当前位置:文档之家› 压铸件的缩孔缩松问题解决方案

压铸件的缩孔缩松问题解决方案

压铸件的缩孔缩松问题解决方案
压铸件的缩孔缩松问题解决方案

压铸件的缩孔缩松问题解决方案

1.压铸件缩孔缩松现象存在的原因

压铸件缩孔缩松现象产生的原因只有一个,那就是由于金属熔体充型后,由液相转变成固相时必然存在的相变收缩.由于压铸件的凝固特点是从外向内冷却,当铸件壁厚较大时, 内部必然产生缩孔缩松问题.

所以,就压铸件来说,特别是就厚大的压铸件来说,存在缩孔缩松问题是必然的,是不可以解决的.

2.解决压铸件缩孔缩松缺陷的唯一途径

压铸件缩孔缩松问题,不能从压铸工艺本身得到彻底解决,要彻底解决这个问题,只能超越该工艺,或者说是从系统外寻求解决的办法.

这个办法又是什么呢?

从工艺原理上说,解决铸件缩孔缩松缺陷,只能按照通过补缩的工艺思想进行.铸件凝固过程的相变收缩,是一种自然的物理的现象,我们不能逆这种自然现象的规律,而只能遵循它的规律,解决这个问题.

3.补缩的两种途径

对铸件的补缩,有两种途径,一是自然的补缩,一是强制的补缩.

要实现自然的补缩,我们的铸造工艺系统中,就要有能实现“顺序凝固”的工艺措施.很多人直觉地以为,采用低压铸造方法就能解决铸件的缩孔缩松缺陷,但事实并不是这么回事.运用低压铸造工艺,并不等于就能解决铸件的缩孔缩松缺陷,如果低压铸造工艺系统没有设有补缩的工艺措施,那么,这种低压铸造手段生产出来的毛坯,也是可能百分之一百存在缩孔缩松缺陷的.

由于压铸工艺本身的特点,要设立自然的“顺序凝固”的工艺措施是比较困难的,也是比较复杂的.最根本的原因还可能是, ”顺序凝固”的工艺措施,总要求铸件有比较长的凝固时间,这一点,与压铸工艺本身有点矛盾.

强制凝固补缩的最大特点是凝固时间短,一般只及”顺序凝固”的四分之一或更短,所以,在压铸工艺系统的基础上,增设强制的补缩工艺措施,是与压铸工艺特点相适应的,能很好解决压铸件的缩孔缩松问题.

4.强制补缩的两种程度:挤压补缩和锻压补缩

实现铸件的强制补缩可以达到有两种程度.一种是基本的可以消除铸件缩孔缩松缺陷的程度,一种是能使毛坯内部达到破碎晶粒或锻态组织的程度.如果要用不同的词来表述这两种不同程度话,那么,前者我们可以用“挤压补缩”来表达,后者,我们可以用“锻压补缩”来表达.

要充分注意的一个认识,分清的一个概念是,补缩都是一种直接的手段,它不能间接完成.工艺上,我们可以有一个工艺参数来表达,这就是”补缩压强”.

物理原理上,压强这个概念有两种情况可出现,一种是在液体场合,即“阿基米德定律”的场合,为分清楚,我们定义它为“液态压强”,而另一种出现在固态场合,我们定义它为”固态压强”.要注意的是,这两种不同状态下出现的压强概念的适用条件.我们如果混淆了,就会出现大问题.

“液态压强”,它只适用于液体系统,它的压强方向是可以传递的,可以转弯的,但在固相系统完全不适用.

压铸件的补缩,是在半固态与固态之间出现的,它的压强值,是有方向的,是一种矢量压强,它的方向与施加的补缩力方向相同.

所以,那种以为通过提高压铸机压射缸的压力,通过提高压射充型比压来解决压铸件的缩孔缩松,以为这个压射比压可以传递到铸件凝固阶段的全过程,实现铸件补缩思想,是完全错误的.

5.采用“先压铸充型,后模锻补缩”的工艺,是解决铸件缩孔缩松缺陷的有效途径,也是一种终极手段.

“先压铸充型,后模锻补缩”的工艺,我们可简称为“压铸模锻”工艺.它的本质,是一种连铸连锻工艺,就是将压铸工艺与液态模锻工艺相结合,将这两种设备的最有效功能组合在一起,完成整个工艺过程.

这种连铸连锻的“压铸模锻”设备,外型与普通立式或卧式的压铸机很相似,其实就是在压铸机上,增加了液压的锻压头.可以加上的最大锻压补缩力,能等于压铸机的最大锁模力.

要注意的是,这种压铸模锻机最重要的公称参数,并不是锁模力,而是模锻补缩力,相当于四柱油压机的锻压力意义,这是我们在设备选择时必须充分留意的.不然,买了一台锁模力很大,但模锻补缩力很小的压铸模锻设备,其使用价值就大打折扣了.

