当前位置:文档之家› 遗传学重点教学提纲

遗传学重点教学提纲

遗传学重点教学提纲
遗传学重点教学提纲

遗传学复习重点

1、一、遗传学是研究生物遗传和变异的科学。遗传:是亲代与子代相似的现象变异:亲代与子代个体之间存在着不同的差异。

二、遗传与变异的关系:

遗传和变异是生物界最普遍和最基本的两个特征;

遗传与变异的对立统一关系(a 遗传是相对的保守的,而变异是绝对的发展的;b 没有遗传,不可能保持形状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。c 遗传和变异的表现都与环境具有不可分割的关系。d 遗传和变异组成生物多样性。)

遗传、变异、和选择是生物进化和新品种选育的三大因素。

三、遗传学发展简史:<1>萌芽:1800-1899 (拉马克用进废退学说,获得性状可遗传

<2>生物遗传学:1900 三大遗传规律

<3>细胞遗传学:基因论染色体(基因在染色体上呈线性排列)

<4>分子遗传学:基因工程

2、有丝分裂:通常指核分裂,特别是在遗传学中更主要讨论细胞核分裂)

减数分裂:又称成熟分裂,是性母细胞成熟时,配子形成过程中所发生的一种特殊的有

丝分裂。

有丝分裂、减数分裂解析

一、减数分裂是一种特殊的有丝分裂

二、有丝分裂和减数分裂过程的比较①减数分裂的简要过程②有丝分裂与减数分裂过程比较

三、有丝分裂和减数分裂的主要特征比较

四、细胞分裂中几个概念的分析

1、基本概念理解

(1)同源染色体:减数分裂第一次分裂过程中,相互配对(联会)的两条染色体,它们的形状和大小一般都相同(不同的一般指性染色体,如X、Y染色体),一条来自父方,一条来自母方。

减数分裂中精(卵)原细胞和初级精(卵)母细胞中含有同源染色体,在次级精(卵)母细胞、精子(卵细胞)和极体中不含有同源染色体,但在有丝分裂中同源染色体始终存在。

(2)染色单体:在间期染色体复制以后,每条染色体含有两条完全相同的染色质丝,连接在一个着丝点上,每条染色质丝成为一个染色单体。无论是有丝分裂还是减数分裂,染色单体都是形成于间期,但有丝分裂消失于后期,减数分裂消失于减数第二次分裂的后期。

(3)四分体:同源染色体两两配对的现象叫联会,联会后的每对同源染色体含有四条染色单体,称四分体2、几种数量关系

(1)染色体数:以染色体的着丝点数目为依据,有几个着丝点就有几个染色体。

(2)染色单体数:若有染色单体,则染色单体数是染色体数的2倍;若无染色单体则为零

(3)DNA分子数:若有染色单体,则DNA分子数是染色体数的2倍;若无染色单体,则DNA分子数等于染色体数。

(4)三者之间的关系

染色体复制后着丝点分裂前:染色单体数=2倍染色体数=DNA分子数

其他时期:染色体数=DNA分子数;染色单体数=0;

一个四分体=1对同源染色体=2个染色体=4个染色单体=4个DNA分子

(5)细胞数目关系

1个精原细胞1个初级精母细胞2个次级精母细胞4个精子细胞4个精子

1个卵原细胞1个初级卵母细胞1个初级精母细胞+1个极体1个卵细胞+3个极体

五、减数分别与遗传定律之间的关系

减数分裂是三大遗传规律的细胞学基础,三大遗传规律都是研究亲代的性状在子代中的表现问题。无论哪个规律研究什么性状,亲代性状要在子代中表现出来,都必须经减数分裂、受情作用和个体发育三个阶段,但受精作用与个体发育不过是性状表现必不可少的阶段,它们并不影响子代表现型与基因型的种类和比例。因此,性状在子代中如何表现的问题要取决于减数分裂产生的配子的种类和比例。而与减数分裂产生的配子的种类有关的关键阶段在减数分裂中的同源染色体的分离时期。这就是遗传规律的实质所在。在减数第一次分裂的后期,由于同源染色体的分离.导致了位于同源染色体上等位基因的分离,表现出基因的分离定律;在等位基因随同源染色体分离的同时,非同源染色体之间表现为自由组合,导致了位于非同源染色体上非等位基因的自由组合,表现出基因的自由组合定律,由此一见,遗传定律是由于减数分裂过程中染色体的行为变化引起的。

六、一个基因型为AaBb的生物体产生配子的配子(精子或卵细胞)种类与一个基因型为AaBb的精(卵)原细胞产生的配子(精子或卵细胞)种类

精子种类卵细胞种类

基因型为AaBb的生物体 4

含有n对等位基因差异的生物体2n

一个基因型为AaBb的精(卵)原细胞

2 1

一个含有n对等位基因差异的精(卵)原细

七、减数分裂对于生物的遗传和变异是十分重要的

对于进行有性生殖的生物来说,减数分裂和受精作用,对于维持生物前后代体细胞染色体数目的恒定,以及生物的遗传和变异都是十分重要的。

八、有丝分裂和减数分裂各时期的图像

细胞分裂各时期图像的主要特征

时期有丝分裂减数分裂第一次分裂减数分裂第二次分裂前

细胞内有成对的同源染色

体,但无联会、四分体出现

细胞内有成对的同源染色体,

但有联会、四分体出现

细胞内无成对的同源染色体,也

无联会、四分体出现中

细胞内有成对的同源染色

体,染色体着丝点排列在细

细胞内同源染色体形成的四

分体着丝点排列在细胞中央

细胞内无成对的同源染色体,染

色体着丝点排列在细胞中央的

图注

A有丝分裂

B减数分裂第一次分裂

C减数分裂第二次分裂前

3、植物雌雄配子的形成 高等植物雌雄配子的形成:

胚囊母细胞(

四个四分孢子(

n 8核胚囊

成熟的雌配子体

双受精作用的概念:指被子植物的雄配子体形成的两个精核,一个精核与卵融合形成二倍体的合子,将来发育成胚。另一个精核与中央细胞的极核(通常两个)融合形成初生胚乳核的现象

直感现象:已知胚乳细胞是3n ,其中2n 来自极核,n 来自精核。如果在3n 胚乳的性状上由于精核的影响而直接表现出父本的某些性状,这种现象称为胚乳直感或花粉直感。【一些单子叶植物的种子常出现这种胚乳直感现象。】如果果种皮或果皮组织在发育过程中由于花粉影响而表现出父本的某些性状,则称为果实直感。 4、核酸:

基本组成元素:C H O N P ;基本单位:核苷酸。核苷酸由一个含N 碱基,一个五碳糖,一个磷酸组成,由于五碳糖的不同,核苷酸分为脱氧核糖核苷酸及核糖核苷酸,脱氧核糖核苷酸组成脱氧核糖核酸即DNA ,核糖核苷酸组成核糖核酸即RNA ;

