本文通过介绍了原核生物和真核生物中基因的转录、翻译和后修饰的机制、原理、过程,从而了解真核生物和原核生物的基因表达和功能蛋白质合成上的差异。 关键词: 原核生物真核生物基因转录翻译后修饰 0引言: 21世纪,基因水平上的研究受到人们广泛的关注。原核生物和真核生物中基因的转录、翻译和后修饰是基础研究,人们也只有在此基础不断扩散深入研究其它基因水平问题。本文只简单介绍了一些关于基因转录、翻译和后修饰的一部分相关研究成果。 1 原核生物和真核生物中基因的转录: 基因转录是在由RNA聚合酶和辅助因子组成的转录复合物的催化下,从双链DNA分子中拷贝生物信息生成一条RNA链的过程。转录中,一个基因会被读取被复制为mRNA,就是说一特定的DNA片断作为模板,以DNA依赖的RNA合成酶作为催化剂的合成前体mRNA的过程。转录产物主要有三类RNA,即信使RNA (mRNA)、核糖体RNA(rRNA)和转移RNA(tRNA)。在基因转录过程中,RNA聚合酶起着非常重要的作用。RNA聚合酶可以催化所有四种核苷- 5′-三磷酸(ATP、GTP、UTP和CTP)聚合成与模板DNA互补的RNA。此反应需要Mg2+,反应中释放焦磷酸。[1]该酶在转录的各个过程中发挥了不同的作用。 1.1 基因转录的启动 RNA聚合酶正确识别DNA模板上的启动子并形成由酶、DNA和核苷三磷酸构成的三元起始复合物,转录便开始进行。启动子是DNA分子上可与RNA聚合酶特异结合,而使转录开始的一段DNA序列而本身不被转录。DNA模板上的启动区域常含有TATAATG顺序,称P盒。复合物中的核苷三磷酸一般为GTP,少数为ATP,因而原始转录产物的5′端通常为三磷酸鸟苷(pppG)或腺苷三磷酸(pppA)。真核DNA上的转录启动区域也有类似原核DNA的启动区结构,和在-30bp(即在酶和DNA结合点的上游30核苷酸处)附近也含有TATA结构,称TATA盒。[3]第一个核苷三磷酸与第二个核苷三磷酸缩合生成3′-5′磷酸二酯键后,则启动阶段结束,进入延伸阶段。 1.2 基因转录的延伸 σ亚基脱离酶分子,留下的核心酶与 DNA的结合变松,因而较容易继续往前移动。核心酶无模板专一性,能转录模板上的任何顺序,包括在转录后加工时待切除的居间顺序。脱离核心酶的σ亚基还可与另外的核心酶结合,参与另一

真核生物与原核生物转录与复制的区别

真核生物与原核生物转录 与复制的区别 This model paper was revised by the Standardization Office on December 10, 2020

不同点 真核生物和原核生物复制的不同点: 1.真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成 2.原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的。真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。 3.真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原核生物要短。 4.原核生物中有DNA聚合酶Ⅰ、Ⅱ、Ⅲ三种聚合酶,并有DNA聚合酶Ⅲ同时控制两条链的合成。真核生物中有α、β、γ、ε、δ五种聚合酶。聚合酶α、δ是DNA 合成的主要酶,分别控制不连续的后随链以及前导链的生成。聚合酶β可能与DNA修复有关,聚合酶γ则是线粒体中发现的唯一一种DNA聚合酶. 5.染色体端体的复制不同。原核生物的染色体大多数为环状,而真核生物染色体为线状。末端有特殊DNA序列组成的结构成为端体。 真核生物和原核生物转录的不同点: 1.真核生物的转录在细胞核内进行,原核生物则在拟核区进行。 2.真核生物mRNA分子一般只编码一个基因,原核生物的一个mRNA分子通常含多个基因。

3.真核生物有三种不同的RNA聚合酶催化RNA合成,而在原核生物中只有一种RNA聚合酶催化所有RNA 的合成。 4.真核生物的RNA聚合酶不能独立转录RNA,三种聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录,其RNA聚合酶对转录启动子的识别也比原核生物要复杂得多。原核生物的RNA聚合酶可以直接起始转录合成RNA。 真核生物和原核生物翻译的不同点: 的活化:起始氨基酸是,真核是从生成-tRNAi开始的。 翻译的起始:原核的起始tRNA是fMet-tRNA(fMet上角标),30s首先与mRNA模板相结合,再与fMet-tRNA(fMet上角标)结合,最后与50s结合。真核中起始tRNA是 Met-tRNA(Met上角标),40s小亚基首先与Met-tRNA(Met上角标)相结合,再与模板mRNA结合,最后与60s大亚基结合生成。 的延伸:没有区别 肽链的终止:原核含有三种释放因子RF1,RF2,RF3。真核只有eRF1和eRF3。 前体的加工蛋白质的折叠蛋白质的合成抑制这三步过程过于复杂,因具体物种而异 相同点 真核生物和原核生物复制的相同点: DNA复制 都是半保留复制、半不连续复制、双向复制,在复制中需要的原料、模板、引物都相同,都有前导链和滞后链,都分为起始、延伸、终止三个过程。

复制转录翻译

考点 4 DNA 复制 1.关于核酸生物合成的叙述,错误的是( ) A.DNA 的复制需要消耗能量 B.RNA 分子可作为 DNA 合成的模板 C.真核生物的大部分核酸在细胞核中合成 D.真核细胞染色体 DNA 的复制发生在有丝分裂前期 2.如图为真核生物染色体上 DNA 分子复制过程示意图,有关叙述错误的是(