运用这种压铸模锻机生产的毛坯,尺寸精度很高,表面光洁度也极高,可以相当于6级以上机加工手段所能达到的精度与表面粗糙度水平.它已能归属于“极限成形”----的工艺手段,比“无切削少余量成形”工艺更进了一步

研究对既定条件下压铸模具的压铸工艺参数进行快速择定。新模具调试生产前, 预选经计算得出其压铸工艺参数, 实际调试生产中以此为基础, 在工艺参数设置上少走弯路, 快速完成模具调试, 生产出合格产品。

压铸模具费用在压铸件成本中占较大比重, 而且压铸模具费用又是分摊到每个压铸件的成本中去的, 这就需要我们尽量减少不必要的模具生产次数, 以提高压铸模具的总体寿命, 尽可能降低压铸模具费用在每个压铸件成本中的分摊, 创造更大的效益。

对于如何提高模具寿命, 我们最常想到的可能有模具采用模具温度控制系统, 模具成型部分定期消应力处理和表面强化, 合理的浇注排溢系统, 以及在满足产品要求的同时采用较低的压力、速度和温度等工艺参数等。但却往往忽略了新模具的调试生产过程, 若不对该过程进行控制, 甚至有可能模具的生产次数已经达到首次消应力的模次, 却还未调试完成, 没有生产出符合客户要求的产品, 这就无形中增加了单个压铸件的成本。为了尽量避免这样的情况发生, 给以后的生产打好基础, 本文对既定条件下新压铸模具压铸工艺参数的预先快速择定进行研究。

一、压铸机的选定

模具制造之前, 模具的设计师应同模具的压铸工艺师一起确定好所要使用的压铸机并确定好压室直径。

二、快速先定压铸工艺参数

以冷室压铸机进行铝合金压铸为例。根据模具的三维模型,可以得到该产品的每模金属重G0 (kg) ,产品净重G1 (kg),集渣槽总重量G2 (kg),分型面总投影面积S(m2),连同已经先好的压铸机额定锁模力T(N),压室直径D1,经下面的各工艺参数确定做基础数据。

1、压射比压Po的确定

压射时的极限比压:P极限=T/S

式中T-压铸机额定锁模力;

S-分型面总投影面积;

Po就小于P极限避免生产中发生涨模,并根据产品结构、外观及内部质量要求。同时参照表2确定一个相对较低值,以降低模具的维修保养频次,提高模具的寿命。

2、压铸机的压射缸增压后压强P1的确定压射过程完成后,作用在冲头和压射缸活塞上的力相同,即:

因此,有实时控制的压铸机可以直接在其控制电脑内设置P1;普通的压铸机基本上为手动调节增压阀开启程,配合调整增压蓄能器的氮气充填压强来完成设定。

3.压射速度的确定

(1)第一阶段低速压射V1。一般由两部分构成,首先为冲头由静止到刚过浇料,这时需要慢速,主要是为避免合金液从浇料口溢出,有利于气体排出;其次为金属液继续充填到内浇道之前(这时的速度要大于前一部分),主要是为了避免合金液内卷气,同时要尽量避免合金液提前进入型腔。

参考数据:一般可以设为0.1~0.5m/s;薄壁件、外表装饰件为0.25-0.35m/s;高耐压强度件为0.15-0.25m/s。

(2)第二阶段高速压射V2。当合金液到达内浇道时,可以进行高速切换,使得合金液在高压高速下充填。经验数据:高速压射速度:达2~4.5m/s以上,高速射出加速时间t1为0.01 s,增压时间t2为0.Ols。

(3)第三阶段金属液充型结束前减速。在充型结束前增加减速动作,可以减轻合金液在充型结束时的冲击,保护压铸模具,减少飞边的产生;但要注意减速点设置不宜过早,否则会影响充型效果。

4.重要压射速度切换位置的选择

(1)通常高速压射起点的位置在Ⅱ(正常速度切换位置),即合金液到达内浇道时。

(2)若是表面质量要求高的压铸件,可以将切换位置提前在I、Ⅱ之间。

(3)若是希望减少压铸件的局部气孔,可以将切换位置滞后到压铸件的重要部位之上,即Ⅲ处,以减少重要部位的气孔,增加致密性。但要十分注意防止充型速度过慢导致压铸件的冷缺陷。当压铸件的重要部位在末端时,则不应使用该方法。

(4)对于大型压铸件和大型压铸机,可以将切换位置设在合金液进入型腔30%左右,以减少气孔的产生。

(5)切换位置在I以下时卷气量大,不推荐。

下面的数据计算是根据正常速度切换位置为研究对象进行的。

L0为低速压射行程,即合金液到达高速压射切换位置处的冲头行程L1为高速压射行程,即产品净重G1与排溢系统总重G2之和的合金液在压室内所占的长度,因此L1可以通过计算得到:

上式中合金液的密度ρ,铝合金液可以按2.65 XlO3kg/m3计算。

L2为料柄厚度(经验数据为30~50mm)。

L=L。+ L1+ L2:,可以通过浇料烫压室后经测量得到。

根据测量得到的L,计算得出的,以及自行确定的,可以得到的值,即确定了高速压射的切换位置。

5.增压压力的相关设定

冷室压铸中,建压时间表示增压压力的响应速度,普通的压铸机通过调节增压速度调节手轮来实现。先进的压铸机可以在控制面板上直接设定增压压力和时间的曲线。增压过程的起点可以通过位置、压力和速度来触发。

一般来讲,通过设置位置来触发增压,易于设置并便于调节,该位置设置的经验数据为:冲头压铸行程终点前10~30mm。

6,浇注温度和压铸模具温度的设定

(1)浇注温度可根据合金牌号、压铸件的质量要求等进行没定。

(2)压铸模具温度可以控制在浇注温度的1/3左右,薄壁、结构复杂的压铸件可适当提高,但应当注意的是,在开始生产前应对模具进行预热,预热温度控制在150~180℃。

7.持压时间和留模时间的设定

铝合金压铸件基于壁厚的持压时间和留模时间推荐值。

若经过上述工艺参数设定并根据压铸件进行凋整后,

没有达到产品的质量要求,则需要对模具上的浇注排溢

系统进行修改调整。

三、结语

生产出合格压铸件的条件很多,上述的压铸工艺参数选择仅为其中的一个方面,如压铸模具的浇注排溢系统设计,模具的制造精度,压铸机的状态,压铸操作者的技术水平,以及压铸用涂料的选择等都会对产品质量产生影响,出现问题时还应从多角度、全方面去考虑,不要局限于某一方面,这样才能快速解决问题。

压铸知识:

1:如何知道压铸压射行程距离,前提要知道压机大小,另外从压机查出压射行程和冲头推出距离:假如我以力劲280T压机为例:查参数表得知压射行程为400,冲头推出距离为140,那有两个参数可以得出一个最小行程L1=400-140=260,另外尺寸要根据模具设计了,假如我定模框为130,分流锥高出分型面50,料饼距离为15,那这模具在压机中的行程

L=(400-140)+(130-50-15)=325,这个数字就是压铸工艺中高速和低速的总行程,AnyCasting模拟和FLOW3D带冲头模拟设置都需要用到这个数字。

2:压铸工艺中常用参数理解:

3、绘制模具结构图时,把成品图调进模图时,成品图必须乘缩水。(模具尺寸=产品尺寸×缩水)必须把成品图(镜射)一次,即模圈里的成品图是反像的(成品是完全对称的除外)在前模,应把不属于前模的线条删除在后模,应把不属于后模的线修删除。成品在模具里应遵循分中的原则,特别是对称的,成品如果不分中,加工容易出错

4、每幅模具做好档案,其包括:模具材质分析报告;模具热处理检测报告;产品型号、另件图号、模具偏号、另件标号、毛坯简图;模具更改技术通知单,(由技术科下单);模具名称件/模启用年月模具寿命/(应60000/实际)(表-2);模具维修记录表(表-3)模具损坏部位和形成,模具损坏原因分析处理结果;易损配件图(附图);模具交接记录

5、冲头在模具中设计中取大小一般经验都根据产品重量和投影面积,一般主要根据铸件的重量,然后去压机上查找参数,重量一般不超过参数相关规定的70%。另外分流锥高度也有要求,一次我设计过程中出错才明白的,压机上冲头有跟踪距离,一些产品很高,定模框高度高,而分流锥高度低,跟踪不足,所以在设计中也要考虑

液态合金的密度值

充填速度的推荐值

注意:当铸件的壁厚很薄却表面质量要求较高是,选用较大的值,对力学性能,如卡拉强度和致密度要求较高时学用较小值

充填时间推荐值

注意:型腔的充填时间铝合金取较大值,锌合金取中间值,镁合金取较小值

经验数据

内浇口的厚度的

7:压铸模具外形考虑压机大小,这个一般在节省成本考虑比较多,客户压铸机大小和模具生产中模具成本,考虑模具外形在哥林柱放下,前提模具高度要小于哥林柱内距,不然外形又大于哥林柱然后高度又大于,模具在压铸机中不容放,设计需注意细节

