当前位置:文档之家› GSM简单工作原理

GSM简单工作原理

GSM简单工作原理
GSM简单工作原理

gsm工作原理:Gsm分GSM900、DCS1800和PCS1900三个频段,一般的所谓的双频手机就是在GSM900和DCS1800频段切换的手机。PCS1900(PCS1900 - Personal Communications System operating in the 1,900MHz band.)则是别的一些国家使用的频段(如美国)。 GSM900/1800分别是工作在890~960mhz/1710~1880mhz频段的。GSM900的手机最大功率是8W(实际中移动台没这么大的功率,一般的手机最大功率是2W,车载台功能大),而DCS1800的手机的最大功率是1W。

gsm工作原理之GSM900/DCS1800/PCS1900的区别: GSM900是初始的GSM 系统, MOBILE 的功率从输出1W-8W, GSM900的通道从1 ~124, DCS1800的通道从512~885; DCS1800是低功率的, 最高是1W;

gsm工作原理之GSM的频段:GSM900 小区半径35km 上行890~915MHZ 下行将

935~960MHZ

PHASE2: 890~915MHZ 和935~960MHZ; 通道号1---124.

GSM1800小区半径2km(由于1800mhz手机的低功率) 上行1710~1785MHZ 下行

1805~1880MHZ。

PHASE2: SAME; 通道号 :512—885. 为高密度的用户.

GSM1900: 1850~1910MHZ 1930~1990MHZ

gsm工作原理中上行和下行组成一频率对, 上行就是手机发射、基站接收;下行就是基站到手机。例如935-960 和890-915 相差45MHZ, 第二个通道上, 上行落后下行三个时隙,以上就是gsm工作原理的相关内容。

逻辑笔电路的工作原理(三款简单的逻辑笔电路原理图详解)

逻辑笔电路的工作原理(三款简单的逻辑笔电路原理图详解)逻辑笔是是采用不同颜色的指示灯为表示数字电平的高低的仪器·它是测量数字电路一种较简便的工具·使用逻辑笔可快速测量出数字电路中有故障的芯片·逻辑笔上一般有二三只信号指示灯,红灯一般表示高电平,绿灯一般表示低电平·黄灯表示所测信号为脉冲信号。 本文主要介绍了三款逻辑笔电路的工作原理,具体的跟随小编一起来了解一下。 逻辑笔电路的工作原理(一)廉价而可靠的逻辑笔电路工作原理 数字电路中,有三种逻辑状态:“1”(高电平)、“0”(低电平)和“悬空”(高阻态),这就是通常说的三态逻辑。逻辑笔就是通过发光二极管或数码管显示出被测点的逻辑状态,是数字电路制作、维修和测试不可缺少的工具。 电路原理如下图所示。图中U1和U2是两个四——二与非门电路,即图1中的U1A~U1D、U2A~U2D。 电路主要由电源极性保护、测试探头、逻辑变换、脉冲展宽及逻辑显示五部分组成。图中,保险丝F1和D5是电源极性保护电路,当电源接反时,F1熔断并切断电源以保护电路不被烧坏。P1为测试探头,用于输入测试点的逻辑信号;U1A、U1B、U2A、T1、U1D、U1C等构成逻辑变换电路;U2A、U2B、C1、R6及U1C、U2C、C2、R7构成两个脉冲展宽电路;LED1为低电平显示,LED2是高电平显示。 当P1探得低电平时,即P1=0,那么经过以下逻辑变换后,由于U侣的4脚输入为高电平,此时U侣的6脚的输出就取决于U1B的5脚的输入,致使U侣的6脚输出逻辑暂不能确定。同理,U1C的8脚输出逻辑也暂不能确定。 由于U2C的两个输入端通过电阻R7接地,所以U2C的输入逻辑为低电平,输出为高电平。即U1B的5脚和U1C的10脚输入端逻辑状态是高电平。同样,U2A-2的脚也为高电平输入。因此,U1B-6=0、U1C-8=0,则继续上述逻辑变换为:U1B-6=0→U2A-1=0→

微分电路

微分电路 微分电路的用途 微分电路用于一些电子加速电路、整形电路和触发信号电路中。 微分电路的结构 微分电路的结构和电阻分压电路相似,不同之处就是把分压电路中的前一个电阻器变成电容器即是,这时输入下一级电路的交流信号(电容器不通直流)就不像普通分压电路那么简单了,这主要表现在实际上给微分电路输入的不是正弦信号,而矩形脉冲信号。 微分电路的要求 在微分电路中,要求RC时间常数(电阻值乘以电容值)远远小于脉冲宽度,这一点是微分电路中电阻和电容必须满足的要求,否则微分电路不能正常工作。微分电路的作用 通过微分电路可发将输入的矩形脉冲信号变成尖顶脉冲,在输入脉冲信号的每一个突变处,微分电路都输出很大的尖顶信号,而在输入脉冲信号的平顶期间输出信号电压为零,所以微分电路能够提取输入信号中的突变成分。这些突变成分是输入信号的高频份量,说明微分电路具有这样的功能:能够提取输入信号的高频成份,而去掉其中的低频成份。 微分电路的原理 从上图中可以看出电路输入矩形脉冲信号U1加在电容器上,经过电容器后再在电阻器上输出尖顶脉冲信号U2。这个电路也可以这们理解:在电容器和电阻器串联电路上输入矩形脉冲信号,用示波器查看电路波形,在电容器前面会是矩形脉冲信号,在电阻器前面会是尖顶脉冲信号。这主要利用电容器储能充电的特性将电路中矩形脉冲信号转变成尖顶脉冲信号输送到下一级电路中。 对微分电路原理分析过程要根据输入脉冲信号在前沿阶段、平顶阶段和后沿阶段等几种情况来进行: 1、当输入信号脉冲还没有出现时,输入信号电压为零,所以输出信号电压也为