A.图中 DNA 分子复制是从多个起点同时开始的 B.图中 DNA 分子复制是边解旋边双向复制的 C.真核生物 DNA 分子复制过程需要解旋酶 D.真核生物的这种复制方式提高了复制速率 3.科 学 家 以 大 肠 杆 菌 为 实 验 对 象 ,运 用 同 位 素 失 踪 技 术 及 密 度 梯 度 离 心 方 法 进 行 了 DNA 复 制 方 式 的 探 索 实 验 , 实 验 内 容 及 结 果 见 下 表 . 组别 培养液中唯 一氮源 繁殖代数 培养产物 操作 1组
14
2组
15
3组
14
4组
14
NH 4 CL
NH 4 CL
NH 4 CL
NH 4 CL
多代 A
多代 B
一代 B 的子 I 代
两代 B 的 子 II 代
提 取 DNA 并 离 心 1/2 轻 带( N 14 / N) 仅 为 中 带( 1 5 N/ 1 4 N ) 1/2 中 带( 1 5 N 14 / N)
14
离心结果
仅为轻带( N/ 1 4 N )
14
仅 为 重 带( N/ 1 5 N )
15
请分析并回答: ( 1) 要 得 到 DNA 中 的 N 全 部 被 放 射 性 标 记 的 大 肠 杆 菌 B , 必 须 经 过 ______代 培 养 , 且 培 养 液 中 的 ______是 唯 一 氮 源 . ( 2 ) 综 合 分 析 笨 实 验 的 DNA 离 心 结 果 , 第 ______组 结 果 对 得 到 的 结 论 起 到 了 关 键 作 用 , 但 需 把 它 与 第 组 和 第 ______组 的 结 果 进 行 比 较 , 才 能 说 明 DNA 分 子 的 复 制 方 式 是 ______. ( 3) 分 析 讨 论 : ① 若 子 I 代 DNA 的 离 心 结 果 为 “ 轻 ” 和 “ 重 ” 两 条 密 度 带 , 则 “ 重 带 ” DNA 来 自 于 ______据 此 可 判 断 DNA 分 子 的 复 制 方 式 不 是 ______复 制 . ② 若 将 子 I 代 DNA 双 链 分 开 后 再 离 心 , 其 结 果 是 ______( 选 填 “ 能 ” 或 “ 不 能 ” ) 判 断 DNA 的 复 制 方 式 . ③ 若 在 同 等 条 件 下 将 子 II 代 继 续 培 养 , 子 n 代 DNA 离 心 的 结 果 是 : 密 度 带 的 数 量 和 位 置 是 ______, 放 射 性 强 度 发 生 变 化 的 是 ______带 . ④若 某 次 实 验 的 结 果 中 ,子 I 代 DNA 的“ 中 带 ”比 以 往 实 验 结 果 的“ 中 带 ”略 宽 , 可 能 的 原 因 是 新 合 成 的 DNA 单 链 中 的 N 尚 有 少 部 分 为 ______.

原核生物基因的转录的过程

原核生物基因的转录的 过程 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

原核生物基因的转录的过程 转录过程包括启动、延伸和终止。 启动RNA聚合酶正确识别DNA模板上的启动子并形成由酶、DNA 和核苷三磷酸(NTP)构成的三元起始复合物,转录即自此开始。DNA模板上的启动区域常含有TATAATG顺序,称普里布诺(Pribnow)盒或P盒。复合物中的核苷三磷酸一般为GTP,少数为ATP,因而原始转录产物的5′端通常为三磷酸鸟苷(pppG)或腺苷三磷酸(pppA)。真核DNA上的转录启动区域也有类似原核DNA的启动区结构,和在-30bp(即在酶和DNA结合点的上游30核苷酸处,常以—30表示,bp为碱基对的简写)附近也含有TATA结构,称霍格内斯(Hogness)盒或TATA盒。第一个核苷三磷酸与第二个核苷三磷酸缩合生成3′-5′磷酸二酯键后,则启动阶段结束,进入延伸阶段。 延伸σ亚基脱离酶分子,留下的核心酶与DNA的结合变松,因而较容易继续往前移动。核心酶无模板专一性,能转录模板上的任何顺序,包括在转录后加工时待切除的居间顺序。脱离核心酶的σ亚基还可与另外的核心酶结合,参与另一转录过程。随着转录不断延伸,DNA双链顺次地被打开,并接受新来的碱基配对,合成新的磷酸二酯键后,核心酶向前移去,已使用过的模板重新关闭起来,恢复原来的双链结构。一般合成的RNA链

对DNA模板具有高度的忠实性。RNA合成的速度,原核为25~50个核苷酸/秒,真核为45~100个核苷酸/秒。 终止转录的终止包括停止延伸及释放RNA聚合酶和合成的RNA。在原核生物基因或操纵子的末端通常有一段终止序列即终止子;RNA合成就在这里终止。原核细胞转录终止需要一种终止因子ρ(四个亚基构成的蛋白质)的帮助。真核生物DNA上也可能有转录终止的信号。已知真核DNA转录单元的3′端均含富有AT的序列〔如AATAA(A)或ATTAA(A)等〕,在相隔0~30bp之后又出现TTTT顺序(通常是3~5个T),这些结构可能与转录终止或者与3′端添加多聚A顺序有关。