铸件中缩孔与缩松的防止方法

铸件中缩孔与缩松的防止方法 缩孔与缩松使铸件受力的有效面积减少,而且在孔洞部位易产生应力集中,使铸件力学性能下降。缩孔与缩松还使铸件的气密性、物理性能和化学性能下降。缩孔与缩松严重时,铸件不得不报废。因此,生产中要采取必要的工艺措施予以防止。 防止铸件产生缩孔的根本措施是采用定向凝固。所谓定向凝固,即使铸件按规定方向从一部分到另一部分逐渐凝固的过程。按定向凝固的顺序,先凝固部位的收缩,由后凝固部位的熔融金属来补充;后凝固部位的收缩,由冒口或浇注系统的金属液来补充,使铸件各部分的收缩都能得到补充,而将缩孔转移到铸件多余部分的冒口或浇注系统中,如下图所示。 所谓冒口是指在铸型内存储供补缩铸件用熔融金属的空腔,也指该空腔中充填的金属。冒口除补缩外,有时还起排气、集渣的作用。凝固后切除多余部分便可得到无缩孔的致密铸件。 实现定向凝固的措施是在铸件可能出现缩孔的厚大部位(热节)安放冒口,或在铸件远离浇冒的部位增设冷铁等,如下图所示。

所谓冷铁是指为增加铸件局部的冷却速度,在砂型、砂芯表面或型腔中安放的金属物。图中所示铸件中可能产生缩孔的厚大部分不止一个,若仅靠顶部冒口,难以向底部凸台补缩,如果在该凸台的型壁上安放两个外冷铁,加快了该处的冷却速度,使厚壁凸台反而最先凝固,从而实现了由下而上的定向凝固。 定向凝固与逐层凝固是两个不同的概念。定向凝固是指铸件各部分的凝固顺序;逐层凝固是指铸件某截面上的凝固顺序。逐层凝固的合金表层先凝固,然后逐渐向铸件中心增厚,铸件中心最后凝固。冒口的补缩通道能长时间保持畅通,有利于实现铸件的定向凝固。对于纯金属、共晶成分的合金,工艺上一般都采用定向凝固的原则,来提高铸件的致密性。 相反,倾向于糊状凝固的合金,结晶的固体骨架较好地布满整个铸件的截面,使冒口的补缩通道堵塞,难以实现定向凝固。

压铸件的缩孔缩松问题解决方案-12页文档资料

压铸件的缩孔缩松问题解决方案 1.压铸件缩孔缩松现象存在的原因 压铸件缩孔缩松现象产生的原因只有一个,那就是由于金属熔体充型后,由液相转变成固相时必然存在的相变收缩.由于压铸件的凝固特点是从外向内冷却,当铸件壁厚较大时, 内部必然产生缩孔缩松问题. 所以,就压铸件来说,特别是就厚大的压铸件来说,存在缩孔缩松问题是必然的,是不可以解决的. 2.解决压铸件缩孔缩松缺陷的唯一途径 压铸件缩孔缩松问题,不能从压铸工艺本身得到彻底解决,要彻底解决这个问题,只能超越该工艺,或者说是从 系统外寻求解决的办法. 这个办法又是什么呢? 从工艺原理上说,解决铸件缩孔缩松缺陷,只能按照通过补缩的工艺思想进行.铸件凝固过程的相变收缩,是一种自然的物理的现象,我们不能逆这种自然现象的规律,而只能遵循它的规律,解决这个问题. 3.补缩的两种途径 对铸件的补缩,有两种途径,一是自然的补缩,一是 强制的补缩. 要实现自然的补缩,我们的铸造工艺系统中,就要有能实现“顺序凝固”的工艺措施.很多人直觉地以为,采用低

压铸造方法就能解决铸件的缩孔缩松缺陷,但事实并不是这 么回事.运用低压铸造工艺,并不等于就能解决铸件的缩孔 缩松缺陷,如果低压铸造工艺系统没有设有补缩的工艺措施,那么,这种低压铸造手段生产出来的毛坯,也是可能百分之 一百存在缩孔缩松缺陷的. 由于压铸工艺本身的特点,要设立自然的“顺序凝固”的工艺措施是比较困难的,也是比较复杂的.最根本的原因 还可能是, ”顺序凝固”的工艺措施,总要求铸件有比较长的凝固时间,这一点,与压铸工艺本身有点矛盾. 强制凝固补缩的最大特点是凝固时间短,一般只及”顺序凝固”的四分之一或更短,所以,在压铸工艺系统的基础上,增设强制的补缩工艺措施,是与压铸工艺特点相适应的,能很好解决压铸件的缩孔缩松问题. 4.强制补缩的两种程度:挤压补缩和锻压补缩 实现铸件的强制补缩可以达到有两种程度.一种是 基本的可以消除铸件缩孔缩松缺陷的程度,一种是能使毛坯 内部达到破碎晶粒或锻态组织的程度.如果要用不同的词来 表述这两种不同程度话,那么,前者我们可以用“挤压补缩” 来表达,后者,我们可以用“锻压补缩”来表达. 要充分注意的一个认识,分清的一个概念是,补缩都 是一种直接的手段,它不能间接完成.工艺上,我们可以有一个工艺参数来表达,这就是”补缩压强”.