零。 2、当输入信号脉冲进入前沿阶段时,输入信号从零突然跳变到高电平,这时也叫脉冲前沿阶段。由于输入信号电压从零突变到最大值时间很短,电容内部原来没有电荷,其两端电压为零,电容相当于短路。输入脉冲直接加电阻上,此时输入脉冲信号在最大值,所以微分电路这时输出最大电压,即为输入信号脉冲幅值。 3、当输入信号脉冲刚进入平顶阶段,输入信号保持最高电压,这一输入信号电压很快通过电阻对电容进行充电。随着充电的进行,电容两端的电压越来越大,微分电路输出电压则越来越小。 4、当输入信号脉冲进入平顶阶段后,由于电阻和电容的时间常数很小,远小于输入信号的脉冲宽度,所以对电容充电很快完毕,在电容上充到输入脉冲信号的峰值电压。电容充满电后相当于开路,这时微分电路输出信号电压为零,所以微分电路输出端电压从最大值很快下降到零。 5、当输入信号脉冲进入后沿阶段时,输入信号脉冲电压突变到零。这时充满电的电容开始对输入端放电,输入端这时相当于接地短路,电容放电就会流到电阻。这时电阻上电压就会出现负关周电压,也就是说输出端电压是负的。电容刚开始放电时,电路电压突然从零跳变到最高电压,这样便形成负尖顶波形。 6、当输入信号脉冲进入后沿阶段后,随着放电的进行,电容内的电荷越来越少,电容的电压也是越来越低,输出端的负尖顶波也随之越来越低。由于电阻和电容的时间常数很小,电容在刚开始充电并没有充太多电,放电过程很快完成。电路中的电压很快变成零,这时输出端的负尖顶波也很快回到零位置。

变速箱的工作原理(简易)

变速箱的工作原理 变速箱的原理一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。比如,发动机最大功率出现在5500转。变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。 二、CVT 无级变速箱有着连续的变速比。其一直因为价格、尺寸及可靠性的关系而没有大量装备汽车。现在,改进的设计使得CVT的使用已比较普遍。 国产AUDI 2.8 CVT 变速箱通过离合器与发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速。 级Sport Coupe 6速手动变速箱 一个5档的变速箱提供5种不同的变速比,在输入轴和输出轴间产生转速差。 三、简单的变速箱模型 为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的:

输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。 轴和齿轮(红色)叫做中间轴。它们一起旋转。轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。 轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。车轮转动会带着花键轴一起转动。 齿轮(蓝色)在花键轴上自由转动。在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。 齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。 1档 挂进1档时,套筒就和右边的齿轮(蓝色)啮合。见下图:

电路组成及工作原理

X1226具有时钟和日历的功能,时钟依赖时、分、秒寄存器来跟踪,日历依赖日期、星期、月和年寄存器来跟踪,日历可正确显示至2099年,并具有自动闰年修正功能。拥有强大的双报警功能,能够被设置到任何时钟/日历值上,精确度可到1秒。可用软件设置1Hz、4096Hz或32768Hz中任意一个频率输出。 X1226提供一个备份电源输入脚VBACK,允许器件用电池或大容量电容进行备份供电。采用电容供电时,用一个硅或肖特基二极管连接到Vcc和充电电容的两端,充电电容连接到Vback管脚,注意不能使用二极管对电池充电(特别是锂离子电池)。切换到电池供电的条件是Vcc=Vback-0.1V,正常操作期间,供电电压Vcc必须高于电池电压,否则电池电量将逐步耗尽。振荡器采用外接32.768kH的晶体,产生的振荡误差可通过软件对数字微调寄存器、模拟微调寄存器的数值进行调节加以修正,避免了外接电阻和电容的离散性对精度的影响。4Kb的EEPROM可用于存储户数据。 电路组成及工作原理 X1226可与各种类型的的微控制器或微处理器接口,接口方式为串行的I2C接口。其中数据总线SDA是一个双向引脚,用于输入或输出数据。其漏极开路输出在使用过程中需要添加4.7~10kΩ的上拉电阻。本文介绍89C51单片机与X1226的接口方法,由于89C51单片机没有标准的I2C接口,只能用软件进行模拟。 图1 为了更直观地看到时间的变化,采用8位LED数码管显示年、月、日或时、分、秒,用PS7219A驱动LED