生化转录翻译选题

转录翻译 1、细菌蛋白的翻译过程包括①mRNA,起始因子,以及核蛋白体亚基的结合; ②氨基酸活化;③肽键的形成;④肽酰tRNA易位;⑤GTP,延长因子以及氨基酰tRNA 结合在一起等步骤。它们出现的正确顺序是 A: ①,⑤,②,③,④ B: ②,①,⑤,③,④ C: ⑤,①,②,④,③ D: ②,①,⑤,④,③ E: ①,⑤,②,④,③ 2、形成镰刀状红细胞贫血的原因是 A: 缺乏维生素B12 B: 缺乏叶酸 C: 血红蛋白β链N末端缬氨酸变成了谷氨酸 D: 血红蛋白β链基因中CTT变成了CAT E: 血红蛋白β链基因中的CA T变成了CTT 3、下列均可作为hnRNA是mRNA前体的证据,哪一项是最有说服力的证据 A: hnRNA相对分子质量大于mRNA B: hnRNA在胞核,mRNA在胞质 C: hnRNA与mRNA碱基组成既相似又不同 D: 核酸杂交图上两者形成局部双链,而一些部分则鼓出成泡状 E: 以上答案都不对 4、真核生物胞质小分子RNA由RNA聚合酶Ⅲ转录,其基因的启动子在转录区的 A: 上游 B: 下游 C: 内部 D: 外部 E: 以上答案都不对 5、原核生物和真核生物翻译起始不同之处 A: 真核生物的Shine-Dalgarno序列使mRNA与核糖体结合 B: 真核生物帽子结合蛋白是翻译起始因子之一 C: IF 比eIF种类多 D: 原核生物和真核生物使用不同起始密码 E: 原核生物有TATAA T作为翻译起始序列,真核生物则是TATA 6、下述蛋白质合成过程中核糖体上的移位应是 A: 空载tRNA脱落发生在“受位”上 B: 肽酰-tRNA的移位消耗ATP C: 核糖体沿mRNA5′→3′方向作相对移动 D: 核糖体在mRNA上移动距离相当于一个核苷酸的长度 E: 肽酰-tRNA在mRNA上移动距离相当于一个核苷酸的长度

真核生物转录特点

真核生物RNA的转录与原核生物RNA的转录过程在总体上基本相同,但是,其过程要复杂得多,主要有以下几点不同(图3-27)。 ⒈真核生物RNA的转录是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。所以,RNA转录后首先必须从核内运输到细胞质内,才能指导蛋白质的合成。 ⒉真核生物一个mRNA分子一般只含有一个基因,原核生物的一个mRNA分子通常含有多个基因,而除少数较低等真核生物外,一个mRNA分子一般只含有一个基因,编码一条多态链。 ⒊真核生物RNA聚合酶较多在原核生物中只有一种RNA聚合酶,催化所有RNA的合成,而在真核生物中则有RNA聚合酶Ⅰ、RNA聚合酶Ⅱ和RNA聚合酶Ⅲ三种不同酶,分别催化不同种类型RNA的合成。三种RNA聚合酶都是由10个以上亚基组成的复合酶。RNA聚合酶Ⅰ存在于细胞核内,催化合成除5SrRNA 以外的所有rRNA的合成;RNA聚合酶Ⅱ催化合成mRNA前体,即不均一核RNA(hnRNA)的合成;RNA 聚合酶Ⅲ催化tRNA和小核RNA的合成。 ⒋真核生物RNA聚合酶不能独立转录RNA 。原核生物中RNA聚合酶可以直接起始转录合成RNA ,真核生物则不能。在真核生物中,三种RNA聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录。另外,RNA聚合酶对转录启动子的识别,也比原核生物更加复杂,如对RNA聚合酶Ⅱ来说,至少有三个DNA的保守序列与其转录的起始有关,第一个称为TATA框(TATA box),具有共有序列TATAAAA,其位置在转录起始点的上游约为25个核苷酸处,它的作用可能与原核生物中的-10共有序列相似,与转录起始位置的确定有关。第二个共有序列称为CCAAT框(CCAAT box),具有共有序列GGAACCTCT,位于转录起始位置上游约为50-500个核苷酸处。如果该序列缺失会极大地降低生物的活体转录水平。第三个区域一般称为增强子(enhancer),其位置可以在转录起始位置的上游,也可以在下游或者在基因之内。它虽不直接与转录复合体结合,但可以显著提高转录效率。