多样性:核苷酸由于所含碱基的不同而不同,碱基的种类共五种,即腺嘌呤A ,鸟嘌呤G ,胞嘧啶C ,胸腺嘧啶T ,尿嘧啶U ;DNA 有前四种碱基,无尿嘧啶,RNA 也有四种碱基,但有尿嘧啶,无胸腺嘧啶。 五碳糖

核苷酸 磷酸 嘌呤(双环) 含氮碱基

嘧啶 (单环)

5、DNA 的双螺旋结构 DNA 分子是脱氧核苷酸的多聚体。因为构成DNA 的碱基通常有四种,所以,脱氧核苷酸也有四种,即:脱氧腺嘌呤核苷酸(dATP )、脱氧胸腺嘧啶核苷酸(dTTP )、脱氧鸟嘌呤核苷酸(dGTP )、脱氧胞嘧啶核苷酸(dCTP )、 主要特点有:

1两条多核苷酸以相同的旋转绕同一个公共轴形成右手双螺旋。螺旋的直径约为20A ?(2nm ) ○

2两条多核甘酸链是反向平行的,两条链的极性相反。 ○

3两条多核苷酸链的糖─磷酸骨架位于双螺旋的外侧,碱基平面位于链的内部。 ○

4两条多核苷酸链之间按照A —T,C —G 的碱基配对规律互补配对。 ○

5在双螺旋分子的表面大沟和小沟交替出现。 DNA 双螺旋结构模型的意义:

DNA 双螺旋模型结构同时表明:─DNA 复杂的明显方式─半保留复制─基因和多肽成线性对应的一个可能的理由:DNA 核苷酸顺序规定该基因编码蛋白质的氨基酸顺序:DNA 中的遗传信息就是碱基序列:并存在某种遗传密码,将核苷酸序列译成蛋白质氨基酸顺序。

遗传学重点总结

遗传学 第一章 (一) 名词解释: 1.原核细胞: 没有核膜包围的核细胞,其遗传物质分散于整个细 胞或集中于某一区域形成拟核。如:细菌、蓝藻等。 2.真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物 的细胞及真菌类。单细胞动物多属于这类细胞。 3.染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原 核细胞内,是指裸露的环状DNA分子。 4.姊妹染色单体:二价体中一条染色体的两条染色单体,互称为 姊妹染色单体。 5.同源染色体:指形态、结构和功能相似的一对染色体,他们一 条来自父本,一条来自母本。 6.超数染色体:有些生物的细胞中出现的额外染色体。也称为B 染色体。 7.无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。认 为是有性生殖的一种特殊方式或变态。 8.核小体(nucleosome):是染色质丝的基本单位,主要由DNA 分子与组蛋白八聚体以及H1组蛋白共同形成。 9.染色体组型 (karyotype) :指一个物种的一组染色体所具有的 特定的染色体大小、形态特征和数目。 10.联会:在减数分裂过程中,同源染色体建立联系的配对过程。

11.联会复合体:是同源染色体联会过程中形成的非永久性的复合 结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。 12.双受精: 1个精核(n)与卵细胞(n)受精结合为合子(2n),将 来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核 (3n),将来发育成胚乳的过程。 13.胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父 本的某些性状,这种现象称为胚乳直感或花粉直感。 14.果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现 父本的某些性状,则另称为果实直感。 简述: 2.简述细胞有丝分裂和减数分裂各自的遗传学意义? 答:细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。 细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目的恒定性,并保证了物种相对的稳定性;(2)由于染色体重组、分离、交换,为生物的变异提供了重要的物质基础。 第四章孟德尔遗传 (一) 名词解释:

分子生物学实验课程教学大纲

分子生物学实验课程教学大纲 课程名称:分子生物学(Molecular Biology) 课程编号:1313072215 课程类别:专业课 总学时数:68实验时数:18 学分:3.5 开课单位:生命科学学院生物综合教研室 适用专业:生物技术 适用对象:本科(四年) 一、课程的性质、类型、目的和任务 分子生物学实验是生物技术专业一门必修的专业课,涵盖了分子与细胞生物学的许多内容,并与结构基因组学、功能基因组学、蛋白质组学、生物信息学、生物医学、分子病毒学、 分子免疫学等学科有着重要的联系。分子生物学实验课程教学以理论课教学为基础,理论与 实践相结合,加深对所学知识的理解,对实验仪器要求较高,因此开设本课程的目的是使学 生掌握分子生物学实验设备的操作方法,使学生更加牢固地掌握基础知识,更重要的是培养 学生的动手能力和科学研究能力,为学生学习生命科学中的其他相关课程作好基础准备。同 时也使学生具备分子生物学基本的实验技能,学会发现问题和解决问题的能力,为毕业后从 事生物学相关的科研和教学工作奠定基础。 本课程的任务是通过实验教学,使学生了解和初步掌握分子生物学实验技术的基本原理 和方法,教学内容包括植物基因组DNA的提取、琼脂糖凝胶电泳检测、PCR扩增目的基因 及聚丙烯酰胺凝胶电泳等。在实验内容和方法、技术上进行合理安排,力争让学生在有限的 课时中尽可能多地了解和掌握现代分子生物学基本理论和有关实验的基本方法和技术原理,并尽可能多地引进、介绍新的、先进的实验方法和技术,以开阔学生视野,提高学生的动手 能力和创造性思维能力,培养高素质的生命科学人才。 二、本课程与其它课程的联系与分工 学习和研究分子生物学的目的在于阐明生命活动的化学物质基础,并与其它学科配合,来揭示生命活动的本质和规律。《生物化学》、《细胞生物学》和《遗传学》是先修课程。 三、课程内容及教学基本要求 [1]表示“了解”;[2]表示“理解”或“熟悉”;[3]表示“掌握”; 实验一植物基因组DNA的提取 植物基因组DNA的提取的目的及原理[1];植物基因组DNA的提取的实验步骤及操作方 法[3]; 作业:提取的DNA呈褐色的原因及解决办法? 实验二琼脂糖凝胶电泳 琼脂糖凝胶电泳的原理及操作步骤[1],琼脂糖电泳的实验方法[3]; 作业:琼脂糖凝胶电泳中电压如何设置? 实验三聚合式酶联反应(PCR)扩增目的基因

2017年中科院遗传学考研参考书

中国科学院大学硕士研究生入学考试 《遗传学》考试大纲 本《遗传学》考试大纲适用于中国科学院大学生命科学相关专业的硕士研究生入学考试。遗传学的主要内容包括经典遗传学、细胞遗传学、分子遗传学和发育遗传学等。要求考生掌握基本概念、原理,从个体、细胞、和分子水平对遗传学有较完整和系统的认识,掌握遗传学的基本规律和应用,熟悉遗传学的基本概念及规律,并能综合、灵活运用所学知识分析问题和解决问题。 一、考试科目基本要求及适用范围概述 熟练掌握遗传学的基本原理与知识,了解遗传学研究的新进展与新概念,了解遗传学研究相关的新技术。 二、考试形式和试卷结构(题型) 考试形式:闭卷,笔试;考试时间:180分钟;总分:150分 试卷结构:名词解释,简答题,遗传学计算题 三、考试内容与要求 (一)染色体遗传学与细胞遗传学 1.理解细胞分裂的过程与意义; 2.掌握有丝分裂与减数分裂的异同,了解染色体在有丝分裂和减数分裂 中的行为; 3.了解果蝇唾液腺染色体的特征和形成原因; 4.掌握染色体学说的主要内容; 5.掌握真核生物染色体的组装与结构模型。