数码管,数码管选择0.5英寸共阴极红色或绿色LED数码管。由于PS7219A器件内含IMP810单片机监控器件,复位输出高电平有效,因此在使用51系统时,无须添加监控器件,使用PS7219A的复位输出给51单片机复位即可,监控电压为4.63V。硬件设计原理图如图1所示。 在硬件通电调试过程中,不能用手去触摸X1226的晶体振荡器,否则可能会导致振荡器停振,恢复振荡器起振的方法是关闭电源(包括备份电源)后重新上电。另外需要说明的是,测量振荡器时,不要用示波器的探头去测量X2的振荡输出,应该用探头测量PHZ/IRQ的振荡输出,以确定是否起振和振荡频率是否准确,测量时建议在该脚加一个5.1kΩ的上拉电阻。 软件设计 X1226内含实时时钟寄存器(RTC)、状态寄存器(SR)、控制寄存器(CONTROL)、报警寄存器(Alarm0、Alarm1)和客户存储数据的存储器。由于实时时钟寄存器和状态寄存器需要进行频繁的写操作,因此其存储结构为易失性SRAM结构。其他寄存器均为EEPROM结构,写操作次数通常在10万次以上。X1226初始化程序框图如图2所示,子程序YS4的作用是延时4μs。 图2

微分电路的设计

摘要 在本设计中,使用运算放大器进行微分电路得设计,此电路就是由电容C与电阻R进行反馈电路,实现了输入信号幅度5V,频率为0—1KH得微分电路。在设计过程中利用软件Multisim进行仿真,最后使用Protel画出电路图,并制PCB板。 关键词:运算放大器;微分电路;幅度5V;频率0-1KHZ;Protel;Multisim

目录 摘要 (1) 目录?2 1绪论 (3) 2 设计任务?4 2。1 课程设计得目得及意义 (4) 2.2 课程设计任务与要求 (4) 2.2、1 设计任务?4 2。2、2设计要求?4 2.3实验器材?5 2.4 课程设计指标 ............................................................................................................................... 5 3 微分电路工作原理?6 4微分电路设计与调试 (8) 4、1 仿真软件介绍?8 4.1、1 Multisim软件介绍?8 4.1。2Protel软件介绍?9 10 4。2 微分电路系统得实现? 4、2、1微分电路参数计算?10 4.2、2 微分电路元器件选择.................................................................................................. 10 4.2、3 微分电路Multisim调试图......................................................................................... 11 12 4、2.4 微分电路Protel绘制电路图? 5 实验结果分析 .................................................................................................................................... 14 6 总结 (15) 致谢?16 参考文献 (17)

手机射频系统工作原理和无信号、不发射等故障的检修

天线感应接收到1900MHz~1915MHz的高频信号,经过L101、C103、L105选频网络选择相应频率的高频信号,XFl01滤波器对信号提纯,进入功放ICl01的7脚,功放内部的奉线开关在CPU的控制下,自动闭合到接收通路,信号经过天线开关从20脚输出,由C117、L1 10耦合到ICl01的22脚。信号在ICl01内部,进行第一次的高频放在,然后进行第一次混频。 1900MHz~1915MHz的高频信号和1659.5MHz~1674.02MHz的一本振信号混频后(1C101的1脚输入),输出一个243.95MHz的中频信号,经过一级放大后,由ICl01的26脚输出。 该中频信号通过电容C123、C102耦合,中频滤波器XFl02滤波,输出信号再经过C130、C104、C132、L117耦合,从40脚进入中频ICl02内部,开始第二次混频。二本振信号频率为233.15MHz,经过混频后,从ICl02的38脚输出10.8MHz低频信号,低滤波器XFl03对该信号滤波后,再从36脚进入ICl02的内部进行二次中频放大,最后从31脚输出已放大的低频信号RXDATA,送入到逻辑电路进行解调(D/A转换,解码,放大)恢复为音频信号。 一本振、二本振信号由相应的本地振荡电路产生。 发射电路工作原理 CPU的8脚、9脚、11脚、12脚分别输出HQ+、HQ-、HI+、HI-四路已编码的模拟信号,分别从3脚、4脚、1脚、2脚进入中频ICl02,在中频ICl02内部经过三次混频电路、加法运算电路、运放电路调制后,低频率信号提升到1900MHz的频率,然后从46脚输出一路已经调制好的高频载波信号。 已调制的高频载波信号通过电感L105、L114、电阻R1、电容C128、C125耦合到高通滤波器XFl04,滤波后再次经过L121、Rll0耦合后,由14脚送入到功放ICl01内部进行功率电平放大,完成功率计整,天线开关闭合到发射通路,高频发射信号经过天开关XFl01滤波后,从天线发射出去。 中频ICl02内部三次混频电路所需的本振信号有两个,一是由接收二本振信号(223.15MH z)在中频ICl02内部的倍频器倍频后提供的,二是由一本振信号(1659.05MHz~1674.02MHz)提供,它作为本振信号直接参与最后一次混频。 总的看来,本机的收发混频都共用同样的本振信号,只不过是发射状态时本振信号还需要在ICl02的内部进行具体的频率变化的处理。 一、接收机电路工作原理与无接收信号、电话不能打入故障的检修 1、一本振电路原理 无论是接收信号,还是发射信号,都是要共用一本振电路提供混频时所需要的本振信号。 X102是压控振荡器(VC01),4脚是输入脚,l脚是输出脚,6脚是供电脚,2脚、3脚、5脚接地。 工作电平送入X102的4脚后,X102发生振荡频率。1脚输出振荡信号,其一部分反馈送回IC102的27脚,在中频ICl02的内部进行鉴相,和原来的工作电平进行比较,产生频率误差控制电压。然后从25脚输出、C22、R205、C223组成的环路滤波器,送X102的4脚。该误差控制电压改变X102内部的变容二极管的电容量,使得输出振荡信号的频率变化较小,从而稳定振荡信号的频率。 VCO PS为VCO启动允许电平,高电平有效(3V脉冲),由CPU的34脚送出。VCC_SYN为中频供电电压。Q103在VCO_PS高电平时导通,集电极输出3V电压作为VCO(X102)工作电压。 X102的1脚输出的振荡信号频率为1659.05MHz~1674.02MHz,它通过C150、R135耦合,从1脚输入到高频信号放大ICl06,4脚输出的就是一个已放大的一本振信号。ICl06的6脚为电压脚,2脚、3脚、5脚接地。

