当前位置:文档之家› 弹性力学与有限元法分析及实例讲解

弹性力学与有限元法分析及实例讲解

弹性力学与有限元法分析及实例讲解
弹性力学与有限元法分析及实例讲解

弹性力学与有限元法分析

弹性力学是固体力学的一个重要分支,是研究弹性固体在受外力作用、温度改变、边界约束或其他外界因素作用下而发生的应力、形变和位移状态的科学。有限单元法是力学、数学、物理学、计算方法、计算机技术等多种学科综合发展和结合的产物,是随着计算机技术的广泛应用而迅速发展起来的一种数值分析方法。有限元法的基本思想就是化整为零,分散分析,再集零为整。即用结构力学方法求解弹性力学问题,实质是将复杂的连续体划分为有限多个简单的单元体,单元体之间仅仅通过结点相连,实现化无限自由度问题为有限稀有度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。

有限元方法经过近半个世纪的发展,目前已经成为各种工程问题特别是结构分析问题的标准分析方法,而有限元软件也已成为现代结构设计中不可缺少的工具。有限元软件是有限元理论通向实际工程应用的桥梁,它的应用极大地提高了力学学科解决自然科学和工程实际问题的能力,进一步促进了有限元方法的发展。ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,广泛用于机械制造、石油化工、航空航天、汽车交通、土木工程、造船、水利等一般工业及科学研究。

ANSYS软件的组成:

(一)前处理模块

该模块为用户提供了一个强大的实体建模及网格划分工具,可以方便的构造有限元模型,软件提高了100种以上的单元类型,用来模拟工程中的各种结构和材料。包括:

1.实体建模:参数化建模,布尔运算及体素库,拖拉、旋转、拷贝、蒙皮、倒角等。

2.自动网格划分,自动进行单元形态、求解精度检查及修正。

3.在集合模型上加载:点加载、分布载荷、体载荷、函数载荷。

4.可扩展的标准梁截面形状库。

(二)分析计算模块

该模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。

(三)后处理模块

将计算结果以彩色等值线、梯度、矢量、粒子流、立体切片、透明及半透明等图形方式显示出来,也可以用图表、曲线形式显示或输出。

由于现在只是对ANSYS工程软件有初步的了解和掌握,所以本次作业仅以(1)结构静力学分析为例,运用ANSYS软件对汽车连杆进行受力分析;(2)

三杆桁架的优化设计为例。

举例1:对连杆进行受力分析

结构静力学分析是ANSYS工程软件中应用最广泛的一种分析方法,“结构”不仅包含像桥梁、建筑物等建筑工程结构,也包括像活塞、机械零件和工具等机械零部件一样的船只、航空和机械结构,如船的外壳、航空器、机器的机架等。结构静力学分析用来求解稳态外载荷引起的系统或部件的位移、应变、应力和力,稳态载荷包括外部施加的力和压力、稳态的惯性力(重力和旋转速度、施加位移、温度等)。静力分析很适合求解惯性和阻尼对结构的影响并不显著的问题,如确定结构中的应力集中现象,可以进行线性分析,也可以进行非线性分析,如塑性、蠕变、膨胀、大应变及接触分析。静力分析过程分为三个步骤:

图1. 静力分析过程三步骤

如图所示为汽车连杆的几何模型,连杆的厚度为0.5in,图中所注尺寸均为英寸,在小头孔的内侧90度范围内承受p=1000psi的面载荷作用,试利用有限元分析该连杆的受力状态。连杆的材料属性为:杨氏模量E=30×106psi,泊松比为0.3。

连杆的几何模型

1.建立计算模型

本例是对一个弹性力学平面问题进行结构分析,所以只选择结构分析模块。由于连杆的结构、载荷均对称,因此在分析时只要采用一半进行分析即可。采用由底向上的建模方式,具体的操作过程如下:

(1)生成圆环面和两个矩形,包括创建关键点、直线、样条曲线、倒圆角等;通过对面进行布尔操作产生真实模型。

图1.1 生成连杆大头圆环面、矩形

图1.2 生成连杆小头圆环面,进行布尔运算

图1.3 创建样条曲线

图1.4 生成连杆轮廓线

图1.5 由边界线生成面

(2)划分网格,包括定义单元类型:选择单元为solid,quad 8–node,设置

单元尺寸为0.2,采取自由网格划分用20节点的SOLID95单元划分网格。

图1.6 采用自由划分网格,生成2D网格

图1.7 生成3D网格

(3)定义材料属性

对平面连杆进行线弹性分析计算,所定义的材料属性有弹性模量E=30×106psi,泊松比为0.3。

2. 施加约束和载荷并求解

(1)施加约束

图2.1 大孔内表面施加对称约束

(2)施加载荷

2.3 小孔内表面施加面载荷

(3)选择PCG求解器,求解运算

3.查看显示结果

图4 连杆体的受力分布显示

由受力图可知,当连杆小头内侧受到面分布载荷时,小头孔内侧靠近大头孔部分受力最大,在一定的条件下,可能最先出现裂纹,也最容易断裂。

举例2:三杆桁架的优化设计

优化设计是一种寻找确定最优设计方案的技术,人们总希望在一切可能的方

案中选择一个最好的,设计方案的任何方面都可以优化,进行优化设计首先要把实际的实际问题用数学表达式加以描述,转化成数学模型,然后根据数学模型的特性,选择某种适当的优化计算方法及其程序,通过计算机求得最优解。