(二)经典遗传学 1.熟练掌握孟德尔的遗传分离定律和遗传自由组合定律的原理; 2.了解性染色体决定性别的主要类型,理解伴性遗传规律; 3.熟练运用基因的连锁与交换定律进行重组频率的计算,掌握三点测交法的原理与应用; 4.掌握谱系的遗传分析方法; 5.理解遗传互补检测的原理,熟练掌握遗传互补检测的原理与应用; 6.理解剂量补偿效应的概念; 7.熟练掌握基因型(genotype)、表现型(phenotype)、外显率(penetrance)、表现度(expressivity)等概念,掌握表型比率的计算方法; 8.掌握等位基因、复等位基因、非等位基因等概念; 9.了解基因突变互作的主要类型与原理。 (三)基因与基因组的结构与功能 1.熟练掌握DNA双螺旋模型。了解DNA的其它构型; 2.了解基因概念的发展,掌握基因的类型,理解基因与DNA的关系; 3.掌握基因组结构特点和功能的对应关系; 4.理解等位基因、等位突变的性质与特点; 5.了解真核生物、原核生物基因组序列的类型与特点; 6.理解基因家族的概念; 7.了解基因的丢失、扩增、重排的特点与意义; 8.掌握重组测验进行基因定位的原理,理解图位克隆的原理,了解遗 传拯救(rescue)或分子遗传互补实验确定基因功能的原理。 (四)遗传重组与遗传分析 1.掌握同源重组、位点特异重组的原理与特点; 2.熟练掌握遗传重组作图的原理与应用; 3.掌握缺失作图的原理和方法;

遗传学(第二版) 刘庆昌 重点整理2

第九章 ★无性繁殖(Asexual reproduction) 指通过营养体增殖产生后代的繁殖方式,其优点是能保持品种的优良特性、生长快。★有性繁殖(Sexual reproduction) 指通过♀、♂结合产生的繁殖方式,其优点是可以产生大量种子和由此繁殖较多的种苗。大多数动植物都是进行有性生殖的。 ★近交(Inbreeding) 指血缘关系较近的个体间的交配,近亲交配。近交可使原本是杂交繁殖的生物增加纯合性(homozygosity),从而提高遗传稳定性,但往往伴随严重的近交衰退现象(inbreeding depression)。 ★杂交(crossing or hybridization) 指亲缘关系较远,基因型不同的个体间的交配。可以使原本是自交或近交的生物增加杂合性(heterozygosity),产生杂种优势。 一、近交的种类 ★自交(Selfing) 指同一个体产生的雌雄配子彼此融合的交配方式,它是近交的极端形式,一般只出现在植物中(自花授粉植物),又称自花受粉或自体受精(self-fertilization)。 ★回交(Back-crossing) 杂交子代和其任一亲本的杂交,包括亲子交配(parent-offspring mating)。 ★全同胞交配(Full-sib mating) 相同亲本的后代个体间的交配,又叫姊妹交。 ★半同胞交配(Half-sib mating) 仅有一个相同亲本的后代个体间的交配。 ★自花授粉植物(Self-pollinated plant) 天然杂交率低(1-4%):如水稻、小麦、大豆、烟草等; ★常异花授粉植物(Often cross -pollinated plant) 天然杂交率常较高(5-20%):如棉花、高粱等; ★异花授粉植物(Cross-pollinated plant): 天然杂交率高(>20-50%)如玉米、黑麦等,在自然状态下是自由传粉。 ★近交衰退(Inbreeding depression) 近交的一个重要的遗传效应就是近交衰退,表现为近交后代的生活力下降,产量和品质下降,适应能力减弱、或者出现一些畸形性状。 ★回交(Backcross)B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent) 未被用来回交的亲本。 B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent)

遗传学教学大纲

教学大纲 《遗传学》教学大纲 学时数:101 学分:4 适用专业:生命科学 一、课程的性质、目的和任务 课程性质:遗传学是生物科学专业的一门重要的专业基础课程,是研究遗传物质的结构、功能与变异,遗传信息的传递、表达与调控的科学,是当今自然科学领域中发展最为迅猛、最活跃的学科之一,是生命科学各门学科的核心。 教学目的:掌握遗传学的基本原理和系统的遗传学知识,了解其发展历程和最新进展;理解遗传学的基本技术、研究方法和手段,并了解遗传学在工、农业等生产领域中的应用;学会利用遗传学的基本原理、基本技术、研究方法和手段分析、阐述有关遗传现象,为今后进一步深造和工作打下必要的基础。 主要任务:全面系统地讲授遗传学的基本原理和遗传学分析的基本方法,同时介绍现代遗传学发展的最新成就,使学生对遗传物质的本质、遗传物质的传递、遗传物质的变异等基本规律有比较全面的、系统的认识,并能应用其基本原理分析遗传学数据,解释遗传学现象,同时对遗传信息的表达与调控、遗传工程有一个较为全面的了解。 二、课程教学的基本要求 通过本课程学习,要求学生掌握遗传学的基本原理,掌握对动、植物和微生物进行遗传分析的一般方法,掌握基本的实验操作技术,为进一步学习有关专业课程和遗传学的分支学科奠定较好的遗传学基础知识。 三、课程教学内容 第一章绪论 ㈠教学基本要求: 1. 掌握遗传、变异的概念和遗传学的概念; 2. 理解遗传学研究内容和任务; 3. 了解遗传学发展的主要阶段,以及有哪些重要的科学家做出了重大贡献; 4. 了解遗传学在国民经济中的地位,从工、农、医、环境保护等方面介绍遗传学的应用。 重点:遗传学发展里程碑 ㈡讲授内容: 第一节遗传学的研究对象和任务 遗传和变异;遗传、变异与环境的关系;遗传、变异与选择在生物进化与新品种选育中的作用;遗传学的任务。 第二节遗传学的发展简史 古代遗传学知识的积累;近代遗传学的奠基;遗传学的建立和发展:遗传学的建立及各分支学科的发展。 第三节遗传学在科学研究和生产实践中的作用 遗传学在生命科学,生物进化领域,动植物、微生物遗传改良及人类医药卫生中的应用。 第二章孟德尔定律 ㈠教学基本要求: 1. 掌握分离规律、自由组合规律的遗传实验、解释和验证方法; 2. 掌握分离规律、自由组合规律的实质; 3. 掌握单位性状、相对性状、分离线项、基因型和表现型的概念; 4. 掌握单位性状、相对性状、基因型和表现型的概念;