各类整流电路图及工作原理

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压。 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。 二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下: (1)半波整流输出的是一个直流脉动电压。 (2)半波整流电路的交流利用率为50%。 (3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出 时电压叠加)。 (3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。

计算机简单工作原理教案

第三节计算机简单工作原理 一、教学目标 1、知识目标: (1)掌握计算机工作的几个基本过程; (2)认识冯诺依曼型体系的计算机结构; (3)了解计算机工作原理; 2、能力目标 (1)培养学生研究计算机工作过程的兴趣; (2)培养学生自主学习,通过多种渠道探究计算机工作原理的能力; 3、情感目标: (1)培养学生自主探究的学习精神; (2)培养学生的自学能力、动手能力。 二、教学重点、难点 1、教学重点:掌握计算机的工作原理和过程。 2、教学难点:对计算机工作原理的深入探究。 三、教学课时安排 1课时(45分钟) 四、教学手段 上机课(微机室上) 五、教学过程 1、复习导入:回顾上节课计算机系统的组成。引出本节课计算机如何工作,计算机工作的原理。 2、讲授新课 1)计算机的工作过程。 从计算机诞生初期直到现在,通常使用的计算机属于冯诺依曼型体系结构,不论简单与复杂,从功能来讲每台计算机都有五个部分组成:控制器、运算器、存储器、输入设备、输出设备。各部分的功能如下 控制器:整个计算机的指挥中心,它取出程序中的指令,经分析后,便按要求发出信号,使各部分协调一致。 运算器:是计算机的“信息加工厂。” 存储器:是计算机中存放程序和数据的地方,并根据命令提供给有关部分使用。 输入设备:主要作用是把程序和数据等信息转换成计算机适用的编码并顺序送往内存储器。 输出设备:主要作用是把计算机处理的数据、计算结果等内部信息按人们要求的形式输出。

图中的实线代表“数据信息”的流向,包括原始数据、中间数据、处理结果、程序指令等。虚线代表“控制信息”的流向。 2)计算机简单工作流程: i. 操作员通过输入设备将数据和程序送入存储器; ii. 然后通过输入设备发出运行程序的命令; iii. 系统接收到运行程序命令后,控制器便从存储器中取出第一条程序指令,进行分析。然后向受控对象发出控制信号,执行该指令。 iv. 控制器再从存储器中取出下一条指令,进行分析,执行该指令,周而复始重复取指令,分析指令——执行指令过程,直到程序中的全部指令执行完毕3)简单介绍计算机的工作原理。 输入信息:我们可以事先按照求解某个问题的步骤,用程序设计语言编写程序。将程序和有关数据通过输入设备,如键盘送入计算机。程序是由字符和符号表示的,计算机不能识别,因此在输入过程中,键盘将字符和符号转换为二进制编码的形式,再送入计算机存放。输入信息是通过输入设备来完成的。输入设备也就是计算机的“五官,人类是通过五官来接收信息、命令的。我们听到了上课铃声,我们就往教室跑来,我们闻到臭味了,就敢快捂鼻子,我们看到看见红灯,就马上停车……。 存储信息:用高级语言或汇编语言编写的程序称为源程序,源程序和数据都存放在存储器中。源程序不能被计算机硬件直接执行,硬件只能执行机器语言程序。所以操作系统调用语言处理程序,比如编译程序、连接程序,将源程序转换为可执行程序,存放在存储器中。存储器也就是计算机的“笔记本” 处理信息:控制器将指令的地址送往寄存器,按地址指示从存储器中依次读取指令,再根据指令要求从存储器取出操作数,送往运算器。运算器接受控制器的操作命令,对操作数进行运算处理,并将运算处理的结果送回存储器保存。运算器和控制器结合组成了计算机的“大脑” !简单的说运算器是计算机的“算盘”,而控制器呢,就是计算机的“指挥部”,“算盘”用来计算,“指挥部”用传输控制命令,协调计算机的工作,它们被放在一个芯片上如书上所画出的那样,这个芯片呢又称为中央处理器译成英文就是CPU。CPU统一指挥着计算机的所有工作。 输出信息:运算结束,控制器启动输出设备,如打印机。存储器将运算结果送入打印机,打印机再将运算结果转换为字符或图形,打印在纸上。输出设备就是相应的计算机的“嘴和手”。把要输出的信息通过输出设备表现出来。 六、课堂练习 1、填空题 (1)输入设备将字符和符号转换为()形式送入计算机。 (2)输出设备将运算结果转换为()输出。