优化设计的步骤:

(1)生成循环所用的分析文件,建立优化过程中的参数;

(2)进入OPT处理器,指定分析文件,指定优化变量;

(3)选择优化工具或优化方法;指定优化循环控制方式;

(4)进行优化分析;

(5)查看设计序列结果。

如图所示为一个由三根杆组成的桁架结构,它承受纵向和横向载荷,求该桁架的最小质量。

图1. 桁架结构模型

已知桁架特性如下表所示:

表1

标函数如下:

()()??

??

?

?

?

??

=≤≤≤≤=≤?==-321j pa 76.2max 025101,2,3i 0.64516A 106.0t .s B],A ,A ,A []x ,x ,x ,[x X f Min j i 3

3214321,,M B σχ 1.1 参数化建立几何模型

(1)定义参数和材料属性

参数初始值:B=25,A1=A2=A3=0.645;材料属性:E=2e11,PRXY=0.3,DENS=7800 (2)定义单元类型及属性

单元类型:structural link –2D spar 1;定义实常数:A1,A2,A3。 (3)建立有限元模型

图1.1 生成单元

(4)施加约束和载荷

图1.2 施加边界约束

图1.3 4节点施加集中载荷

1.2 求解运算

2.1 提取并指定状态变量和目标函数

计算单元体积的总和VTOT=61.7333874;计算初始重量:WT=481520.422

显示单元形状和大小:

图1.4 单元形状和大小

2.2 进入优化处理器,指定分析文件

指定分析文件为:hangjia_opt.lgw,指定设计变量:A1、A2、A3、B;设置状态变量:sig1、sig2、sig3;设置目标函数:WT,允差为1;指定一阶优化方法:first–order。

3.1查看优化结果

信息窗口中将显示了迭代序列的结果,包括每个设计变量、状态变量、目标函数的值。

所有序列的结果见程序文件。

3.2显示目标函数的变化规律

3.3 显示基本尺寸的变化规律

图3.3 B的变化规律

3.4 显示杆横截面的变化规律

的变化规律

图3.4 A

i

3.5 显示杆中应力的变化规律

的变化规律

图3.5

j

基于弹性力学理论和有限元法分析应力集中问题的讨论

基于弹性力学理论和有限元法分析应力集中问题的讨论 材料在外形急剧变化的部位,局部应力可以超出名义应力的数倍,对于脆性材料局部过早开始破坏,从而,削弱了构件的强度,降低了构件的承载能力。因此在工程實际中,为了确保构件的安全使用,必须科学合理的分析计算应力集中现象,以便找寻到更好的避免措施。本文首先基于弹性力学理论分析带孔无限宽板的应力分布情况,将对象的受力转化成数学表达,结论应证了应力集中的几个特性。 标签:应力集中系数;有限元分析;无限宽板;弹性力学;Inventor运用;ANSYS 1、应力集中 1.1弹性力学中概念,指物体形状、材料性质不均匀导致的局部应力急剧增高的现象。 1.2应力集中系数 最大局部应力与名义应力的比值称为理论应力集中系数ɑ。可以明确地反应应力集中的程度。 最大局部应力σmax可根据弹性力学理论、有限元法计算得到,也可由实验方法测得;名义应力σn是假设构件的应力集中因素(如孔、缺口、沟槽等)不存在,构件截面上的应力。 2、孔周应力在理想状态下的弹性力学理论分析 2.1定义受单向均匀拉伸荷载的无限宽平板,孔径2α圆孔,建立如图一理想模型。 由于结构的对称性,仅分析图一上半段1/4部分x轴正向的状态: 1)圆孔右顶点单元,即当θ=0,r=α时,代入式(2)解算得σy=3σ; 2)距孔0.2倍孔半径外,即当θ=0,r=1.2α时,代入式(2)解算得σy=2.071σ; 3)距孔1倍孔半径外,即当θ=0,r=2α时,代入式(2)解算得σy=1.221σ; 4)距孔1.5倍孔半径外,即当θ=0,r=2.5α时,代入式(2)解算得σy=1.122σ; 5)距孔2倍孔半径外,即当θ=0,r=3α时,代入式(2)解算得σy=1.074σ;