遗传学考试大纲

《遗传学》考试大纲 一、考试大纲的性质 遗传学是探究生物遗传和变异的科学,是现代生物学的最重要的基础学科之一。主要内容包括:遗传的细胞学基础、遗传物质的分子基础、孟德尔遗传、连锁遗传和性连锁、染色体变异、细菌和病毒的遗传、基因的表达与调控、基因工程和基因组学、基因突变、遗传与发育、数量遗传、群体遗传与进化。要求考生牢固掌握基本概念和基本规律,并具有综合运用所学知识分析和解决问题的能力。为帮助考生明确本课程的考试复习范围和有关要求,特制定本考试大纲。 本考试大纲主要根据《遗传学》(朱军_第三版)编制而成。适用于报考中国林业科学研究院遗传学及相关专业硕士学位研究生的考生。 二、考试内容 第一章绪论 遗传学的发展及其在科学和生产发展中的作用。 第二章遗传的细胞学基础 染色体的形态和数目;有丝分裂和减数分裂;生活周期。 第三章遗传的分子基础 DNA作为主要遗传物质的证据;DNA的复制;RNA的转录及加工;遗 传密码与蛋白质的翻译。 第四章孟德尔遗传 分离规律和自由组合规律;遗传学数据的统计处理;孟德尔规律的补充 和发展。 第五章连锁遗传和性连锁 连锁与交换;交换值及其测定;基因定位与连锁遗传图;真菌类的连锁 与交换; 第六章染色体变异 染色体结构变异及其应用;染色体数目变异。 第七章细菌和病毒的遗传 细菌和病毒研究的意义;噬菌体和细菌的遗传分析。

第八章基因的表达与调控 基因;基因调控。 第九章基因工程和基因组学 基因工程;基因组学。 第十章基因突变 基因突变的时期和特征;基因突变和性状表现;基因突变的鉴定;基因 突变的分子基础;诱变;转座因子。 第十一章细胞质遗传 细胞质遗传的概念和特点;母性影响;叶绿体遗传;线粒体遗传;共生 体和质粒决定染色体外遗传;植物雄性不育的遗传。 第十二章遗传与发育 细胞核和细胞质在个体发育中的作用;基因对个体发育的控制;细胞的 全能性。 第十三章数量遗传 群体的变异;数量性状的特征;数量性状遗传研究的基本统计方法; 遗传参数的估算及其应用;数量性状基因定位;近亲繁殖与杂种优势。第十四章群体遗传与进化 群体遗传平衡;改变平衡的因素;达尔文的进化学说及其发展;物种的 形成。 三、考试要求 要求考生能熟练掌握有关基本概念,掌握植物形态解剖特征,系统掌握植物分类与系统发育知识,并具有综合运用所学知识分析问题和解决问题的能力。 四、试卷结构 1. 名词解释(40%) 2. 问答题(40%) 3. 论述题(20%) 五、考试方式和时间 考试方式:笔试

(完整word版)医学遗传学重点归纳

第一章人类基因与基因组 第一节、人类基因组的组成 1、基因是遗传信息的结构和功能单位。 2、基因组是是细胞内一套完整遗传信息的总和,人类基因组包含核基因组和线粒体基因组 单拷贝序列串联重复序列 按DNA序列的拷贝数不同,人类基因组高度重复序列 反向重复序列 重复序列短分散核元件 中度重复序列 长分散核元件 3、多基因家族是指由某一祖先经过重复和所变异产生的一组基因。 4、假基因是基因组中存在的一段与正常基因相似但不能表达的DNA序列。 第二节、人类基因的结构与功能 1、基因的结构包括:(1)蛋白质或功能RNA的基因编码序列。(2)是表达这些结构基因所需要的启动子、增强子等调控区序列。 2、割裂基因:大多数真核细胞的蛋白质编码基因是不连续的编码序列,由非编码序列将编码序列隔开,形成割裂基因。 3、基因主要由外显子、内含子、启动子、增强子、沉默子、终止子、隔离子组成。 4、外显子大多为结构内的编码序列,内含子则是非编码序列。 5、每个内含子5端的两个核苷酸都是GT,3端的两个核苷酸都是AG,这种连接方式称为GT--AG法则。 6、外显子的数目等于内含子数目加1。 7、启动子分为1类启动子(富含GC碱基对,调控rRNA基因的编码)、2类启动子(具有TATA 盒特征结构)、3类启动子(包括A、B、C盒)。 第三节、人类基因组的多态性 1、人类基因组DNA多态性有多种类型,包括单核苷酸多态性、插入\缺失多态性、拷贝数多态性。 第二章、基因突变 突变是指生物体在一定内外环境因素的作用和影响下,遗传物质发生某些变化。基因突变即可发生在生殖细胞,也可发生在体细胞。 第一节、基因突变的类型

《人类遗传的奥秘》教学大纲

《人类遗传的奥秘》教学大纲 MISTERY OF HUMAN HEREDITY COURSE TEACHING PROGRAM 总学时数:36学时面授学时数:14 学时数:22 学分:2学分 适应专业:全校成人教育各专业 执笔者:庄尔铮 编写日期:2005年3月 一、课程的性质、目的和任务 本课程作为校级公共选修课,其目的是拓宽学生知识面,帮助学生更好地认识自己,了解自己,懂得一点遗传学基本知识。介绍生物学基本知识、遗传学基本规律、人类性状的遗传、遗传疾病的分析及预防、遗传工程、克隆技术与人类未来等。遗传学在生物科学领域中是一门非常重要的基础学科,并且成为生物科学中的领先学科。人类遗传学是专门研究人类遗传变异的科学。其主要任务是研究人类上下代形态、生理等性状的传递方式及其亲代和子代间、子代同胞兄弟间的相似性和差异性的原因与规律,为遗传病的防治与优生提供理论依据。 二、课程教学的基本要求 由于学生缺乏生物学、医学的基础,要求: (一)、教学过程: 1、要激发学生的学习兴趣,让学生由被动学习变主动学习。 2、讲课要深入浅出,通俗易懂,以实例讲解。 3、应用多媒体教学,图片、VCD、动画片等加强学生的感性认识。 4、注意辅导,解答学生的疑难问题。 (二)、对学生的要求 1、通过学习,对遗传学的基本理论、基本规律有比较全面的认识和理解。 2、掌握一定的遗传学基本概念和原理。 3、认识人类性状的遗传和遗传病的起因、发病规律。 5、通过本课程学习,同学们应对自己作一个评价,建立起自信心,从心身两方面 都得到锻炼,正确对待自己。 三、课程的教学内容、重点和难点 第一章你从哪里来(2节) 基本内容 第1节:主要讲述细胞的结构与功能、细胞分裂、配子的形成、受精,重点讲述染色体在遗传上的作用。 第2节:主要讲述胎儿形成(播放VCD)、遗传与变异