实验九积分与微分电路

实验九积分与微分电路 学院:信息科学与技术学院专业:电子信息工程 :刘晓旭 学号:2011117147

一.实验目的 1.掌握集成运算放大器的特点、性能及使用方法。 2.掌握比例求和电路、微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.数字万用表2.直流稳压电源3.双踪示波器4.信号发生器5.交流毫伏表。三.预习要求 1.分析图7-8 实验电路,若输入正弦波,u o 与u i 的相位差是多少?当输入信号为100Hz、有 效值为2V时,u o =? 2.图7-8 电路中,若输入方波,u o 与u i 的相位差?当输入信号为160Hz幅值为1V时,输出 u o =? 3.拟定实验步骤,做好记录表格。 四.实验原理 集成运放可以构成积分及微分运算电路,如下图所示: 微积分电路的运算关系为: 五.实验内容: 1.积分电路 按照上图连接积分电路,检查无误后接通+12,-12V直流电源。 (1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值。

(2)取U i=1V,测量运放的负向饱和电压值。 (3)将电路中的积分电容改为改为0.1uF,u i分别输入1KHz幅值为2v的方波和正弦信号,观察u i和u o的大小及相位关系,并记录波形,计算电路的有效积分时间。 (4)改变电路的输入信号的频率,观察u i和u o的相位,幅值关系。 2.微分电路 实验电路如上图所示。 (1)输入正弦波信号,f=500Hz,有效值为1v,用示波器观察u i和u o的波形并测量输出电压值。 (2)改变正弦波频率(20Hz-40Hz),观察u i和u o的相位,幅值变化情况并记录。 (3)输入方波,f=200Hz,U=5V,用示波器观察u0波形,并重复上述实验。 (4)输入三角波,f=200Hz,U=2V,用示波器观察u0波形,并重复上述实验 3.积分-微分电路 实验电路如图所示 (1)输入f=200Hz,u=6V的方波信号,用示波器观察u i和u o的波形并记录。 (2)将f改为500Hz,重复上述实验。 解答: 1.(1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值 电路仿真图如下图所示:

逆变电路的基本工作原理

第5章逆变电路 主要内容:换流方式,电压型逆变电路,电流型逆变电路,多重逆变电路与多电平逆变电路。 重点:换流方式,电压型逆变电路。 难点:电压型逆变电路,电流型逆变电路。 基本要求:掌握换流方式,掌握电压型逆变电路,理解电流型逆变电路,了解多重逆变电路与多电平逆变电路。 逆变概念: 逆变——直流电变成交流电,与整流相对应。 本章无源逆变逆变电路得应用: 蓄电池、干电池、太阳能电池等直流电源向交流负载供电时,需要逆变电路。交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置得核心部分都就是逆变电路。 本章仅讲述逆变电路基本内容,第6章PWM控制技术与第8章组合变流电路中,有关逆变电路得内容会进一步展开 1换流方式 (1)逆变电路得基本工作原理 单相桥式逆变电路为例: S1~S4就是桥式电路得4个臂,由电力电子器件及辅助电路组成。S1、S4闭合,S2、S3断开时,负载电压uo为正S1;S1、S4断开,S2、S3闭合时,u o为负,把直流电变成了交流电。改变两组开关切换频率,可改变输出交流电频率。 图5-1逆变电路及其波形举例 与uo得波形相同,相位也相同。阻感负载时,io滞后于uo,波形电阻负载时,负载电流i o 也不同(图5-1b)。 前:S1、S4通,uo与i o均为正。 t 1 t1时刻断开S1、S4,合上S2、S3,u o变负,但io不能立刻反向。