弹性力学及有限元介绍

弹性力学与有限单元法(报告) 姓名: 尚建波 学号: 201314010624 班级:土木F1307 第一题(20分) 变分法中的δ符号与微积分中的d 符号均表示微小变化,请问二者有何关 系?如何理解在理论上有了δ则不需要有d 符号。 第二题(20分) 设()y y x =,'(,)F y y 不显含x , 证明:当()y y x =满足固定边界条件()A y a =,()y b B =时,'[()](,)b a y x F y y dx ∏=?取极值的必要条件为:' 'F y F C y ?-=?,C 为常数。 第三题(20分) 以平面应力弹性力学问题为例,写出其8方程数学模型。并从中导出位移解法数学模型以及应力解法数学模型。 第四题(20分) 以平面应力弹性力学问题为例说明最小位能原理(能量法-泛函极值)对问 题的描述完全等价于第一题中的位移法描述(微分形式)。 第五题(20) 谈一谈有限单元法在工程上的使用(可结合具体实例);说明有限单元法今 后的发展方向(理论与软件两个层面)(20分)。 试 卷 要 求 1 要求字迹工整,书写清楚; 2 绝对不允许以任何形式整体拷贝讲义或他人试卷,如有雷同卷子(包括个别题的雷同),一律按不及格处理(评阅教师具有试卷雷同认定权); 3 本试卷页作为报告的扉页,与报告内容采用统一纸张装订; 4 不符合要求的报告按不及格处理(评阅教师具有不符合要求报告的认定权)。

解答报告 第一题(20分) 变分法中的符号与微积分中的符号均表示微小变化,请问二者有何关系?如何理解在理论上有了则不需要有符号。 解答:(1)二者的关系。 d 是无限小的增量,是一个微分符号,表示了一个函数的局部线性近似。对于函数,dx 反应的是一个函数在x=x0附近的微小变化,也就是自变量的变化。d 作为一个微分符号,dx 必须与其他微分符号如同dy 、dt 成对出现。 δ是无限小的量,这个符号表示变分,所谓变分是一种假想的移动量,比如我假象一条路径x(t)如果x 做了一个微小改变,那么记做δ x 。δ(x)反应的是对某个函数在其定义域内的变化,也就是如果f(x)是一个函数,f(x)+δ(x)也是一个函数,且||δ(x)||很小。这个涉及泛函。泛函是函数的一种推广,是以函数为自变量的映射J=J[y],该自变量不是以函数的值为自变量,而是以函数本身为自变量,比如一个函数在某个区间上的积分。同时,函数本身也可以当作特别的泛函。 由于δ作用于泛函类似于d 作用于函数,所以δ与d 的运算规律大体上是类似的。 (2)如何理解在理论上有了δ则不需要有d 符号? d 是无限小的增量,只是微分符号,表示函数的局部线性近似。δ是无限小的量,是一种假想的移动量是两个函数的线性近似,比d 更能表述函数的微小变化,所以我个人理解有δ的时候就不需要d 。 第二题(20分)设()y y x =,'(,)F y y 不显含x ,证明:当()y y x =满足固定 边界条件()A y a =,()y b B =时,'[()](,)b a y x F y y dx ∏=?取极值的必要条件为: ''F y F C y ?-=?,C 为常数。 证明:

弹性力学与有限元理论部分考试题2123

弹性力学与有限元(理论部分)考试题 姓名: (90分钟) 一、填空题(25分) 1.弹性力学的基本任务是:。(1分)2.弹性力学的基本假设是:,, ,,。(2.5分)3.应力分量包括:。(2分)应变分量包括:。(2分)位移分量包括:。(2分)4.平衡微分方程反映的是分量和分量的关系,有个方程。(1.5分)几何方程反映的是分量和分量的关系,有个方程。(1.5分)物理方程反映的是分量和分量的关系,有个方程。(1.5分)5.在对受力体进行有限元分析划分网格时,网格划分较密时,优点是:,缺点是:,反之亦然,因此划分适合的网格密度十分重要。(2分) 6.对于平面问题,三角形单元是最简单、最常用的单元,在平面应力问题中单元形状为,在平面应变问题中单元形状为。(2分) 7.在有限元分析中,有六个常用矩阵:D,B,S,k,K,N,它们分别叫做矩阵,矩阵,矩阵,矩阵,矩阵和函数。(6分) 8.刚度矩阵的半带宽B与有关,B=2(d+1)。(1分) 二、简答题(33分) 1.弹性力学与材料力学有何异同?(5分) 2.什么叫单元的位移模式?分别写出三节点三角形单元,四节点矩形单元,六节点三角形单元,八节点矩形单元的位移模式。(10分)

y 3.平面应力问题和平面应变问题的特点(应力、应变)各是什么?(6分) 4.圣维南原理?并举例说明如何应用之(5分) 5.轴对称问题的特点是什么?(3分) 6.如何理解等参元法,简述用等参元法进行空间问题有限元分析的过程(4分) 三.如下图为一个受力体,其划分的单元和节点编号如图1所示,求出半带宽,写出其整体刚度矩阵。(10分) 图1 受力体单元的划分和编号图 四.在单元e 中,三角形单元三个节点分别为i 、j 、m ,,请把图2和图3的力简化到各节点上。(12分) 图2 单元受力图 图3单元受力图 y