遗传学实验课程教学大纲

遗传学实验课程教学大纲 课程名称:遗传学实验Experiment of genetics 课程编号:1313013224 课程类别:专业课 总学时数:33 实验时数:33 学分:1 开课单位:生命科学学院生物综合教研室 适用专业:生物科学 适用对象:本科(四年) 一、课程的性质、类型、目的和任务 遗传学实验课是为加深学生对所学的遗传理论课内容的理解开设的专业必修课,目的是使学生系统学习和掌握现代遗传学实验理论和实验技术,巩固和验证课堂教学内容,培养学生严肃、认真、客观的态度,提高学生的动手能力、综合分析问题、解决问题的能力和理论联系实际的能力,为培养21世纪教学和科研人员奠定基础。 二、本课程与其它课程的联系与分工 本课程与生物化学、微生物学、植物生理学,以及动、植物学,细胞生物学课程均有联系,所以在上述课开出后有利于该课的顺利开出。 三、课程内容及教学基本要求 [1]表示“了解”;[2]表示“理解”或“熟悉”;[3]表示“掌握”; 实验一、大蒜根尖的有丝分裂 有丝分裂各时期动态变化[1];细胞的固定、解离、压片方法[3]; 实验二、细胞的减数分裂 植物花粉形成中的减数分裂过程[1];染色体的动态变化[2];制备减数分裂玻片标本的方法和技术[3]; 实验三、染色体核型分析 染色体核型分析的基本方法[3];显微摄影技术[1]; 实验四、果蝇生活史及形态观察 果蝇的生活史[1];果蝇几个突变型的形态特征[3]; 实验五、小白鼠骨髓染色体制片技术 小白鼠骨髓细胞制作染色体标片[3];空气干燥法基本技术[1]; 实验六、果蝇唾腺染色体的观察 剖取果蝇唾腺技术[3];制作唾腺染色体标本的方法[3];多线染色体的特征[2]; 实验七、果蝇的单、双因子杂交、伴性遗传、三点测交实验 果蝇的杂交技术[3];统计处理方法[3];伴性遗传和非伴性遗传区别[1];绘制遗传学图的原理和方法[3]; 实验八、人工诱发多倍体植物

中科院《遗传学》考试大纲

中国科学院植物研究所硕士研究生入学考试 《遗传学》考试大纲 本《遗传学》考试大纲适用于中国科学院植物研究所植物学、细胞生物学、发育生物学专业的硕士研究生入学考试。遗传学是现代生物学的重要组成部分,是许多学科专业的基础理论课程,主要内容包括:孟德尔定律、遗传的染色体学说、基因的作用及其与环境的关系、性别决定和伴性遗传、染色体和连锁群、数量性状遗传、遗传物质的改变、遗传的分子基础、突变和重组机理、细胞质遗传、遗传与个体发育、遗传和进化等。要求考生对其基本概念有较深入的了解,掌握遗传学的基本规律,并具有综合运用所学知识分析和解决问题的能力。 一、考试内容 (一)孟德尔定律 1.分离规律 2.自由组合定律 3、遗传学数据的统计处理 (二)遗传的染色体学说 1、细胞分裂 2、染色体周史 3、遗传的染色体学说 (三)基因的作用及其与环境的关系 1、环境的影响和基因的表型效应 2、致死基因 3、复等位现象 4、非等位基因间的相互作用 (四)性别决定与伴性遗传 1、性别决定 2、伴性遗传 3、遗传的染色体学说的直接证明 4、其它类型的性决定 (五)染色体和连锁群 1、连锁与交换 2、真菌类的遗传学分析 3、人类连锁分析与细胞学图 (六)数量性状遗传 1、数量性状的遗传学分析 2、分析数量性状的基本的统计方法 3、遗传变异和遗传率

4、近亲繁殖和杂种优势 (七)遗传物质的改变 1、染色体结构的改变 2、染色体数目的改变 3、基因突变概说 4、突变的检出 5、诱发突变 (八)遗传的分子基础 1、DNA是遗传物质的证据 2、DNA的分子结构与复制 3、DNA与蛋白质合成 4、基因的本质 5、遗传工程 (九)突变和重组机理 1、突变的分子基础 2、重组的分子基础 3、转座遗传因子 4、DNA损伤的修复 (十)细胞质遗传 1、高等植物叶绿体的遗传 2、叶绿体的遗传及分子基础 3、线粒体的遗传及分子基础 4、禾谷类作物的雄性不育 (十一)遗传与个体发育 1、细胞质在遗传中的作用 2、细胞分化的可逆性 3、基因表达的调控 (十二)遗传和进化 1、进化概说 2、进化理论 3、新种形成 4、育种实践中的人工选择 5、育种实践中的远缘杂交 二、考试要求

《普通遗传学》教学大纲

《普通遗传学》教学大纲 课程名称:普通遗传学 课程编号: 课程类别:专业基础课/必修课 学时/学分:48/3 开设学期:第五学期 说明 一、课程性质与说明 1.课程性质 专业基础课/必修课 2.课程说明 《普通遗传学》是生命科学领域中一门核心课程,也是高等院校生命科学学科的一门重要的专业基础课。 《普通遗传学》是研究生物遗传和变异规律及其机理的一门科学,通过本课程的学习,学生应较全面地了解遗传和变异的基本知识和一般的遗传分析方法;理解生物遗传和变异的基本规律及其机理;系统掌握经典遗传、细胞遗传、数量遗传、微生物遗传、群体遗传、基因工程等相关理论与技术,为学习和掌握育种学及其它生命科学课程等专业课程的遗传学分支理论奠定基础。 二、教学目标 1.能初步运用所学的遗传学知识和技能,阐明和解决生命科学中有关遗传学的一般问题以及与遗传有关的人类健康问题。 2.能通过查阅文献理解最新的遗传学成果,更深入理解遗传学各方面的基本知识,可以跟上遗传学发展的步伐, 3.能从遗传学角度分析染色体的显微结构、组成和功能,理解经典遗传规律、基因突变、染色畸变以及细胞质遗传和群体遗传规律。 4.能深入分析基因分离、独立分配和连锁互换三个规律间的内在联系;理解基因突变及其变异的分子基础;理解遗传过程中的核质互作关系;理解基因概念的发展及其微细结构。 5.能区别质量性状和数量性状的特征及其一般分析方法;掌握基因定位、鉴定变异的有关方法;掌握数量遗传统计方法。 三、学时分配表 章序章题讲授学时1绪论22遗传的细胞学基础43孟德尔式遗传分析54性别决定与伴性基因的遗传45基因的连锁与交换66数量性状遗传分析57染色体变异58群体的基因结构与进化49核外遗传分析410细菌的遗传分析411病毒的遗传分析312基因组学与后基因组学2合计48 四、教学教法建议遗传学是一门实验学科,其基本理论和定律均由实验而来,基本上遵循由现象或实验结果提出基本概念,然后进行假设,再进行验证,最后用来解释现实现象或指导实践这一规则,学习时把握这种规则能收到好效果;对一些没有条件进行实验,也需要对以果蝇和大肠杆菌为材料的经典实验有所了解,这些实验本身就是遗传学知识体系的一部分;理论课教材每章后面有习题,这些习题以思考题和分析题为主,对培养分析、综合能力和理解教材中内容有很大帮助,需认真解答,并要求学生通过查阅资料,及时了解最新的遗传学研究动态,。 该课程采用课堂教学、实验及其自学相结合方法;教学手段采用多媒体与板书相结合进行。 五、课程考核及要求