i o从电源负极流出,经S2、负载与S3流回正极,负载电感能量向电源反馈,i o逐渐减小,t2时刻降为零,之后i o才反向并增大 (2)换流方式分类 换流——电流从一个支路向另一个支路转移得过程,也称换相。 开通:适当得门极驱动信号就可使其开通。 关断:全控型器件可通过门极关断。 半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时 间反压,才能关断。 研究换流方式主要就是研究如何使器件关断。 本章换流及换流方式问题最为全面集中,因此在本章讲述 1、器件换流 利用全控型器件得自关断能力进行换流(Devicemutation)。 2、电网换流 由电网提供换流电压称为电网换流(Line mutation)。可控整流电路、交流调压电路与采用相控方式得交交变频电路,不需器件具有门极可关断能力,也不需要为换流附加元件。 3、负载换流 由负载提供换流电压称为负载换流(Loadmutation)。负载电流相位超前于负载电压得场合,都可实现负载换流。负载为电容性负载时,负载为同步电动机时,可实现负载换流。 图5-2 负载换流电路及其工作波形 基本得负载换流逆变电路: 采用晶闸管,负载:电阻电感串联后再与电容并联,工作在接近并联谐振状态而略呈容 , i d基本没有脉动。性。电容为改善负载功率因数使其略呈容性而接入,直流侧串入大电感L d 工作过程: 4个臂得切换仅使电流路径改变,负载电流基本呈矩形波。负载工作在对基波电流接近并联谐振得状态,对基波阻抗很大,对谐波阻抗很小,u o波形接近正弦。 t1前:VT1、VT4通,VT2、VT3断,u o、i o均为正,VT2、VT3电压即为uo t1时:触发VT2、VT3使其开通,u o加到VT4、VT1上使其承受反压而关断,电流从VT1、VT4换到VT3、VT2。

GSM简单工作原理

gsm工作原理:Gsm分GSM900、DCS1800和PCS1900三个频段,一般的所谓的双频手机就是在GSM900和DCS1800频段切换的手机。PCS1900(PCS1900 - Personal Communications System operating in the 1,900MHz band.)则是别的一些国家使用的频段(如美国)。 GSM900/1800分别是工作在890~960mhz/1710~1880mhz频段的。GSM900的手机最大功率是8W(实际中移动台没这么大的功率,一般的手机最大功率是2W,车载台功能大),而DCS1800的手机的最大功率是1W。 gsm工作原理之GSM900/DCS1800/PCS1900的区别: GSM900是初始的GSM 系统, MOBILE 的功率从输出1W-8W, GSM900的通道从1 ~124, DCS1800的通道从512~885; DCS1800是低功率的, 最高是1W; gsm工作原理之GSM的频段:GSM900 小区半径35km 上行890~915MHZ 下行将 935~960MHZ PHASE2: 890~915MHZ 和935~960MHZ; 通道号1---124. GSM1800小区半径2km(由于1800mhz手机的低功率) 上行1710~1785MHZ 下行 1805~1880MHZ。 PHASE2: SAME; 通道号 :512—885. 为高密度的用户. GSM1900: 1850~1910MHZ 1930~1990MHZ gsm工作原理中上行和下行组成一频率对, 上行就是手机发射、基站接收;下行就是基站到手机。例如935-960 和890-915 相差45MHZ, 第二个通道上, 上行落后下行三个时隙,以上就是gsm工作原理的相关内容。

基本放大电路的概念及工作原理

基本放大电路的概念及工作原理里 基本放大电路一般是指有一个三级管和场效应管组成的放大电路。放大电路的功能是利用晶体管的控制作用,把输入的微弱电信号不失真的放到所需的数值,实现将直流电源的能量部分的转化为按输入信号规律变化且有较大能量的输出信号。放大电路的实质,是用较小的能量去控制较大能量转换的一种能量装换装置。 利用晶体管的以小控大作用 ,电子技术中以晶体管为核心元件可组成各种形式的放大电路。其中基本放大电路共有三种组态:共发射极放大电路、共集电极放大电路和共基极放大电路,如图1所示。 (a)共发射极放大电路 (b)共集电极放大电路

(c)共基极放大电路 图1基本放大电路的三种组态 无论基本放大电路为何种组态,构成电路的主要目的是相同的:让输入的微弱小信号通过放大电路后,输出时其信号幅度显著增强。 1、放大电路的组成原则 需要理解的是,输入的微弱小信号通过放大电路,输出时幅度得到较大增强,并非来自于晶体管的电流放大作用,其能量的提供来自于放大电路中的直流电源。。晶体管再放大电路中只是实现的对能量的控制,是指转换信号能量,并传递给负载。因此放大电路组成的原则首先是必须有直流电源,而且电源的设置应保证晶体管工作在线性放大电路状态。其次,放大电路中各元件的参数和安排上,要保证被传输信号能够从放大电路的输入端尽量不衰减地输出,在信号传输的过程中能够不失真的放大,最后经放大电路输出端输出,并且满足放大电路的性能指标要求。 综上所述,放大电路必须具备以下条件。 ○1保证放大电路的核心元件晶体管工作在放大电路状态,及要求其发射极正偏,集电结反偏。 ○2输入回路的设置应当是输入信号耦合到晶体管的输入电极,并形成变化的基极电流i B ,进而产生晶体管的电流控制关系,变成集电极电流i C 的变化。

积分电路与微分电路

积分电路与微分电路 积分电路和微分电路实验的目的和要求 1: (1)进一步掌握微分电路和积分电路的相关知识(2)学会使用运算放大器形成积分微分电路 (3)设计了一个RC差分电路,将方波转换成锐脉冲波(4)设计了一个RC积分电路,将方波转换成三角波(5)进一步学习和熟悉Multisim软件的使用(6)得出分析结论,写出模拟经验 工作原理: 积分电路: 积分是一种常见的数学运算,同时积分电路是一种常见的波形转换电路,它是一种将矩形脉冲(或方波)转换成三角波的电路最简单的集成电路(一阶RC电路)在 实验中,增加了一个运算放大器。原理图如下: 使用虚拟接地和虚拟断路的概念:n?0,i1?i2?I,电流为i1的电容器c?充电V1/电阻假设电容器c的初始电压为vc(o)?0,输出电压为 1 V0=?钢筋混凝土?vdt 1的上述公式表明,输出电压V0是输入电压Vi随时间的积分,负号表示它们相位相反。