弹性力学及有限元法学习总结

弹性力学及有限元法学习总结 摘要:本文就弹性力学的研究对象与方法,弹性力学的基本假设,研究方法,有限元法的基本思想,数学基础,有限元分析的基本步骤进行阐述。 正文:弹性力学是固体力学的一个分支学科,是研究固体材料在外部作用下(外 部作用一般包括:荷载、温度变化以及固体边界约束改变),弹性变形及应力状态的一门学科。 弹性力学的研究对象: 材料力学--研究杆件(如梁、柱和轴)材料力学的拉压、弯曲、剪切、扭转和组合变形等问题。 结构力学--在材料力学基础上研究杆系结构结构力学(如桁架、刚架等)。弹性力学--研究各种形状的弹性体,如杆弹性力学件、平面体、空间体、板壳、薄壁结构等问题。 弹性力学研究方法: 在研究方法上,弹力和材力也有区别:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立三套方程; 三套方程在边界s 上考虑受力或约束条件,建立边界条件并在边界条件下求解上边界条件; 边界条件述方程,得出较精确的解答。 弹性力学的基本假设: 1)连续性,假定物体是连续的。连续性因此,各物理量可用连续函数表示。 2)均匀性与各向同性假设假定固体材料是均匀的,并且在各个方向上物理特性相同,也即材料的物理性质在空间分布上是均匀的(或不变的)3)小变形假设假定固体材料在受到外部作用(荷载、温度等)后的位移(或变形)与物体的尺寸相比是很微小的,在研究物体受力后的平衡状态时,物体尺寸及位置的改变可忽略不计,物体位移及形变的二次项可略去不 计,由此得到的弹性力学微分方程将是线性的。 4)完全弹性假设假设固体材料是完全弹性的。 5)无初始应力假设假定外部作用(荷载、温度等)之前,物体处于无应力状态,由弹性力学所求得的应力仅仅是由外部作用(荷载、温度等)所 引起的。 有限元法的基本思想: 有限元是一种结构分析的方法,先把所有系统分解为他们的元件或单元,这些元件的行为已经被充分的了解,再把元件重新组装成原来的系统。及将连续的求解区域离散为一组由有限个单元组成并按一定方式相互连接在一起的单元组

弹性力学及有限元基础复习权威版(最新)

《弹性力学及有限元基础》复习思考题 ★1.对弹性体所做的基本假设? 答:连续性假设;均匀性假设;各向同性假设;弹性假设;小变形假设; ★2.用D'Alember 原理由平衡方程推导运动微分方程? 答:微元体的平衡微分方程的表达式为: 31 112111 2332 122221 23 132333 31 23000f x x x f x x x f x x x σσσσσσσσσ????+++=?????????+++=? ????????+++=? ???? 根据D'Alember 原理,将运动物体看成是静止的,将惯性力22()u t ρ?-?当作体力加到微元体上,由上式 可以直接写出弹性动力学问题的运动微分方程: 23111211 12123232 12222221 2321323333321 23()()() u f x x x t u f x x x t u f x x x t σσσρσσσρσσσρ?????+++=????????????+++=? ???????????+++=?????? ☆3.什么是应力张量? 我们说一点的应力状态是什么涵义? 答:应力张量是一点应力状态的完整描述,它有面元方向和分解方向两个方向性,共有九个分量,由于存在对称性,其独立分量只有六个。应力张量是与坐标选择无关的不变量,但其分量与坐标有关,当已知某坐标系中的九个分量时,其他坐标系中的分量均可由应力转换公式确定。 一点的应力状态是一个具有双重方向性的物理量,其中第一个是面元的方向,用其法矢量ν表示,第二个是作用在该面元上的应力矢量方向,一般用其三个分量来表示。 4.在引出 Cauchy 应力公式时, 我们假设四面体处于平衡状态, 如不处在平衡状态则如何? 答:如果不处在平衡状态,Cauchy 应力公式仍然满足,关系式的成立与是否平衡无关。 5.在什么情况下剪应力互等定律不成立? 答:无论在变形体的内部或者表面上,若存在体力偶时,剪应力互等定律不成立。 6.任意斜截面上的正应变和剪应变的意义是什么? 答:应变张量的三个对角分量x ε、y ε、z ε称为正应变,分别等于坐标轴方向三个线元的单位伸长率,伸长为正,缩短为负。应变张量的三个非对角分量xy ε、yz ε、zx ε称为剪应变,分别等于变形前沿该分量下标所示两坐标方向的、相互正交的线元在变形后的夹角减小量之半。 7.刚性位移,刚性转动,刚体位移,刚体转动有何区别? 答:(1)刚性位移:物体内任意两点间无相对位移;(2)刚性转动:应变张量为0,转动张量不为0;(3)刚体位移:运动分为变形运动和刚体运动,每点都发生相同的位移就叫作刚体位移;(4)刚体转动:用刚性

2013-2014学年弹性力学与有限元分析复习题讲诉

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、我们把剪应力为零的面称为主平面,把该面的法线方向称为主方向,把该面上的正应力称为主应力。 8、弹性力学平面问题的基本方程包括:2个平衡微分方程,3个物理方程和3个几何方程。 9、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 10、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 11、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 12、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 13、表示应力分量与体力分量之间关系的方程为平衡微分方程。 14、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 15、按应力求解平面问题时常采用逆解法和半逆解法。 二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”) 1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(√) 2、均匀性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(×) 3、把两块不同的金属焊接在一起,就成为一块不连续但均匀的物体。(×)