《遗传学实验》课程实验教学大纲

《遗传学实验》课程实验教学大纲 课程名称(中文):遗传学实验 课程名称(英文):Experiments of genetics 课程编号: 02241046 课程性质:独立设课 课程属性:基础必修课 教材及实验指导书名称: 教材:王金发、戚康标、何炎明主编.遗传学实验教程.北京:高等教育出版社.2008.2 指导书:刘祖洞等.遗传学实验.北京:高等教育出版社(第二版),1987;吴鹤龄等. 遗传学实验方法和技术.北京:高等教育出版社.1983 ;鄢慧民等.遗传学实 验.武汉:武汉大学出版社1994;卢龙斗等.遗传学实验技术.安徽:中国科技 大学出版社1996。 学时学分:总学时 54 总学分2 实验学时 54实验学分 2 开出时间:三年级第二学期 适用专业:生科院本科各专业 先修课程:生物学、普通生物化学、微生物学、动物学、植物学、细胞生物学。 一、课程简介及基本要求 遗传学是生物学中最富于综合性的中心学科之一,也是生命科学中发展最迅速的前沿的学科之一。自1900年孟德尔定律被重新发现以来,遗传学取得了很大的发展,阐明了许多遗传学现象和规律。进入21世纪之后,科学家对线虫、果蝇、拟南芥等动植物以及人类基因组计划的初步完成,更加突现出遗传学在生命科学中的核心与前沿学科的地位。遗传学与生命科学其他分支学科一样,是一门实验性很强的学科。遗传学本身的发展离不开大量而设计周密的实验研究,因此遗传实验课程是开展遗传学研究的重要基础。通过实验教学,不仅可以使学生加深对遗传学现象和规律的认识,最重要的是培养学生进行遗传学及相关学科研究工作的能力。 根据遗传学实验教学的内容和要求,本课程共开出21个实验项目,可供108学时使用。内容包括动物、植物、微生物及人类的遗传学实验,这些实验涵盖经典遗传学、细胞遗传学、微生物遗传学及分子遗传学等领域,既有验证性实验,使学生从个体形态、细胞、染

遗传学复习考试思考题重点汇总及答案

1、医学遗传学概念 答:是研究人类疾病与遗传关系的一门学科,是人类遗传学的一个组成部分。 2、遗传病的概念与特点 答:概念:人体生殖细胞(精子或卵子)或受精卵细胞,其遗传物质发生异常改变后所导致的疾病叫遗传病。 特点:遗传性,遗传物质的改变发生在生殖细胞或受精卵细胞中,包括染色体畸变和基因突变,终生性,先天性,家族性。 3、等位基因、修饰基因 答:等位基因:是位于同源染色体上的相同位置上,控制相对性状的两个基因。 修饰基因:即次要基因,是指位于主要基因所在的基因环境中,对主要基因的表达起调控作用的基因,分为加强基因和减弱基因。 4、单基因遗传病分哪五种?分类依据? 答:根据致病基因的性质(显性或隐性)和位置(在染色体上的),将单基因遗传病分为5种遗传方式。常染色体显性遗传病,常染色体隐性遗传病,X连锁隐性遗传病,X连锁显性遗传病,Y连锁遗传病。 5、什么是系谱分析?什么是系谱? 答:指系谱绘好后,依据单基因遗传病的系谱特点,对该系谱进行观察、分析和诊断遗传方式,进而预测发病风险,这种分析技术或方法称为系谱分析。 6、为什么AD病多为杂合子? 答:1遗传:患者双亲均为患者的可能性很小,所以生出纯合子的概率就很小2突变:一个位点发生突变的概率很小,两个位点都突变的概率更小 7、AD病分为哪六种?其分类依据?试举例。 答:①完全显性遗传:杂合子(Aa)表现型与患病纯合子(AA)完全一样。例:家族性多发性结肠息肉,短指 ②不完全显性遗传:杂合子(Aa)表现型介与患病纯合子(AA)和正常纯合子(aa)之间。例:先天性软骨发育不全(侏儒) ③共显性遗传:一对等位基因之间,无显性和隐性的区别,在杂合子时,两种基因的作用都表现出来。例:人类ABO血型,MN血型和组织相容性抗原 ④条件显性遗传:杂合子在不同条件下,表型反应不同,可能显性(发病),也可隐性(不发病),这种遗传方式叫显性遗传,这种遗传现象叫不完全外显或外显不全。例:多指(趾) ⑤延迟显性遗传: 基因型为杂合子的个体在出生时并不发病,一定年龄后开始发病。例:遗传性小脑性运动共济失调综合征,遗传性舞蹈病 ⑥从(伴)性显性遗传:位于常染色体上的致病基因,由于性别差异而出现男女分布比例或基因表达程度上的差异。例:遗传性斑秃 8、试述不完全显性遗传和不完全外显的异同。 相同点:1、都属于AD,具有AD的共同特点; 2、患者主要为杂合子; 不同点:1、不完全显性遗传是一种遗产方式;不完全外显是一种遗传现像; 2、不完全显性遗传中杂合子全部都发病,但病情轻于患病纯合子; 不完全外显中杂合子部分发病,只要发病,病情与患病纯合子一样; 9、试述AR病的特点 答:1、患者多为Aa婚配所出生的子女,患者的正常同胞中2/3为携带者; 2、病的发病率虽不高,但携带者却有相当数量;

医学遗传学教学大纲(详细)