当输入信号Vi为阶跃电压(方波)时,电容将在其作用下以近似恒定的电流模式充电,输出电压V0与时间t近似线性,因此 viviv??t。?到 RC?其中τ=R C是 中的时间常数由此可以推断,运算放大器的输出电压的最大V om受到DC调节电源的限制,这导致运算放大器进入饱和状态,V o保持不变,并且积分停止 差分电路: 替换积分电路中的电阻和电容元件,并选择较小的时间常数RC,以获得如图4所示的差分电路该电路还具有虚拟接地和虚拟断路 图4差分电路与运算放大器 设置t=0,电容的初始电压Vc(0)=0,当信号卡电压Vi连接时,dvii??c有1个dtdv??RC odt 的公式显示,输出电压V o与输入电压Vi相对于时间的微分成比例,负号表示它们的相位相反。当输入信号是方波时,电路可以将方波转换成尖峰脉冲波。 实验内容 我们先画出差分和积分电路图,然后进行实验,观察输出波形 差分电路图:

手机射频知识

GSM手机射频测试指导

目录 序言 (2) 第一章测试条件 (3) 1.1 正常测试条件 (3) 1.2 极限测试条件 (3) 1.3 震动条件 (3) 1.4 其它测试条件及规定 (4) 1.5 附件要求 (5) 第二章发射机指标及其测试 (6) 2.1 发射载波峰值功率 (6) 2.2 发射载频包络 (11) 2.3调制频谱(Spectrum Due to Modulation) (15) 2.4开关频谱(Spectrum Due to Switching) (18) 2.5频率误差(Frequency Error) (20) 2.6相位误差(Phase Error) (22) 2.7传导杂散骚扰(Conduct Spurious Emissions) (24) 2.8发射峰值电流和平均电流 (27) 第三章接收机指标及其测试 (29) 3.1接收灵敏度(Rx Sensitivity) (29) 3.2接收信号指示电平(RX Level) (33) 3.3接收信号指示质量(RX Quality) (35) 第四章其余测试补充 (38) 4.1 RC滤波电路对PA-RAMP的影响 (38) 4.2 PA匹配调整 (42) 4.3天线开关指标测试 (42) 第五章附录 (44)

序言 目前国家对手机的质量问题越来越重视,对于手机质量的客户满意度和返修率也一致关注。其中,GSM手机的射频问题仍然是一个影响手机质量、开发进度和生产效率的重要因素。为了保证产品的品质和性能符合GSM规范和国家标准,需要在手机测试方面建立一套完整、科学的测试体系。为此我们参照GSM规范欧洲标准、国家邮电部移动通信技术规范、国家信息产业部通信行业标准以及日常积累的测试经验编写了这份射频测试规程。 本规范的目的是针对研发阶段的GSM手机提供一个较全面测试和校准的指标依据,尽量保证研发阶段GSM手机的点测指标满足FTA、CTA与批量生产点测指标要求,使手机的射频问题尽可能在研发阶段暴露出来并在量产前解决,同时为评估手机的RF点测性能、指标余量、一致性、稳定性提供参考依据,另外为不熟悉测试的新员工提供一些指导。本文主要内容包括射频指标术语解释,发射机和接收机部分射频指标的测试方法,测试结果,测试参考标准等,最后还给出了指标超标的一般分析。 由于我们射频知识与经验有限,不足之处请指导。

寻呼系统简单工作原理

1 寻呼系统简单工作原理 无线寻呼系统工作时,由寻呼台发出单向呼叫信号,每一寻呼机则指定一数字编码(地址码),寻呼台只要发出某一编码就可以呼叫到某一用户。同时,要传输的信息也按照一定的格式进行数字编码,经发射机发送给用户。寻呼机接收到信息以后,根据相应的格式进行解码,然后将信息显示在显示屏上。不同的寻呼台具有不同的发射频率(即占据不同的频点),无线寻呼系统的常用工作频段一般在138~174MHz(用于本地网)、265~295MHz(用于省网和全国网)和450MHz (专用网)之间。 基于上述寻呼系统的简单工作原理,若要判断寻呼机能否正常工作,就必须对寻呼机的各项技术指标进行测试。寻呼机工作最起码需要两个条件:编码和载频信号,即需要编码器和信号发生器。 2 POCSAG码结构 寻呼系统的基础是寻呼协议(或称寻呼编码)。目前,世界上的寻呼协议标准有许多种,如POC-SAG、GSC、FLEX、ERMES和APOC,但国内外使用得最广泛的是POCSAG码。POCSAG码的结构如图1所示。它由一个前导码和一批或数批码组组成。每批码组含有一个帧同步码字SC和8帧(一帧含两个码字),合计17个码字。码字为最小编码单位,占32bits。前导码为1010的交替码,以1开始,以0收尾,至少576bits,其作用是唤醒寻呼机至预接收状态。码字分同步码、空闲码、地址码和信息码四种。其中,同步码和空闲码为固定的32位二进制数。地址码及信息码的格式如图2所示。地址码第1位以0标识,2~19位为地址位,20~21位为功能位,22~31位为BCH校验位,第32位为偶校验位。寻呼机地址码被分成8组(二进制地址低3位相同的为一组),与每批码组的8帧相对应,并且寻呼机只在对应的帧中识别地址码。信息码第1位以1标识,2~21位为信息位,22~31位为BCH校验位,第32位为偶校验位。对于数字机,一位数字信息用4bits表示,对于中文机,一位数字信息用7bits表示,汉字用14bits表示。