弹性力学与有限元法分析及实例讲解

弹性力学与有限元法分析 弹性力学是固体力学的一个重要分支,是研究弹性固体在受外力作用、温度改变、边界约束或其他外界因素作用下而发生的应力、形变和位移状态的科学。有限单元法是力学、数学、物理学、计算方法、计算机技术等多种学科综合发展和结合的产物,是随着计算机技术的广泛应用而迅速发展起来的一种数值分析方法。有限元法的基本思想就是化整为零,分散分析,再集零为整。即用结构力学方法求解弹性力学问题,实质是将复杂的连续体划分为有限多个简单的单元体,单元体之间仅仅通过结点相连,实现化无限自由度问题为有限稀有度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。 有限元方法经过近半个世纪的发展,目前已经成为各种工程问题特别是结构分析问题的标准分析方法,而有限元软件也已成为现代结构设计中不可缺少的工具。有限元软件是有限元理论通向实际工程应用的桥梁,它的应用极大地提高了力学学科解决自然科学和工程实际问题的能力,进一步促进了有限元方法的发展。ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,广泛用于机械制造、石油化工、航空航天、汽车交通、土木工程、造船、水利等一般工业及科学研究。 ANSYS软件的组成: (一)前处理模块 该模块为用户提供了一个强大的实体建模及网格划分工具,可以方便的构造有限元模型,软件提高了100种以上的单元类型,用来模拟工程中的各种结构和材料。包括: 1.实体建模:参数化建模,布尔运算及体素库,拖拉、旋转、拷贝、蒙皮、倒角等。 2.自动网格划分,自动进行单元形态、求解精度检查及修正。 3.在集合模型上加载:点加载、分布载荷、体载荷、函数载荷。 4.可扩展的标准梁截面形状库。 (二)分析计算模块 该模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。 (三)后处理模块 将计算结果以彩色等值线、梯度、矢量、粒子流、立体切片、透明及半透明等图形方式显示出来,也可以用图表、曲线形式显示或输出。 由于现在只是对ANSYS工程软件有初步的了解和掌握,所以本次作业仅以(1)结构静力学分析为例,运用ANSYS软件对汽车连杆进行受力分析;(2)

试题及其答案--弹性力学与有限元分析(DOC)

如下图所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。 ① I 单元的整体编码为162 ② II 单元的整体编码为426 ③ II 单元的整体编码为246 ④ III 单元的整体编码为243 ⑤ IV 单元的整体编码为564 A. ①③ B. ②④ C. ①④ D. ③⑤ 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、 形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相 适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规 定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三 套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、 应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。 其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部

弹性力学及有限元试题

弹性力学及有限元试题 (一) 问答题(20分) 1、什么是圣维南原理?举例说明怎样把它应用于工程问题 的简化中。 2、什么叫做一点的应力状态?如何表示一点的应力状态(要 求具体说明或表达)。 3、何谓逆解法和半逆解法?它们的理论依据是什么? 4、什么是平面应力问题?什么是平面应变问题?分别写出弹性力学平面应力问题和平面应变问题的物理方程。 5、要保证有限元方法解答的收敛性,位移模式必须满足那些条 件? (二) (10分) 1.利用坐标变换从直角坐标的平衡方程推导极坐标下平衡方程(无体力)。 2.利用坐标变换从直角坐标下几何方程推导极坐标下几何方程。 (三)已知,其他应力分量为零,求位移场。(10分) (四)设有矩形截面的悬臂粱,在 自由端受有集中荷载F;体力可以不

计。试根据材料力学公式,写出弯应力σx和切应力τxy的表达式,并取挤压应力σy=0,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答(10分)。 (五)设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,试求应力分量(10分)。 提示:单位厚度上的力偶矩M的量纲是LMT-2,应力只能是M/ρ2的形式,所以可假设应力函数由:Φ=Φ(φ). (六) 铅直平面内的正方形薄板,边长为2a,四边固定,图5—18,只受重力的作用。设μ=0,试取位移分量的表达式为 用瑞利—里茨法求解(15分)。

(七)试按图示网格求解结点位移,取t =1m,μ= 0(15分)。 (八)用刚度集成法求下图所示结构的整体刚度矩阵K。(10分) 要求:单元刚度矩阵元素用e k形式表示;单元刚度矩阵用e K形式表 ij 示,其中e为单元号。