原核生物蛋白质合成的过程

蛋白质合成的过程 蛋白质生物合成的具体步骤包括:①氨基酸的活化;②活化氨基酸的转运;③活化氨基酸在核蛋白体上的缩合。 (一)氨基酸的活化转运 氨基酸的活化过程及其活化后与相应tRNA的结合过程,都是由氨基酰tRNA合成酶来催化的,反应方程为:tRNA+氨基酸+ATP〖FY(KN〗氨基酰tRNA合成酶〖FY)〗氨基酰-tRNA+AMP+焦磷酸。以氨基酰tRNA形式存在的活化氨基酸,即可投入氨基酸缩合成肽的过程。氨基酰tRNA合成酶存在于胞液中,具有高度特异性。它们既能识别特异的氨基酸,又能辨认携带该种氨基酸的特异tRNA分子。在体内,每种氨基酰tRNA合成酶都能从多种氨基酸中选出与其对应的一种,并选出与此氨基酸相应的特异tRNA。这是保证遗传信息准确翻译的要点之一。 (二)核蛋白体循环 tRNA所携带的氨基酸,是通过“核蛋白体循环”在核蛋白体上缩合成肽,完成翻译过程的。以原核生物中蛋白质合成为例,将核蛋白体循环人为地分为启动、肽链延长和终止三个阶段进行介绍。 1.启动阶段 在蛋白质生物合成的启动阶段,核蛋白体的大、小亚基,mRNA与一种具有启动作用的氨基酸tRNA共同构成启动复合体。这一过程需要一些称为启动因子的蛋白质以及GTP 与镁离子的参与。 原核生物中的启动因子有3种,IF 1辅助另外两种启动因子IF 2、IF 3起作用。 启动阶段的具体步骤如下: (1)30S亚基在IF 3与IF 1的促进下与mRNA的启动部位结合,在IF 2的促进与IF 1辅助下与甲酰蛋氨酰tRNA以及GTP结合,形成30S启动复合体。 30S启动复合体由30S亚基、mRNA、fMet-tRNA fMet IF 1、IF 2、IF 3与GTP共同构成。 (2)30S启动复合体一经形成,IF 3即行脱落,50S亚基随之与其结合,形成了大、小亚基,mRNA,fMet-tRNA fMet IF 1、IF 2与GTP共同构成的70S启动前复合体。 (3)70S启动前复合体的GTP水解释出GDP与无机磷酸的同时,IF 2和IF 1随之脱落,形成了启动复合体。至此,已为肽链延长作好了准备。 启动复合体由大、小亚基,mRNA与fMet-tRNA fMet 已知核蛋白体上有两个位置,分别称为“给位”与“受位”,启动复合体中mRNA的启动信号相对应的fMet-tRNA fMet亦即处于核蛋白体的给位。 2.肽链延长阶段 这一阶段,根据mRNA上密码子的要求,新的氨基酸不断相应的被特异的tRNA运至核蛋白体受位,形成肽键。同时,核蛋白体从mRNA的5′端向3′端不断移位推进翻译过程。肽链延长阶段需要数种称为延长因子的蛋白质、GTP与某些无机离子的参与。 (1)进位 受位上mRNA密码子相对应的氨基酸tRNA进入受位,生成复合体V。此步骤需要GTP、Mg 2+和称为肽链延长因子EFTu与EFTs的蛋白质因子。 (2)转肽 50S亚基的给位有转肽酶的存在,可催化肽键形成。此时在转肽酶的催化下,将给位上tRNA所携的甲酰蛋氨酰(或肽酰)转移给受位上已特异性进入的氨基酸tRNA,与其所带的氨基酸的氨基结合形成肽键。此酶需要Mg 2+与K 2+存在。 (3)脱落

真核生物与原核生物转录与复制的区别

不同点 真核生物和原核生物复制的不同点: 1.真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成 2.原核生物DNA复制是单起点的,而真核生物染色体的复制为多起点的。真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。 3.真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原核生物要短。 4.原核生物中有DNA聚合酶Ⅰ、Ⅱ、Ⅲ三种聚合酶,并有DNA聚合酶Ⅲ同时控制两条链的合成。真核生物中有α、β、γ、ε、δ五种聚合酶。聚合酶α、δ是DNA合成的主要酶,分别控制不连续的后随链以及前导链的生成。聚合酶β可能与DNA修复有关,聚合酶γ则是线粒体中发现的唯一一种DNA聚合酶. 5.染色体端粒的复制不同。原核生物的染色体大多数为环状,而真核生物染色体为线状。末端有特殊DNA序列组成的结构成为端粒。 真核生物和原核生物转录的不同点: 1.真核生物的转录在细胞核内进行,原核生物则在拟核区进行。 2.真核生物mRNA分子一般只编码一个基因,原核生物的一个mRNA分子通常含多个基因。 3.真核生物有三种不同的RNA聚合酶催化RNA合成,而在原核生物中只有一种RNA聚合酶催化所有RNA 的合成。 4.真核生物的RNA聚合酶不能独立转录RNA,三种聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录,其RNA聚合酶对转录启动子的识别也比原核生物要复杂得多。原核生物的RNA聚合酶可以直接起始转录合成RNA。真核生物和原核生物翻译的不同点: 氨基酸的活化:原核起始氨基酸是甲酰甲硫氨酸,真核是从生成甲硫氨酰-tRNAi开始的。翻译的起始:原核的起始tRNA是tRNA fMet,30s小亚基首先与mRNA模板相结合,再与tRNA fMet结合,最后与50s大亚基结合。真核中起始tRNA是tRNA Met,40s小亚基首先与tRNA Met相结合,再与模板mRNA结合,最后与60s大亚基结合生成起始复合物。 肽链的延伸:没有区别 肽链的终止:原核含有三种释放因子RF1,RF2,RF3。真核只有eRF1和eRF3。 蛋白质前体的加工蛋白质的折叠蛋白质的合成抑制这三步过程过于复杂,因具体物种而异。 相同点 真核生物和原核生物复制的相同点: DNA复制 都是半保留复制、半不连续复制、双向复制,在复制中需要的原料、模板、引物都相同,都有前导链和滞后链,都分为起始、延伸、终止三个过程。 RNA转录:

原核生物基因的转录的过程

原核生物基因的转录的过程 转录过程包括启动、延伸和终止。 启动RNA聚合酶正确识别DNA模板上的启动子并形成由酶、DNA和核苷三磷酸(NTP)构成的三元起始复合物,转录即自此开始。DNA模板上的启动区域常含有TATAATG顺序,称普里布诺(Pribnow)盒或P盒。复合物中的核苷三磷酸一般为GTP,少数为ATP,因而原始转录产物的5′端通常为三磷酸鸟苷(pppG)或腺苷三磷酸(pppA)。真核DNA上的转录启动区域也有类似原核DNA的启动区结构,和在-30bp(即在酶和DNA结合点的上游30核苷酸处,常以—30表示,bp为碱基对的简写)附近也含有TATA结构,称霍格内斯(Hogness)盒或TATA盒。第一个核苷三磷酸与第二个核苷三磷酸缩合生成3′-5′磷酸二酯键后,则启动阶段结束,进入延伸阶段。 延伸σ亚基脱离酶分子,留下的核心酶与DNA的结合变松,因而较容易继续往前移动。核心酶无模板专一性,能转录模板上的任何顺序,包括在转录后加工时待切除的居间顺序。脱离核心酶的σ亚基还可与另外的核心酶结合,参与另一转录过程。随着转录不断延伸,DNA双链顺次地被打开,并接受新来的碱基配对,合成新的磷酸二酯键后,核心酶向前移去,已使用过的模板重新关闭起来,恢复原来的双链结构。一般合成的RNA链对DNA模板具有高度的忠实性。RNA合成的速度,原核为25~50个核苷酸/秒,真核为45~100个核苷酸/秒。 终止转录的终止包括停止延伸及释放RNA聚合酶和合成的RNA。在原核生物基因或操纵子的末端通常有一段终止序列即终止子;RNA合成就在这里终止。原核细胞转录终止需要一种终止因子ρ(四个亚基构成的蛋白质)的帮助。真核生物DNA上也可能有转录终止的信号。已知真核DNA转录单元的3′端均含富有AT的序列〔如AATAA(A)或ATTAA(A)等〕,在相隔0~30bp之后又出现TTTT顺序(通常是3~5个T),这些结构可能与转录终止或者与3′端添加多聚A顺序有关。

11-生物化学习题与解析--RNA的生物合成过程

11-生物化学习题与解析--RNA 的生物合成过程

RNA的生物合成过程 一、选择题 (一) A 型题 1 .下列关于转录的叙述正确的是 A .转录过程需 RNA 引物 B .转录生成的 RNA 都是翻译模板 C .真核生物转录是在胞浆中进行的 D . DNA 双链一股单链是转录模板 E . DNA 双链同时作为转录模板 2 . DNA 上某段编码链碱基顺序为 5 ' -ACTAGTCAG- 3 ' ,转录后 mRNA 上相应的碱基顺序为 A . 5 ' -TGATCAGTC-3 ' B . 5 ' -UGAUCAGUC-3 ' C . 5 ' -CUGACUAGU-3 ' D . 5 ' -CTGACTAGT-3 ' E . 5 ' -CAGCUGACU-3 ' 3 .不对称转录是 A .双向复制后的转录 B .以 DNA 为模板双向进行转录 C .同一单链 DNA ,转录时可以交替作为编码链和模板链 D .同一单链 DNA ,转录时只转录外显子部分 E .没有规律的转录 4 .真核生物的转录特点是 A .发生在细胞质内,因为转录产物主要供蛋白质合成用 B .转录产物有 poly ( A )尾, DNA 模板上有相应的 poly ( dT )序列 C .转录的终止过程需ρ( Rho )因子参与 D .转录起始需要形成 PIC (转录起始前复合物) E .需要α因子辨认起点 5 .下列关于转录编码链的叙述正确的是 A .能转录生成 mRNA 的 DNA 单链 B .能转录生成 tRNA 的 DNA 单链 C .同一 DNA 单链不同片段可作模板链或编码链 D .是基因调节的成份 E .是 RNA 链 6 . Pribnow box 序列是 A . AAUAAA B . TAAGG C C . TTGACA D . TATAAT E . AATAAA 7 .真核生物的 TATA 盒是 A .参与转录起始 B .翻译的起始点 C . RNA 聚合酶核心酶结合位点 D .σ因子结合位点 E .复制的起始点 8 .原核生物 DNA 指导的 RNA 聚合酶由数个亚基组成,其核心酶的组成是 A .α 2 ββ ' ( ω ) B .α 2 β ( σ ) C .α 2 ββ ' σ ( ω ) D .α 2 β ' ( ω ) E .αββ ' 9 .原核生物识别转录起始点的是 A .ρ因子 B .核心酶 C . RNA 聚合酶的α亚基 D .σ亚基 E . RNA 聚合酶的β 亚基 10 .ρ因子的功能是 A .参与转录的启动过程 B .参与转录的全过程 C .加速 RNA 的合成 D .参与转录的终止过程 E .可改变 RNA 聚合酶的活性 11 .在转录延长阶段, RNA 聚合酶与 DNA 模板的结合是 A .全酶与模板结合 B .核心酶与模板特定位点结合 C .结合松弛而有利于 RNA 聚合酶向前移动

2017年高考生物热点: 遗传信息的转录和翻译

2017年高考生物热点:遗传信息的转录和翻译 2017年高考生物热点:遗传信息的转录和翻译 【基础知识】 1.RNA的组成、结构与类型 由1分子核糖、1分子磷酸和1分子磷酸构成种类及功能信使RNA (RNA):蛋白质合成的模板; 转运RNA(tRNA):识别并转运氨基酸; 核糖体RNA(rRNA):核糖体的组成部分。RNA与DNA的区别分布情况:DNA主要存在于细胞核中,RNA主要存在于细胞质中。分子链数:DNA多为双链,RNA多为单链。 碱基种类:DNA中有T(胸腺嘧啶)无U(尿嘧啶),RNA中有U (尿嘧啶)无T(胸腺嘧啶)。 染色情况:甲基绿-吡罗红混合染色剂可将DNA染成绿色,将RNA 染成红色。2 转录和翻译的过程 转录的过程(1)解旋:DNA双链解开,暴露碱基。 (2)配对:原则――碱基互补配对原则;模板――解开的DNA双链中的一条链;原料――游离的核糖核苷酸。 (3)连接:酶――RNA聚合酶;结果――形成一个RNA。 (4)释放:合成的RNA从DNA上释放,DNA双链恢复成双螺旋结构。翻译的过程(1)起始:核糖体与RNA结合,tRNA上的反