缩松与缩孔

铸件缩孔、缩松产生的原因 1、铸件结构方面的原因 由于铸件断面过厚,造成补缩不良形成缩孔。铸件壁厚不均匀,在壁厚部分热节处产生缩孔或缩松。 由于铸孔直径太小形成铸孔的砂芯被高温金属液加热后,长期处于高温状态,降低了铸孔表面金属的凝固速度,同时,砂芯为气体或大气压提供了信道,导致了孔壁产生缩孔和绣松。 铸件的凹角圆角半径太小,使尖角处型砂传热能力降低,凹角处凝固速度下降,同时由于尖角处型砂受热作用强,发气压力大,析出的气体可向未凝固的金属液渗入,导致铸件产生气缩孔。 2、熔炼方面的原因 液体金属的含气量太高,导致在铸件冷却过程中以气泡形式析出,阻止邻近的液体金属向该处流动进行补缩,产生缩孔或缩松。 当灰铸铁碳当量太低时,将使铁水凝固时共晶石墨析出量减少,降低了石墨化膨胀的作用,使凝固收缩增加,同时也降低铁水的流动性。认而降低铁水的自补缩能力,使铸件容易产生缩孔或缩松。 当铁水含磷量或含硫量偏高时,磷是扩大凝固温度范围的元素,同时形成大量的低熔点磷共晶,凝固时减少了补缩能力。硫是阻碍石墨化的元素,硫还能降低铁水的流动性。同时,铁水氧化严重,也降低液体金属的流动性,使铸件产生缩孔或缩松。 孕育铸铁或球墨铸铁在浇注前用硅铁等孕育剂进行孕育处理时,如果孕育不良,将导致铁水凝固时析出大量的渗碳体,从而使凝固收缩增加,产生缩孔或缩松。 3、工艺设计的原因 (1)浇注系统设计不合理浇注系统设计与铸件的凝固原则相矛盾时,可能会导致铸件产生缩孔或缩松。主要表现为浇注位置不合适,不利于顺序凝固,内浇口的位置及尺寸不正确。对于灰铸铁和球墨铸铁,如果将内浇口开在铸件厚壁处,同时内浇口尺寸较厚,浇注后,内浇口则长时间处于液体状态。在铁水凝固发生石墨化膨胀的作用下,铁水会经内浇口倒流回直浇道,从而使铸件产生缩孔和缩松。 (2)冒口设计不合理冒口位置、数量、尺寸及冒口颈尺寸未能促进铸件顺序凝固,都可能导致铸件产生缩孔和缩松。如果在暗冒口顶部未放置出气冒口,或冷铁使用不当,也会导致铸件产生缩孔和缩松。 (3)型砂、芯砂方面的原因型砂(芯砂)的耐火度及高温强度太低,热变形量太大。当在金属液的静压力或石墨化膨胀力的作用下,型壁或芯壁会产生移动。使铸件实际需要的补缩量增加或在膨胀部位出现新的热节,导致铸件产生缩孔和缩松。这种现象对大中型铸件是很敏感的。另外,如果型砂中水分含量太高,将使型壁表面的干燥层厚度减少和水分凝聚区的水分增加,范围扩大,从而使型壁的移动能力增加,导致缩孔及缩松的产生。 (4)浇注方面的原因浇注温度太高,使液态金属的液态收缩量增加;太低时,又会降低冒口的补缩能力,特别是采用底注式浇注系统时更明显,铸件