最新弹性力学与有限元分析试题答案

最新弹性力学与有限元分析复习题及其答案 一、 填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。

弹性力学与有限元分析试题及参考答案

弹性力学与有限元分析试题及参考答案 四、分析计算题 1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。 (1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。 解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程 ????? ??=??+??=??+??0 0x y y x xy y yx x τστσ;(2)在区域内的相容方程()02222=+??? ? ????+??y x y x σσ;(3)在边界上的应力边界条件()()()() ???? ?=+=+s f l m s f m l y s xy y x s yx x τστσ;(4)对于多连体的位移单值条件。 (1)此组应力分量满足相容方程。为了满足平衡微分方程,必须A =-F ,D =-E 。此外还应满足应力边界条件。 (2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。上两式是矛盾的,因此,此组应力分量不可能存在。 2、已知应力分量312x C Qxy x +-=σ,22 23xy C y -=σ,y x C y C xy 2 332--=τ,体力不计,Q 为常数。试利用平衡微分方程求系数C 1,C 2,C 3。 解:将所给应力分量代入平衡微分方程 ???? ?? ?=??+??=??+??00x y y x xy y yx x τστσ 得 ?? ?=--=--+-0 230 33322322212xy C xy C x C y C x C Qy 即 ()()()?? ?=+=+--0 230 333222231xy C C y C Q x C C 由x ,y 的任意性,得

(绝密试题)弹性力学与有限元分析试题及其答案

2012年度弹性力学与有限元分析复习题及其答案 (绝密试题) 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa , 则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为

弹性力学与有限元分析试题及其答案

一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa , 50=y σMPa ,5010=xy τ MPa ,则主应 力=1σ150MPa ,=2σ0MPa , =1α6135' 。 8、已知一点处的应力分量, 200=x σMPa , 0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa , =1α-37°57′。 9、已知一点处的应力分量, 2000-=x σMPa ,1000=y σMPa , 400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别 建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。 二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”)

弹性力学有限元分析题

有限元分析练习 1.如图所示为一简支梁,高0.6m,宽0.3m,长3m,承受均布荷载15kN/m,弹性模量为 E=20X1010Pa,泊松比为μ=0.3。 (1)试将其看着平面应力问题进行有限元分析(应力,应变,位移),并与解析解进行 比较分析。 (2)根据有限元计算结果,分析梁的弯曲变形是否符合平截面假定?将高度分别变为 2m,0.5m,又如何? (3)如何提高该梁的有限元计算精度,请对比分析。 2.如图所示为一简支梁,高0.5m,宽0.3m,长2m,梁顶面承受均布荷载10kN/m,梁一侧 受到集中荷载作用大小为10kN,另一侧受到均布荷载作用为20kN/m.弹性模量为E=3X1010Pa,泊松比为μ=0.2。 (1)分别计算在横向荷载和轴向荷载单独作用下梁的应力、应变和位移情况,并对结果进行讨论分析。 (2)计算在横向和轴向荷载共同作用下,梁的应力、应变和位移情况,并于仅受到横向荷载作用下梁的计算结果进行对比分析。 (3)如何提高梁的有限元计算精度,并对比分析。 3.下图表示一块带圆孔的方板,在x方向受到均布压力80kN/m。方板边长为0.6m,厚度 为0.03m,圆孔的半径为0.02m。方板的弹性模量为E=2X1011Pa,泊松比为μ=0.3. (1)试进行有限元分析(应力,应变,位移),并与解析解进行比较分析。 (2)如何提高本题有限元计算精度,并对比分析。 (3)如果把圆孔改为边长为0.02m的正方形,是比较两者应力集中程度。

4. 下图表示一块带圆孔的方柱,在x 方向受到均布压力100kN/m 2。方板边长为0.5m ,圆 孔的半径为0.02m 。方板的弹性模量为E=2X1011Pa ,泊松比为μ=0.2. (1) 假设厚度为无限大进行有限元分析(应力,应变,位移),并与解析解进行比较 分析。 (2) 如何提高本题有限元计算精度,并对比分析。 (3) 如果把圆孔改为边长为0.02m 的三角形,是比较两者应力集中程度。 5. 下图为带圆孔的方板,在x 方向受到均布压力120kN/m ,在y 方向受到均布压力为 60kN/m 。方板边长为0.5m ,厚度为0.03m ,圆孔的半径为0.02m ,方板的弹性模量为E=2X1011Pa ,泊松比为μ=0.2. (1) 试进行有限元分析(应力,应变,位移),并与解析解答进行对比; (2) 试分别计算在x 或y 方向单一荷载作用下所得的应力、应变、位移,并进行加 和;然后比较应力、应变和位移的加和值与(1)所得计算结果的差异; (3) 如何提高本题有限元计算精度,并对比分析。

有限元理论与技术-习题-弹性力学DOC

弹性力学 填空题: 1、连续体力学包括固体力学、流体力学、热力学和电磁场力学,非连续体力学包括量子力学。 2、弹性力学所研究的范围属于固体力学中弹性阶段。 3、弹性力学的基本假定为:连续性、完全弹性、均匀性和各向同性、变形很小、无初应力。 4、连续性假设是指:物体内部由连续介质组成,物体中应力、应变和位移分量为连续的,可用连续函数表示。 5、均匀性和各向同性假设是指:物体内各点和各方向的介质相同,即物理性质相同,物体的弹性常数杨氏模量和泊松比不随坐标和方向的变化而变化。 6、完全弹性假设是指:物体在外载荷作用下发生变形,在外载荷去除后,物体能够完全恢复原形,材料服从胡克定律,即应力与形变成正比。 7、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程为:平衡方程、几何方程和物理方程,三组方程分别表示:应力与载荷关系、应变与位移关系、应力与应变关系。 8、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 9、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 10、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 11、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