密码子识别起始密码子并配对。 (2)运输:tRNA识别RNA上的密码子,并将携带的氨基酸置于特定位置。 (3)延伸:核糖体沿RNA移动,读取下一个密码子,由对应tRNA 运输相应的氨基酸回到延伸中的肽链上(一个RNA可以结合多个核糖体)。 (4)停止:当核糖体到达RNA上的终止密码子时,合成停止。()脱离:肽链合成后从核糖体与RNA的复合物上脱离。3.转录和翻译的比较 转录翻译场所真核细胞主要是细胞核核糖体条模板:DNA的一条链原料:4种核糖核苷酸 能量:ATP 酶:RNA聚合酶等模板:RNA 原料:20种氨基酸 能量:ATP 酶:多种酶 搬运工具:tRNA原则碱基互补配对原则(A-U、T-A、-G、G-)碱基互补配对原则(A-U、U-A、-G、G-)产物RNA、tRNA、rRNA多肽链或蛋白质4.中心法则及其发展 DNA的复制;转录;翻译;RNA的复制;逆转录。 遗传信息、密码子和反密码子的区别

真核生物翻译调控

真核生物翻译的调控 原核生物基因表达的调控主要在转录水平上进行,而真核生物由于RNA较为稳定,所以除了存在转录水平的调控以外,在翻译水平上也进行各种形式的调控。 在蛋白质生物合成的起始反应中主要涉及到细胞中的四种装置,这就是:1.核糖体,它是蛋白质生物合成的场所;2.蛋白质合成的模板mRNA它是传递基因信息的媒介;3.可溶性蛋白因子,这是蛋白质生物合成起始物形成所必需的因 子;4.tRNA,它是氨基酸的携带者。只有这些装置和谐统一才能完成蛋白质的合成。 1、mRNA运输控制 运输控制(transport control)是对转录本从细胞核运送到细胞质中的数量进行调节。真核和原核生物不同,有一个核膜包被的核,此核膜就是一个基因表达的控制点。 我们知道初始转录本是在核内广泛地被加工。实验表明几乎只有一半的蛋白编码基因的初始转录本一直留在核里面,然后被降解掉。成熟的mRNA如何调节从核内转运到细胞质中呢?看来这些mRNA都要通过核孔进行转运,但是对于从核中输出的过程以及输出或保留所需的信号知道得很少。某些证据表明SnRNPs对于mRNA留在核中是很重要的。例如在抑制剪接体装配的成熟酵母中,mRNA易于从核中的输出。这就导致产生剪接体滞留模型(spliceosome retentior model)。在这个模型中剪接体的装配与mRNA的输出相竞争,这样,当前体mRNA 在剪接体经过加工的过程中,RNA滞留在核中,不能与核孔相互作用。当加工完成后,内含子被切除了,mRNA从剪接体上解离下来,游离的mRNA能与核相互作用,但内含子不行。现在还不清楚mRNA是否需要一个特殊的输出信号还是属于无规则的输出。 2、mRNA翻译的控制 mRNA分子通过核糖体对它们的选择充当了翻译调节的主角。不同的翻译明显地影响到基因的表达。例如mRNA储存在很多脊椎和无脊椎动物的未受精卵中,在未受精阶段蛋白质合成率是很低的,但一旦受精蛋白质合成立即增加。因此这各合成的增加并没有新的mRNA的合成,可能是由于存在一种翻译控制之故。最近认为这种翻译控制主要是蛋白降解控制,在控制中蛋白降解的速率是受到调节的。 在细胞质中所有的RNA都要受到降解控制(degradation control)在控制中RNA降解的速率(也称为RNA的转换率是受到调节的。通常核糖体中的 rRNA 和tRNA是很稳定的,相比之下mRNA分子的稳定性很不一致,有的mRNA的寿命可延续好几个月,有的只有几分钟。我们在某些类型的细胞中加入调节物可使某些特殊蛋白的合成增加。这可能涉及到相关基因转录速率的增加,也可能涉及到