液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因

液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因 影响铸件收缩的因素: 化学成分与合金类别:如铸钢的收缩最大,灰铸铁最小。 浇注温度:合金浇注温度越高,过热度越大,液体收缩越大。 铸件结构和铸型工艺条件:铸件的收缩并非自由收缩,而是受阻收缩。1)铸件中各部分冷却速度不同,收缩先后不一致,相互制约产生阻力;2)铸型等对铸件收缩产生的机械阻力。 铸件在冷却和凝固过程中,若液态收缩和凝固收缩所缩减的体积得不到补充,往往在铸件最后凝固的地方出现孔洞。容积大而且比较集中的孔洞—缩孔;细小而且分散的孔洞—缩松。 产生原因:液态收缩和凝固收缩值大于固态收缩值 缩孔和缩松存在:铸件有效承载面积减小,引起应力集中,力学性能下降,还降低气密性和物理性能。 缩孔的形成:在铸件上部或最后凝固的部位; 其外形特征是:近于倒圆锥形。 缩松的形成:由于结晶温度范围较宽,树枝晶发达,流动性低、液态和凝固收缩所形成的细小、分散孔洞得不到液态金属补充而造成。 纯金属和共晶成分的合金,易形成集中缩 如何防止缩孔和缩松: 防止措施①合理选用铸造合金②按照定向凝固原则进行凝固采用各种措施保证铸件结构上各部分按照远离冒口的部分先凝固然后是靠近冒口部分最后是冒口本身的凝固③合理选择浇注系统和浇注位置④合理地应用冒口、冷铁和补贴等工艺措施。附缩孔补救措施焊补。挖去缺陷区金属用与基体金属相同或相容的焊条焊补缺陷区焊后修平进行焊后热处理。 举例: Ti-47Al-2Cr-2Nb合金铸锭有很强的柱状晶生长趋势,在轴线附近区域形成分散的缩松;加入0.8%B(原子分数)后,铸锭的组织得到细化,并削弱了柱状晶生长趋势,收缩缺陷分布集中以大缩孔方式存在,显微缩松的密度和尺寸均降低.添加0.1%C(原子分数)后,铸锭的组织和缩孔缩松与Ti-47Al-2Cr-2Nb比均无明显变化. 热应力:铸件在凝固和冷却过程中,不同部位由于不均衡的收缩而引起的应力。为铸造残留应力 减少或消除应力的方法: 减少铸件各部位的温差,尽量形成同时凝固。 改善铸型和型芯的退让性,以减少收缩的机械阻力。 在性能满足的前提下,选择弹性模量E小和收缩系数小的合金。 消除应力方法:1)人工失效:去应力退火 2)自然失效 3)振动时效 铸件内应力的预防措施铸件产生铸造内应力的主要原因是合金的固态收缩。为了减小铸造内应力在铸造工艺上可采取同时凝固原则。所谓同时凝固原则就是采取工艺措施保证铸件结构上各部分之间没有温差或温差尽量小使各部分同时凝固。此外还可以采取去应力退火或自然时效等方法将残余应力消除。

铸钢件缩孔和缩松的形成与预防

F 铸造 oundry 热加工 热处理/锻压/铸造2011年第15期 69 铸钢件缩孔和缩松的形成与预防 宁夏天地奔牛实业集团有限公司 (石嘴山753001) 王福京 缩孔和缩松从本质上来说,是因为型内的金属产生收缩而引起的,但是不同种类的金属,其形成缩孔和缩松的机理有所不同。 1.产生机理 从铸钢件角度来分析,钢液注满型腔后,由于型壁的传热作用,型内钢液形成自型壁表面至铸件壁厚中心温度逐渐升高的温度梯度。随着型壁传热作用不断地进行,型内钢液温度不断降低。当与型壁表面接触的钢液温度降至凝固温度时,铸件的表面就开始凝固,并形成一层固体状态的硬壳。如果这时浇注系统已经凝固,那么硬壳内处于液体状态的钢液就与外界隔绝。 当型内钢液温度进一步降低时,硬壳内的钢液一方面因温度降低而产生液态收缩,另一方面由于硬壳的传热作用,使与硬壳接触的钢液不断结晶凝固,从而出现凝固收缩。这两种收缩的出现,将使硬壳内钢液液面下降。 与此同时,处于固体状态的硬壳,也因温度的降低而产生固态收缩,对于铸钢件来说,由于液态收缩和凝固收缩的总和是大于固态收缩的,因此在重力作用下,硬壳内钢液液面将下降,并且与上部硬壳脱离接触。 随着型内钢液温度不断地降低和硬壳内钢液不断地凝固,硬壳越来越厚,而钢液越来越少。当铸件内最后的钢液凝固后,铸件上部的硬壳下面就会出现一个孔洞,这个孔洞即为缩孔。 虽然凝固后的铸件自高温状态冷却至室温时,还将产生固态收缩,从而使整个铸件和其内部缩孔的体积稍有减小,但并不会改变缩孔体积与铸件体积的比值。由于凝固层厚度的增加和钢液的减少是不断进行的,因而从理论上来说,缩孔的形状是漏斗状的。并且因残存的钢液凝固时不能得到补缩, 所以在产生缩孔的同时,往往也伴随着缩松的出现。用肉眼能直接观察到的缩孔为宏观缩孔,而借助于放大镜或将断面腐蚀以后才能发现的缩孔为微观缩孔。 一般情况下,宏观缩孔可以用补焊的手段来解决,而微观缩孔就无法处理了,一般都是成片出现的微小孔洞。 铸件在凝固后期,其最后凝固部分的残留钢液中,由于温度梯度小,这些残留钢液是按同时凝固的方式进行凝固的,凝固开始时,在整个钢液内出现许多细小的晶粒。随着温度降低和晶粒的长大,以及新的晶粒的产生,若早期结晶的晶粒之间留有液体,这些液体即可能被固态晶粒所包围而与液体分离或近似分离,最后凝固的部分出现许多被固态晶粒隔离而孤立的少量钢液;或者出现许多虽未被固态晶粒完全隔离,但与外界钢液的连接通道很小的钢液,由于此时钢液的粘度很大,外界钢液很难经过细小的通道给予补充,因此这些虽未被固态晶粒完全隔离的钢液也几乎处于孤立状态。当这些完全或不完全孤立的钢液进一步冷却、凝固收缩时,由于得不到钢液补充,便会在这些地方形成分散而微小的细孔即为缩松。 2.防止措施 以上分析阐述了缩孔、缩松的产生原因。只有把缩孔、缩松的产生原因弄清楚了,才能够有针对性地预防缩孔、缩松的产生,生产实践中,可以从以下几个方面采取措施。 (1)铸件结构 铸件壁厚应尽可能均匀;铸件 筋壁的连接不能太集中,应采用交叉或分散布置,以免形成太大的热节,从而引起该处型壁传热条件恶化;铸件的内角不能太小,在不影响铸件使用性能的情况下,宜采用90°以上的内角,从而改善内角