12、建立平衡方程时,在正六面微分体的6个面上共有9个应力分量,分别为:,其中正应力为:,剪应力为:,这些应力分量与外载荷共同建立 3 个方程。 13、建立几何方程时,线应变为,角应变为,这些应变与位移共同建立6 个方程。 14、物理方程表示应力与应变的关系,即为胡克定律,其中弹性常数E和μ分别表示材料的杨氏模量和泊松比,物理方程组共包含 6 个方程。 15、平面问题分为平面应力问题和平面应变问题,两者所研究得对象分别为等厚度薄平板和等截面长柱体。 16、平面应力问题和平面应变问题基本方程中:平衡方程和几何方程相同,物理方程不相同。(相同或不相同) 17、表示应力分量与体力分量之间关系的方程为平衡微分方程。 15、边界条件表示边界上位移与约束,或应力与面力之间的关系式。 18、按应力求解平面问题时常采用逆解法和半逆解法。 19、弹性力学中边界条件通常可以分为:位移边界条件、应力边界条件和混合边界条件。 20、弹性力学问题的解法分为解析法、变分法和差分法,就解题方法而言,又分为如下两种方法:位移法和应力法。 21、将平面应力情况下的物理方程中的弹性模量E,泊松比 分别换成及就要得到平面应变情况下相应的物理方程。 22、位移法为物理方程与几何方程联立消除应变分量,得到应力与位移的函数方程式,再与平衡方程联立消除应力,得到载荷与位移的方程式。简答题: 1、在弹性力学中根据什么分别推导出平衡微分方程、几何方程、物理方程,这三个方程分别表示什么关系?

弹性力学与有限元分析复习题(含答案)

分析计算题 1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的 应力分量是否可能在弹性体中存在。 (1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。 解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程 ?? ? ? ???=??+??=??+??00x y y x xy y yx x τστσ;(2)在区域内的相容方程()02 222=+??? ? ????+??y x y x σσ;(3)在边界上的应力 边界条件()()()() ?? ?? ?=+=+s f l m s f m l y s xy y x s yx x τστσ;(4)对于多连体的位移单值条件。 (1)此组应力分量满足相容方程。为了满足平衡微分方程,必须A =-F ,D =-E 。此 外还应满足应力边界条件。 (2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。上两式是矛盾的,因此,此组应力分量不可能存在。 2、已知应力分量312x C Qxy x +-=σ,222 3xy C y -=σ,y x C y C xy 2 332--=τ,体力不计,Q 为常数。试利用平衡微分方程求系数C 1,C 2,C 3。 解:将所给应力分量代入平衡微分方程 ?? ? ? ?? ?=??+??=??+??00x y y x xy y yx x τστσ 得 ? ? ?=--=--+-0230 33322322212xy C xy C x C y C x C Qy 即 ()()()?? ?=+=+--0 230333222231xy C C y C Q x C C 由x ,y 的任意性,得

材料力学弹性力学有限元法的异同--tl

材料力学、弹性力学、有限元法的异同 力学是研究力对物体的效应的一门学科。力对物体的效应有两种:一种是引起物体运动状态的变化,称为外效应;另一种是引起物体的变形,称为内效应。材料力学研究力的内效应,即物体的变形和破坏的规律。材料力学主要研究物体受力后发生的变形、由于变形而产生的内力以及物体由此而产生的失效和控制失效的准则。工程中各种结构或机械都是由许多杆件或零部件组成。这些杆件或零部件统称为构件。工程上构件的几何形状是各种各样的,可分为杆件、板(或壳)、实体。材料力学主要的研究对象是杆状构件。材料力学的任务,就是在分析构件内力和变形的基础上,给出合理的构件计算准则,满足既安全又经济的工程设计要求,并为后续课程如机械设计、结构力学、弹性力学和复合材料力学等提供必要的理论基础。 弹性力学又称弹性理论,是固体力学的一个分支学科。它是研究可变形固体在外部因素(力、温度变化、约束变动等)作用下所产生的应力、应变和位移的经典科学。确定弹性体的各质点应力、应变、和位移的目的就是确定构件设计中的强度和刚度指标,以此来解决实际工程结构中的强度、刚度和稳定性问题。弹性力学具体的研究对象主要为梁、柱、坝体、无限弹性体等实体结构以及板、壳等受力体。 弹性力学的研究内容和目的的任务原则上与材料力学相同,但其学科所研究的对象不同,研究方法也不完全相同。 (1)在材料力学课程中,基本上只研究杆状构件(直杆、小曲率杆),也就是长度远大于高度和宽度的构件。这种构件在拉压、剪切、弯曲、扭转作用下的应力和位移,是材料力学的主要研究内容。弹性力学解决问题的范围比材料力学要大得多。如孔边应力集中、深梁的应力分析等问题用材料力学的理论是无法求解的,而弹性力学则可以解决这类问题。如板和壳以及挡土墙、堤坝、地基等实体结构,则必须以弹性力学为基础,才能进行研究。如果要对于杆状构件进行深入的、较精确的分析,也必须用到弹性力学的知识。同时弹性力学又为进一步研究板、壳等空间结构的强度、振动、稳定性等力学问题提供理论依据,它还是进一步学习塑性力学、断裂力学等其他力学课程的基础