《医学遗传学》教学大纲 (讨论稿) 2013年11月修订 一、课程简介 本课程在医学生学习了细胞生物学、组织胚胎学、解剖学、生理学、生物化学等课程的基础上,从个体、细胞和分子水平阐释遗传性疾病的遗传规律、发病机制、诊断、治疗和遗传保健等基本理论、基本知识和基本技能,是一门从基础医学到临床医学的桥梁课程。 二、基本学习内容和教学要求 本课程的主要学习内容包括医学遗传学基本知识、医学遗传学基础理论和人类遗传学疾病。通过本课程的教学,学生既应掌握五大类遗传性疾病的基本特点,也应掌握常见的遗传性疾病的发病机制、主要临床特征、遗传学改变和遗传病再显危险率的估计,以达到理论联系实际的目的。 按要求程度的不同,将学习内容分为三级:第一级为“掌握”,要求理解和熟记所学内容,并能脱离书本进行简明扼要的口头与书面叙述;第二级为“熟悉”,要求理解所学内容,并记住内容提要;第三级为“了解”,要求基本理解所学内容。 三、教学方法 理论联系实际,基础结合临床,遗传病案例贯穿全程;课堂讲授与课外练习并重,文献检索与英文阅读并进,知识面拓展贯穿全程。。 四、建议教材 《医学遗传学》(第三版),顾鸣敏、王铸钢主编。上海科学技术文献出版社,2013年8月 五、参考书目 1. 陈竺主编,《医学遗传学》(第二版),人民卫生出版社,2010年7月 2. 左伋主编,顾鸣敏、张咸宁副主编,《医学遗传学》(第六版),人民卫生出版社,2013年3月 3. Robert Nussbaum, Roderick R. McInnes, Huntington F. Willard. Thompson & Thompson Genetics in Medicine, 7th edition, Saunders Elsevier, 2007 六、主要参考网址 1. 上海市精品课程——医学遗传学: https://www.doczj.com/doc/4516585857.html,/jpkc/med_heredity/index.asp, 2.人类基因突变数据库:https://www.doczj.com/doc/4516585857.html, 3. 美国生物技术信息中心:https://www.doczj.com/doc/4516585857.html, 4. 人类孟德尔遗传数据库:https://www.doczj.com/doc/4516585857.html, 5. 人类基因组委员会:https://www.doczj.com/doc/4516585857.html, 七、本大纲的编写基础和适用对象及考核方法

2018医学遗传学_考试重点整理知识点复习考点归纳总结

单基因遗传病:简称单基因病,指由一对等位基因控制而发生的遗传性疾病,这对等位基因称为主基因。上下代传递遵循孟德尔遗传定律。分为核基因遗传和线粒体基因遗传。 常染色体显性(AD)遗传病:遗传病致病基因位于1-22号常染色体上,与正常基因组成杂合子导致个体发病,即致病基因决定的是显性性状。 常染色体完全显性遗传的特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关即 男女患病的机会均等 ⑵患者的双亲中必有一个为患者,致病基因由患病的亲代传来;双亲 无病时,子女一般不会患病(除非发生新的基因突变) ⑶患者的同胞和后代有1/2的发病可能 ⑷系谱中通常连续几代都可以看到患者,即存在连续传递的现象 一种遗传病的致病基因位于1~22号常染色体上,其遗传方式是隐性的,只有隐性致病基因的纯合子才会发病,称为常染色体隐性(AR)遗传病。 带有隐性致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代,称为携带者。 常染色体隐性遗传的遗传特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关, 即男女患病的机会均等 ⑵患者的双亲表型往往正常,但都是致病基因的携带者 ⑶患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3的可能 为携带者;患者的子女一般不发病,但肯定都是携带者 ⑷系谱中患者的分布往往是散发的,通常看不到连续传递现象,有时 在整个系谱中甚至只有先证者一个患者 ⑸近亲婚配时,后代的发病风险比随机婚配明显增高。这是由于他们 有共同的祖先,可能会携带某种共同的基因 由性染色体的基因所决定的性状在群体分布上存在着明显的性别差异。如果决定一种遗传病的致病基因位于X染色体上,带有致病基因的女性杂合子即可发病,称为X连锁显性(XD)遗传病 男性只有一条X染色体,其X染色体上的基因不是成对存在的,在Y染色体上缺少相对应的等位基因,故称为半合子,其X染色体上的基因都可表现出相应的性状或疾病。 男性的X染色体及其连锁的基因只能从母亲传来,又只能传递给女儿,不存在男性→男性的传递,这种传递方式称为交叉遗传。 X连锁显性遗传的遗传特征 ⑴人群中女性患者数目约为男性患者的2倍,前者病情通常较轻 ⑵患者双亲中一方患病;如果双亲无病,则来源于新生突变 ⑶由于交叉遗传,男性患者的女儿全部都为患者,儿子全部正常;女 性杂合子患者的子女中各有50%的可能性发病 ⑷系谱中常可看到连续传递现象,这点与常染色体显性遗传一致 如果决定一种遗传病的致病基因位于X染色体上,且为隐性基因,即带有致病基因的女性杂合子不发病,称为X连锁隐性(XR)遗传病。(血友病A)X连锁隐性遗传的遗传特征 ⑴人群中男性患者远较女性患者多,在一些罕见的XR遗传病中,往往

医学遗传学教学大纲

医学遗传学教学大纲 一、课程的性质和任务 医学遗传学是医学与遗传学相结合的一门边缘学科,是现代医学的一个新领域。它是医科各专业学生的一门重要的基础医学课程。它研究人类疾病与遗传的关系,主要任务是研究遗传病的发病机理、传递规律、诊断、治疗和预防,从而提高人类的健康素质。 二、课程目标 通过本课程的教学,使学生掌握医学遗传学的基本理论和基本知识,熟悉遗传病的诊断、预防和治疗等的基本原则,了解该领域研究的新进展,并具备一定的实际工作能力,能初步解决医学实践中的遗传学问题。 三、课程衔接 本课程的先修课为医用化学、组织学与胚胎学、人体解剖学等。与本课程同期开设的课程为医学生物化学、医学免疫学与微生物学、人体生理学等。 四、教学方法 本课程有文字教材一本,学习指导书一本,讲授重点、难点的录像教材一套。 学生应在预习文字教材的基础上看录像教材,并做好笔记,以便复习。 学生必须参加实验课。 本课程课内学时54,电视学时18,实验学时18,学分3。 大纲正文 第一章概论(1学时) 教学内容: 一、医学遗传学及其研究领域 (一)医学遗传学的概念 (二)医学遗传学各研究领域 二、遗传病概述 (一)遗传病的概念 (二)遗传病的分类。 三、医学遗传学在现代医学中的地位 教学要求:

重点掌握:医学遗传学的概念; 遗传病的概念及其分类。 一般了解:医学遗传学的各研究领域;医学遗传学在现代医学中的地位。 第二章遗传的分子基础(5学时) 教学内容: 第一节遗传物质的化学本质 DNA的化学组成和分子结构 第二节基因的概念和结构 一、基因的概念 二、基因的类别 三、基因的分子结构 四、人类基因组结构 第三节基因的功能 一、遗传信息的储存 二、基因的复制 三、基因的表达 (一)转录 (二)翻译 四、基因表达的调控 第四节基因突变 一、基因突变的概念 二、基因突变的机理 (一)碱基置换 (二)移码突变 (三)整码突变 (四)染色体错误配对和不等交换三、基因突变与遗传病 教学要求: 重点掌握:基因的概念;