生物化学习题与解析RNA的生物合成过程

R N A的生物合成过程 一、选择题 (一)A型题 1.下列关于转录的叙述正确的是 A.转录过程需RNA引物B.转录生成的RNA都是翻译模板 C.真核生物转录是在胞浆中进行的D.DNA双链一股单链是转录模板 E.DNA双链同时作为转录模板 2.DNA上某段编码链碱基顺序为5'-ACTAGTCAG-3',转录后mRNA上相应的碱基顺序为 A.5'-TGATCAGTC-3'B.5'-UGAUCAGUC-3' C.5'-CUGACUAGU-3'D.5'-CTGACTAGT-3' E.5'-CAGCUGACU-3' 3.不对称转录是 A.双向复制后的转录B.以DNA为模板双向进行转录 C.同一单链DNA,转录时可以交替作为编码链和模板链 D.同一单链DNA,转录时只转录外显子部分 E.没有规律的转录 4.真核生物的转录特点是 A.发生在细胞质内,因为转录产物主要供蛋白质合成用 B.转录产物有poly(A)尾,DNA模板上有相应的poly(dT)序列 C.转录的终止过程需ρ(Rho)因子参与 D.转录起始需要形成PIC(转录起始前复合物) E.需要α因子辨认起点 5.下列关于转录编码链的叙述正确的是 A.能转录生成mRNA的DNA单链B.能转录生成tRNA的DNA单链 C.同一DNA单链不同片段可作模板链或编码链 D.是基因调节的成份E.是RNA链 6.Pribnowbox序列是A.AAUAAAB.TAAGGCC.TTGACAD.TATAATE.AATAAA 7.真核生物的TATA盒是 A.参与转录起始B.翻译的起始点C.RNA聚合酶核心酶结合位点 D.σ因子结合位点E.复制的起始点 8.原核生物DNA指导的RNA聚合酶由数个亚基组成,其核心酶的组成是 A.α2ββ'(ω)B.α2β(σ)C.α2ββ'σ(ω)D.α2β'(ω)E.αββ' 9.原核生物识别转录起始点的是 A.ρ因子B.核心酶C.RNA聚合酶的α亚基 D.σ亚基E.RNA聚合酶的β亚基 10.ρ因子的功能是 A.参与转录的启动过程B.参与转录的全过程C.加速RNA的合成 D.参与转录的终止过程E.可改变RNA聚合酶的活性 11.在转录延长阶段,RNA聚合酶与DNA模板的结合是

原核生物基因的转录的过程

原核生物基因的转录的过程转录过程包括启动、延伸和终止。 启动RNA聚合酶正确识别DNA模板上的启动子并形成由酶、DNA和核苷三磷酸(NTP)构成的三元起始复合物,转录即自此开始。DNA模板上的启动区域常含有TATAATG顺序,称普里布诺(Pribnow)盒或P盒。复合物中的核苷三磷酸一般为GTP,少数为ATP,因而原始转录产物的5′端通常为三磷酸鸟苷(pppG)或腺苷三磷酸(pppA)。真核DNA上的转录启动区域也有类似原核DNA的启动区结构,和在-30bp(即在酶和DNA结合点的上游30核苷酸处,常以—30表示,bp为碱基对的简写)附近也含有TATA结构,称霍格内斯(Hogness)盒或TATA盒。第一个核苷三磷酸与第二个核苷三磷酸缩合生成3′-5′磷酸二酯键后,则启动阶段结束,进入延伸阶段。 延伸σ亚基脱离酶分子,留下的核心酶与DNA的结合变松,因而较容易继续往前移动。核心酶无模板专一性,能转录模板上的任何顺序,包括在转录后加工时待切除的居间顺序。脱离核心酶的σ亚基还可与另外的核心酶结合,参与另一转录过程。随着转录不断延伸,DNA 双链顺次地被打开,并接受新来的碱基配对,合成新的磷酸二酯键后,核心酶向前移去,已使用过的模板重新关闭起来,恢复原来的双链结构。一般合成的RNA链对DNA模板具有高度的忠实性。RNA合成的速度,原核为25~50个核苷酸/秒,真核为45~100个核苷酸/秒。

终止转录的终止包括停止延伸及释放RNA聚合酶和合成的RNA。在原核生物基因或操纵子的末端通常有一段终止序列即终止子;RNA合成就在这里终止。原核细胞转录终止需要一种终止因子ρ(四个亚基构成的蛋白质)的帮助。真核生物DNA上也可能有转录终止的信号。已知真核DNA转录单元的3′端均含富有AT的序列〔如AATAA(A)或ATTAA(A)等〕,在相隔0~30bp之后又出现TTTT顺序(通常是3~5个T),这些结构可能与转录终止或者与3′端添加多聚A顺序有关。

真核细胞蛋白质翻译起始研究进展

浙江工程学院学报,第21卷,第4期,2004年12月 Journal of Zhejiang Institute of Science and T echnology V ol .21,N o .4,Dec 12004 文章编号:100924741(2004)04-0312-04 收稿日期:2004-06-14 作者简介:周 培(1979-  ),男,浙江宁波人,硕士,讲师,主要从事ACAT 转录以及翻译的研究。真核细胞蛋白质翻译起始研究进展 周 培1,杨 力2,陈 佳2,李伯良2,赵学明1,张耀洲3 (1.天津大学化工学院,天津 300072; 2.中国科学院上海生化及细胞研究所,上海;200031; 3.浙江理工大学生物化学研究所,浙江杭州 310033) 摘要:在大量有关机制的研究基础上,针对真核蛋白质翻译起始,提出了核糖体沿mRNA 滑动识别翻 译起始位点的机制和核糖体从mRNA 内部识别翻译起始位点的机制。 关键词:真核细胞;蛋白质;翻译起始 中图分类号:Q243 文献标识码:A 细胞的新陈代谢、生长和分化等许多基本的生命现象都受到细胞内基因的调控,而基因的这种调控作用则是通过其相应的蛋白质产物来实现的。作为细胞内最基本和最关键的反应之一,越来越多的实验证据表明,蛋白质的翻译对细胞内基因的正常功能发挥起到关键的调控作用。细胞内蛋白质的翻译一般被分为主要的三步:起始、延伸和终止,而已有的报道基本上都集中在对蛋白质翻译起始阶段的研究上。1 核糖体与mRNA 的识别结合 真核细胞蛋白质翻译起始远比原核细胞的复杂。真核细胞的核糖体主要由40S 小亚基和60S 大亚基构成。40S 核糖体亚基通过对mRNA 序列结构的识别首先与mRNA 结合,在到达正确的翻译起始密码子后与60S 核糖体亚基一起形成有活性的80S 核糖体复合物,起始蛋白质的翻译。核糖体对mRNA 的识别结合是蛋白质翻译起始的关键步骤,已有的文献报道主要分为两类,分别是核糖体对mRNA 5′-末端序列结构的识别结合和核糖体对mRNA 内部序列结构的识别结合。 40S 核糖体亚基与mRNA 5′-末端的识别结合需要真核翻译起始因子-4F (elF -4F )复合物的参与。由elF4E 、elF4G 和elF4A 组成的起始因子elF -4F 复合物可以帮助40S 核糖体识别mRNA 的5′-端帽子结构(7mG cap ),这同时还需要负责与tRNA -Met i 结合的真核翻译起始因子-2(elF -2)和与40S 核糖体亚单位相互作用的真核翻译起始因子-3(elF -3)的参予。这些因子的参与保证了40S 核糖体亚基与mRNA 的5π-末端帽子结构相结合,这种结合方式也可被称为依赖于帽子结构的翻译起始(cap 2dependent initiation )。 在另一种情况下,40S 核糖体亚基通过对mRNA 内部的核糖体进入位点(internal ribos ome enter site ,IRES )序列结构的识别,直接与mRNA 的内部序列结合[1]。这种翻译起始与IRES 上存在的二级结构直接相关,而不依赖于mRNA 的5π-末端帽子结构,也可被称为是不依赖于帽子结构的翻译起始(cap 2independent initiation )。有报道表明,这种核糖体与mRNA 的结合可能需要另外一些特殊的真核翻译起始因子的参与。 针对上述两种不同的核糖体进入mRNA 的形式,分别提出了核糖体沿mRNA 滑动识别翻译起始位点的机制和核糖体从mRNA 内部识别翻译起始位点的机制并给予了相应的阐述,这些将在后面(真核细胞蛋白质翻译起始机制)详细介绍。