解决铸件缩松的方法

解决铸件缩松的方法 李德臣 (沈阳鑫浩龙铸造材料公司沈阳110021) Solutions for Casting Shrinkage Porsity Li De-chen (Shenyang Xinhaolong Foundry Materials Co,Ltd. Shenyang · 110021 · China ·) 许多铸造厂都普遍存在铸件缩松缺陷。由此产生的废品率少者15~20%,多者50~70%。这看似简单的缩松缺陷,却长期极大地影响着企业的成品率和经济效益。那么,铸件的缩松缺陷是如何产生又如何解决呢?笔者有如下拙见。 一、缩松产生的原因 铸件产生缩松的根本原因是“热不平衡”所致。 缩松的位置,产生在铸件的厚大中心部位,几何热节处,不同壁厚的交差处和人为热节处。这些地方都因热量过高最后凝固又得不到充分补缩而产生了缩松,严重时产生集中性缩孔。图1中各例分别标示了由铸件结构原因可能产生的缩松。

其次,铸造工艺设计不合理,人为地制造热节而产生缩松缺陷。 如图2中各例。不少企业,无论铸件多重、多厚、多长,都只设一个内浇口,且设在铸件最厚处。就是壁厚均匀者,内浇口设的位置与数量也不合理。这样的工艺设计,落砂时内浇口往往不打自掉,集中性缩孔也是常见的。 第三,浇注温度过高和浇注时间过长。 第四,铸型的造型材料蓄热量小,散热性差,造成铸件凝固时间过长。 第五,一箱多件,件之间距离太近。 第六,球墨铸铁的铸型紧实度低,铸型强度小和表面硬度低,砂箱刚度弱,金属液中共晶团数多,铸件在凝固膨胀时推动着型壁向外移动。 第七,化学成分设计不当,合金化不足。…… 二、解决方法 解决缩松缺陷,最根本的着眼点就是“热平衡”。其方法是: 第一,在铸件结构形成 的厚大处与热节处,实行快 速凝固,人为地造成铸件各 处温度场的基本平衡。采用

缩松原因分析

铸件缺陷分析 1 多肉类铸件缺陷 多肉类缺陷主要有飞翅(飞边,披峰),毛刺,抬型(抬箱)等. 飞翅与毛刺区别:飞翅主要产生的分型面等活动块结合处,通常垂直于铸件表面.又称飞边或披峰.毛刺指铸件表面形状不规则刺状突起.常出现在型,芯开裂处. 飞翅与毛刺的形成原因:飞翅形成主要是压射前机器的锁模力调整不佳导致分型面等活动块的配合不严;模具及滑块损坏,闭锁组件失效.毛刺形成主要是紧实度不均匀,浇注温度过高等致使开裂产生. 飞翅与毛刺的防止方法:飞翅是检查合模力或增压情况,调整压射增压机构,使压射增压峰值降低;检查模具滑块损坏程度并修整.毛刺的防止方法是浇注温度不宜过高,加大起模斜度等. 飞翅与毛刺的补救措施:轻微的用滚筒或喷丸清理,较厚的用铲,磨,冲切等方法去除. 抬型与飞翅区别:抬型是铸件在分型面部位高度增大,并伴有厚大飞翅;单纯飞翅厚度较薄,铸件分型面部位高度不增加. 2 孔洞类铸件缺陷 孔洞类缺陷主要有:气孔,针孔,缩孔,缩松和疏松. 针孔属于气孔的一种.气孔主要是指出现在铸件内部或表层,截面呈圆形,椭圆形,腰圆形,梨形或针头状,孤立存在或成群分布的孔洞.