基因组学教学大纲

附件1: 二、课程性质、地位和任务 《比较基因组学》是在基因组图谱和序列分析的基础上,对已知基因和基因的结构进行比较,了解基因的功能,表达调控机制和物种进化过程的学科。它通过对不同物种的基因组数据进行比较分析,揭示彼此的相似性和差异性,以了解不同物种间进化上的差异。进行基因组比较分析时,研究并不仅限于基因编码区,还扩展到对序列相似性的分析、基因位置的比较、基因编码区长度或外显子数的变异、基因组上非编码区的比例、进化关系较远的物种间高度保守区域的比较分析等等(例如从最简单的细菌到非常复杂的人类基因组之间的比较)。比较基因组学和其它相关学科(如分子生物学、生物信息学和遗传学等)的交叉渗透,起着承前启后的作用,对这些学科的基础理论研究和生产实践都将产生巨大的影响。 通过本课程的学习,希望使学生了解比较基因组学在生物学研究领域的重要地位,发展现状,能够全面掌握基因组学的发展历史,病毒、原核生物和真核生物的基因组结构,基因组水平上的遗传图谱与物理图谱的绘制,基因组的测序与序列组装,基因组的比较分析,基因组水平的表达与调控以及基因组进化的分子机制以及进化模式。 三、课程基本要求 理论和知识方面: 通过课程讲授,使学生了解比较基因组学诞生的背景、发展概况和应用前景;掌握比较基因组学的基本理论和基本分析方法,包括基因组的结构、基因组水平上的遗传物理图谱绘制、基因组的测序与组装、基因组水平的基因表达与功能研究、基因组的比较分析(外显子数目、共线性分析、基因组上非编码区的变异)、基因组与生物进化等。 能力和技能方面: 以系统的理论知识学习为主,并以课堂讨论当前不断发展的基因组学新知识和新动态为辅助内容,在了解掌握基因组学基本知识的基础上,针对该学科的特点,要求学生能够进行简单的比较基因组学分析。同时注意培养分析思考问题的能力,能运用比较基因组学知识分析鉴定重要的功能基因,并在课堂上介绍当前一些领域的最新动态。课堂教学、课堂讨论、国内外发展动态介绍是基本学习方法。 四、课程内容及学时分配 第一章绪论(3学时) 教学基本要求:通过对引论的学习,明确比较基因组学的含义,比较基因组学的研究对象、内容和课程的主要任务,了解比较基因组学的发展历程及其展望,为学习好本门课程奠定良好基础。 教学重点和难点:基因组学及比较基因组学的产生及概念,比较基因组学的研究内容 教学方法与手段:多媒体教学、自学与课堂讨论相结合 第一节基因组学与(比较基因组学)的含义、研究范畴和发展历程 第二节病毒、原核生物和真核生物基因组的特点 第三节人类基因组计划

高中生物44高考总复习 遗传学基本概念-知识讲解_遗传学基本概念

遗传学基本概念 编稿:杨红梅审稿:闫敏敏【考纲要求】 1理解遗传学的基本概念及其关系 2.重点掌握性状显隐性的类别及基因型的确定 【考点梳理】 考点一、知识络 考点二、几种交配类型 【高清课堂:01-遗传学基本概念】 考点三、与性状有关的概念 (一)性状:生物体的形态特征和生理特性的总称。 (二)相对性状:一种生物的同一种性状的不同表现类型。

(三)显、隐性性状:具有相对性状的两纯种亲本杂交,F1表现出来的性状叫显性性状,F1未表现出来的性状叫隐性性状。 (四)性状分离:杂种后代中同时出现显性和隐性性状的现象。 (五)性状分离比 1、杂交实验中,F2中出现显︰隐=3︰1; 2、测交实验中,测交后代中出现显︰隐=1︰1。 考点四、与基因有关的概念 (一)显性基因:又叫显性遗传因子,控制显性性状,用大写字母表示。 (二)隐性基因:又叫隐性遗传因子,控制隐性性状,用小写字母表示。 (三)等位基因:位于一对同源染色体的相同位置上,控制相对性状的一对基因。 (四)非等位基因:位于同源染色体的不同位置或非同源染色体上,控制不同性状的基因 考点五、基因型和表现型 (一)概念 基因型:与表现型有关的基因组成;表现型:生物个体表现出来的性状。 (二)关系:在相同的环境条件下,基因型相同,表现型一定相同;在不同环境中,即使基因型相同,表现型也未必相同。表现型是基因型与环境因素共同作用的结果。 考点六、纯合子与杂合子的区别 (一)遗传因子组成相同的个体叫纯合子,纯合子自交后代都是纯合子,但不同的纯合子杂交,后代为杂合子。 (二)遗传因子组成不同的个体叫杂合子,杂合子自交后代会出现性状分离,且后代中会出现一定比例的纯合子 (三)如何判断具有显性性状的个体是纯合体还是杂合体? 已知豌豆的高茎对矮茎为显性,现有一株高茎豌豆,请设计实验,判断该高茎豌豆是纯合体还是杂合体。

遗传学(第二版)刘庆昌-重点整理1

Heredity (遗传) 亲代与子代(上下代)之间相似的现象 遗传的特点:相对稳定性、保守性。 Variation (变异) 亲代与子代之间以及子代个体之间的差异。 变异的特点:普遍性和绝对性。 分为可遗传的变异(hereditable variation),和不可遗传的变异(non-hereditable variation), 变异的多态性(polymorphism of variation)。 Evolution (进化) 生物体在生命繁衍进程中,一代一代繁殖,通过遗传把物种特性传递下去。但不可避免地遭受自然和人为的干涉,即遗传—变异—选择(淘汰坏的,保留好的),后代优于亲代,称为进化。 进化的两种方式: 渐变式:积累变异成为新类型(continual variation),如适应性进化。 跃变式:染色体加倍成为新物种,如倍性育种和基因工程育种。 遗传与变异的关系 遗传与变异是矛盾对立统一的两个方面。即遗传是相对的,保守的;变异是绝对的,进步的;变异受遗传控制,不是任意变更的。具体如下: ★遗传与变异同时存在于生物的繁殖过程中,二者之间相互对立、又相互联系,构成生物的一对矛盾。每一代传递既有遗传又有变异,生物就是在这种矛盾的斗争中不断向前发展。选择所需要的变异,从而发展成为生产和生活中所需要的品种。因此,遗传、变异和选择是生物进化和新品种选育的三大要素。 3、遗传、变异与进化的关系 生物进化就是环境条件(选择条件)对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传),变异逐代积累导致物种演变,产生新物种。 动、植物和微生物新品种选育(育种)实际上是一种人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。 摩尔根创立基因学说 克里克提出的“中心法则”。 Human Genome Project (HGP) Epigenetics 表观遗传学 1. 概念:基因的DNA序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可遗传的表型。 2. 特征: (1)可遗传;(2) 可逆性;(3) DNA不变 3. 表观遗传学的现象: (1) DNA甲基化 (2) 组蛋白修饰 (3) MicroRNA (4) Genomic imprinting (5)休眠转座子激活…

相关主题
文本预览
相关文档 最新文档