为什么原核生物转录和翻译要偶联在一起

为什么原核生物转录和翻译要偶联在一起? 与真核生物相比,原核生物基因表达的一个重要特点是,转录和翻译偶联在一起。具体说,也就是在一个mRNA转录尚未完成时,此mRNA已经合成的区段便开始了蛋白质翻译过程。 这一现象,分子生物学教科书中给出的理由是:只有转录和翻译同时进行,才有可能实现色氨酸操纵子的衰减调控(attenuator)。学习生物学要注意,教材(包括国际著名教材)中的很多说法都经不住深究,善于思考的同学应该能发现这些经不起推敲的说法。这种操作子在基因组中占少数,但原核生物所有的编码蛋白质的基因转录和翻译都是偶联。 前几年,有人提出转录和翻译同时进行是为了避免R-loop的形成(1)。基因转录过程中,新产生的mRNA可能和DNA模板结合形成DNA:RNA双链,另外一条DNA 链单独存在,此状态称为R-loop。研究显示,R-loop会引起DNA损伤等一些不良效应。如果新产生的mRNA结合上了蛋白质合成机器-核糖体,mRNA也就没机会与DNA互补配对了。因此,有关学者提出,转录和翻译紧密偶联是为了避免 R-loop的形成及其对生物体的不良影响。这种说法至少在逻辑上没有漏洞,属于令人满意的假说。将来也许证明R-loop的危害不是太大,或者核糖体的阻隔效果不够强,从而说明转录和翻译紧密偶联对避免R-loop的形成及其对生物体的不良影响意义不大。但目前,这种假说至少还是应该关注。 去年,Science上发表了三篇论文(一篇评论+两篇原始研究论文)(2-4),发现核糖体有效地结合在mRNA上并不断向前移动可以起到推着RNA聚合酶向前走、防止倒退的作用。"Efficient binding and progression of ribosomes along mRNA increase the speed of RNA polymerase" "prevents retraction of the emerging mRNA into RNA polymerase, and thus inhibits backtracking-associated pauses that slow RNA polymerase in the absence of the ribosome." 看完了这些文章,喜欢思考问题的读者会想到,RNA聚合酶倒退(backtracking)是什么大事吗?我查了查文献,确是有一些关于backtracking的介绍,但也没看出来危害有多大。我想这种情况下,在Science上发表论文就需要“嘴大”了。“嘴大”,就像很多专权社会的领导"嘴大"一样。领导、权威这样说可以,普通人这么说就需要拿出证据了。所以,那两篇论文,如果是我们实验室做出来的绝对上不了Science。 下一步,那就应该认真研究研究RNA聚合酶backtracking到底有什么害处?嘴大虽然可以发表论文,但不能说问题不存在。那几位作者心里肯定明白。于是,其中一个课题组就此做了较为深入的研究,论文发表在最近一期Cell上(5)。 细菌细胞中,如果把DNA复制过程比作奔驰车,那基因转录过程充其量也就是拖拉机,慢得很。二者都需要DNA作为模板。也就相当于单行道上同时有奔驰和拖

原核生物和真核生物基因表达调控复制、转录、翻译特点的比较

1.相同点:转录起始是基因表达调控的关键环节 ①结构基因均有调控序列; ②表达过程都具有复杂性,表现为多环节; ③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性; 2.不同点: ①原核基因的表达调控主要包括转录和翻译水平。真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。 ②原核基因表达调控主要为负调控,真核主要为正调控。 ③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。 ④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。 ⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。 真核生物基因表达的调控环节较多: 在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。 在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。 在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。 在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。 真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。 真核生物和原核生物复制的不同点: ①真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成 ②原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的。真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。 ③真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原核生物要短。

相关主题
文本预览
相关文档 最新文档