《弹性力学及有限元》教学大纲

《弹性力学及有限元》教学大纲 大纲说明 课程代码:5125004 总学时:40学时(讲课32学时,上机8学时) 总学分:2.5学分 课程类别:必修 适用专业:土木工程专业(本科) 预修要求:高等数学、理论力学、材料力学 课程的性质、目的、任务: 本课程是土木工程专业限选修的一门专业基础课。本课程的教学目的,是使学生在理论力学和材料力学等课程的基础上进一步掌握弹性力学的基本概念、原理和方法,了解弹性力学问题的求解思路、方法和解答,为学习相关专业课程打下初步的弹性力学基础。在此基础上,使学生掌握有限单元法的基本概念、理论、方法,了解和应用ANSYS大型结构分析程序求解简单的弹性力学问题。 课程教学的基本要求: 本课程教学环节主要包括:课堂讲授、习题课、作业、答疑、上机计算、考试。采用课堂授课方式,重点章节安排习题课。课后布置一定量的习题,以便掌握弹性力学与有限单元法的基本概念、原理和方法,用弹性力学的求解方法及大型结构分析有限单元程序求解简单的弹性力学问题。考试采用开卷方式。 大纲的使用说明: 本大纲适用于土木工程本科专业40课时的《弹性力学及有限元》课程. 大纲正文 第一章绪论学时:6学时(讲课6学时) 本章讲授要点:了解弹性力学的研究内容,理解体力、面力、应力、应变和位移等基本概念,熟悉体力、面力、应力、应变、位移等力学量的记号和符号的有关规定,理解弹性力学的基本假定;了解有限单元法的发展,掌握泛函、变分和泛函极值等基本概念;了解加权残值、里兹与伽辽金等方法。 重点:弹性力学中的应力、应变和位移等基本概念;泛函、变分、驻值等基本概念;加权残值、里兹与伽辽金等方法。 难点:应力、应变;泛函、变分、驻值;加权残值法、里兹法与伽辽金法。 第一节弹性力学的内容 第二节弹性力学中的几个基本概念 第三节弹性力学中的基本假定 第四节有限单元法的发展简介 第五节变分原理.泛函.变分.驻值 第六节加权残值法、里兹法与伽辽金法

弹性力学及有限元法 复习题

第一章 1、已知某材料为理想弹性体,弹性体内一点的应力状态为???? ??????----=522246268σ MPa, 假设某表面的外法线方向余弦为6/11,7/11x y z n n n ===,求该表面的法向和切向应力;该点的应力不变量、主应力、最大剪应力,并绘制摩尔圆。 2、以y 轴或z 轴为例,推导平衡微分方程(要求写清详细的推导过程) 3、从理想弹性体中取出一微元体,见下图,试以向yOz 面投影为例,推导几何方程。 图(2) 4、已知点P (1,0,3)处位移场为223 [()i 4j+(7+5+6+7)k]10m x y xyz x yz z -=+?+???u ,求点P 处的应变状态,应变不变量,主应变,体积应变,假如材料参数为11 2.0610E =?Pa , 0.3μ=,试求该点的应力状态 5、一理想弹性体处于平面应力状态,材料参数为,E μ,其中 cx y bx ay x -+=23σ e dy y -=3σ h y gx fxy xy -+=22τ g f e d c b a ,,,,,,,h 是常量。为了使应力场满足相容方程,这些常量的约束条件是什么? 6、一个理想弹性体,材料参数为,E μ,设体内某点所受的体积力为,,x y z F F F ,所处的位

移场为223 [()i 4j+(6+8)k]10m x y yz yz z -=+?+???u ,试求在此坐标系下体积力的表达式。 7、如下图所示处于平面应力状态的薄板结构,在P 点区域作用有面力F ,请标示出该结构的应力及位移边界条件 B C x 第二章 1、 一点处的应力状态由应力矩阵给出,如下 301520152510201040-?? ??=--?? ???? σ MPa 如果70=E GPa ,33.0=μ,求单位体积的应变能密度。 2、 对于平面应变状态10=x σMPa ,0=y σMPa ,0=τMPa ,画出与三个主应力相对应的三个摩尔圆;求最大剪应力的位置和数值;计算等效的von Mises 应力值,并与最大剪应 力的二倍进行比较。 3、 一柔性材料具有 280MPa 的屈服应力。根据Tresca 理论和von Mises 理论,求如下平面应力状态下屈服时的安全系数。 140=x σMPa ,140=y σMPa ,0=xy τMPa 4、 对给定的应力矩阵,求最大Tresca 和von Mises 应力。并将von Mises 应力与Tresca 应力进行比较。 201010102010101020?? ??=?? ???? σ MPa 第四章

相关主题
文本预览
相关文档 最新文档