积分电路和微分电路 实验报告书

积分电路和微分电路实验报告书学号:姓名:学习中心:

(1)按如图连接电路 (2)设置信号发生器的输出频率为1HZ,幅值为5V的方波,如图 (3)激活仿真电路 双击示波器图标弹出示波器面板,观察并分析示波器波形

(4)按表1给出的电路参数依次设置R和C的取值,分别激活仿真运行,双击示波器图标,弹出示波器面板,给出输入/输出信号的波形图,并说明R和C的取值对输出信号的影响表1 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7 2.微分电路实验 (1)按图连接电路 (2)设置R和C (3)激活电路仿真运行, (4)双击示波器的面板,给出输入/输出信号的波形图 (5)说明R和C的取值对输出信号的影响

表2 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7

三、实验过程原始数据(数据、图表、计算等) 1.积分电路实验 R=100KO,C=1uF R=100 KO C=2UF R=100KO C=4.7uF 2.微分电路实验 R=100KO,C=1uF

R=100 KO C=2UF R=100KO C=4.7uF 四、实验结果及分析 积分电路实验 由积分电路的特点:时间常数t远大于输入信号的周期T,在此条件下Uc(t)<

射频电路结构和工作原理

射频电路结构和工作原理 一、射频电路组成和特点: 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。 RXI-P RXQ-P RXQ-N (射频电路方框图) 1、接收电路的结构和工作原理: 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,

高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点: (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 电路分析: (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 (接收电路方框图) (2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)

由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 塑料封套螺线管 (外置天线)(内置天线) 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图) 手机天线开关(合路器、双工滤波器)由四个电子开关构成。 900M收收GSM 900M收控收控 900M发控GSM 900M发入GSM (图一)(图二) 作用:其主要作用有两个: a)、完成接收和发射切换; b)、完成900M/1800M信号接收切换。

DARM的基本工作原理

DARM的基本工作原理 林振華內容標題導覽:|前言|DRAM的工作原理|記憶單元|感應放大器| 前言 由於資訊科技的帶動使得半導體記憶體的技術突飛猛進,尤其這三十幾年來DRAM由最早期的1K DRAM到目前的512M DRAM不論是記憶容量的增加、存取速度的提昇、每單位位元的成本降低等改變速度都非常快速,因此DRAM的相關技術無疑已經是半導體技術的領先指標了。 然而,自4K DRAM改用單一電晶體+電容的記憶單元結構以來基本記憶單元(Memory Cell)的結構特性並未改變太多,因此雖然目前記憶容量已經增加到512M以上,然而DRAM的基本工作原理仍然是沒有太大改 變。 DRAM的工作原理 DRAM的結構 MOS DRAM的標準架構如圖1所示,每個記憶單元可儲存一個位元的數位資料"0"或"1",記憶單元藉由行(row)與列(column)方式的排列形成二次元陣列,假設由n行和m列的記憶單元所排列成的二次元陣列時可以構 成n×m=N位元記憶體。 當資料寫入或由記憶單元中讀取時,是將記憶單元的位址輸入行和列位址緩衝器(address buffer),並利用行解碼器(row decoder)選擇n條字元線(word line)中特定的一條,每一條字元線會與m條位元線(bit line)和m位元的記憶單連接,位元線與記憶單元之間具有一個感應放大器放大儲存在記憶單元中的訊號,因此 m條位元線具有m個感應放大器(sense amplifier)。 當選擇字元線之後,列解碼器(column decoder)會選擇m條位元線其中的一條,被選擇的位元線之感應放大器透過資料輸出入線(I/O線)與輸出入線路連接,然後根據控制線路的指令進行資料讀取或寫入。其中,輸出入線路是由輸出預放大器、輸出主放大器和資料輸入緩衝器等線路所構成。 根據以上的介紹DRAM的基本架構包括: ˙排列成二次元陣列的記憶單元。 ˙感應放大器。 ˙位址緩衝器(行/列)及位址解碼器(行和列)。 ˙輸出預放大器、輸出主放大器和輸入緩衝器等輸出入線路。 ˙控制線路等。 而資料的傳輸路徑則是藉由字元線、位元線、資料輸出入線(I/O線)等路徑進行傳遞。

相关主题
文本预览
相关文档 最新文档