气孔形成原因:炉料潮湿,锈蚀,油污,气候潮湿;浇注系统不合理;压室充满度不够;排气不畅;模具型腔位置太深;涂料成分不当或过多;金属液除渣不良等. 气孔的防止方法:坩锅等要充分预热和烘干;直浇道的喷嘴截面 积应尽可能比内浇口截面积大;提高压室充满度;深腔处开设排 气塞;重熔料的加入比例要适当;加强除渣,除气;充型速度不宜 过高,浇注位置与浇注系统的设置应保证金属液平稳在充满型腔;适当提高浇注温度和铸型温度,合理设置排气塞和溢流槽等. 气孔的补救措施:超出验收标准时报废;单独大气孔焊补;成群小气孔可用浸渗处理方法填补,质量要求高的可采用热等静压处理法消除气孔. 缩松属于缩孔的一种,指细小的分散缩孔. 缩孔与气孔及缩松,疏松的区别:缩孔形状不规则,表面粗糙,产 生在铸件热节和最后凝固部位,常伴有粗大树枝晶;气孔形状规则,表面光滑,分布在铸件表面或遍布整个铸件或某个局部,断口不呈海绵状;缩松与疏松断口呈海绵状,常产生在铸件厚大部位,不遍布整个铸件,缩松与疏松无严格分界,只是程度差别. 缩孔,缩松,疏松产生的原因:凝固时间过长;浇注温度不当,过高易产生缩孔,过低易产生缩松和疏松;凝固温度间隔过宽,易产生缩松和疏松;合金杂质过多;浇注系统设置不当;铸件结构不合理,壁厚变化突然;内浇道问题;合金杂质过多;模温问题. 缩孔,缩松,疏松的防止方法:改进铸型工艺设计;改进铸件结构

防止缩松缩孔

第四节防止缩孔缩松的途径 一、缩孔和缩松的相互转化 对于一定成分的合金,浇注温度一定时合金的收缩体积满足以下关系:总收缩体积=液态收缩体积+凝固收缩体积=缩孔体积+缩松体积=常数。 但是,缩孔和缩松体积可以相互转化,造成转化的根本原因是凝固方式的改变:即体积凝固还是逐层凝固。表8-2给出了影响缩孔和缩松体积相互转化的因素。 表8-2 缩孔、缩松互相转换的影响因素 二、防止缩孔和缩松的途径 防止铸件中产生缩孔和缩松的基本原则是针对该合金的收缩和凝固特点制定正确的铸造工艺,使铸件在凝固过程中建立良好的补缩条件,尽可能地使缩松转化为缩孔,并使缩孔出现在铸件最后凝固的地方。这样,在铸件最后凝固的地方安臵一定尺寸的冒口,使缩孔集中于冒口中,或者把浇口开在最后凝固

的地方直接补缩,即可获得健全的铸件。 使铸件在凝固过程中建立良好的补缩条件,主要是通过控制铸件的凝固方向使之符合“顺序凝固原则”或“同时凝固原则”。 1、顺序凝固(progressive solidification) 铸件的顺序凝固原则,是采用各种措施保证铸件结构上各部分,按照远离冒口的部分最先凝固,然后是靠近冒口部分,最后才是冒口本身凝固的次序进行,亦即在铸件上远离冒口或浇口的部分到冒口或浇口之间建立一个递增的温度梯度,如图8-8所示。铸件按照顺序凝固原则进行凝固,能保证缩孔集中在冒口中,获得致密的铸件。 逐层凝固是指铸件某一断面上,先在铸件表面形成硬壳,然后它逐渐向铸件中心长厚,铸件中心最后凝固。因此,顺序凝固和逐层凝固是两个不同的概念。 铸件的结构,以及由铸造条件所形成的温度场,是决定铸件凝固方向的主要因素,可用下例说明。

如何解决压铸件及其他铸造件的缩孔缩松问题

压铸件及其它铸造件存在缩孔缩松问题是一个普遍的现象,有没有彻底解决这个问题的方法?答案应该是有的,但它会是什么呢? 1、压铸件缩孔缩松现象存在的原因 压铸件缩孔缩松现象产生的原因只有一个,那就是由于金属熔体充型后,由液相转变成固相时必然存在的相变收缩。由于压铸件的凝固特点是从外向内冷却,当铸件壁厚较大时,内部必然产生缩孔缩松问题。 所以,就压铸件来说,特别是就厚大的压铸件来说,存在缩孔缩松问题是必然的,是不可以解决的。 2、解决压铸件缩孔缩松缺陷的唯一途径 压铸件缩孔缩松问题,不能从压铸工艺本身得到彻底解决,要彻底解决这个问题,只能超越该工艺,或者说是从系统外寻求解决的办法。 这个办法又是什么呢? 从工艺原理上说,解决铸件缩孔缩松缺陷,只能按照通过补缩的工艺思想进行。铸件凝固过程的相变收缩,是一种自然的物理的现象,我们不能逆这种自然现象的规律,而只能遵循它的规律,解决这个问题。 3、补缩的两种途径 对铸件的补缩,有两种途径,一是自然的补缩,一是强制的补缩。

要实现自然的补缩,我们的铸造工艺系统中,就要有能实现“顺序凝固”的工艺措施。很多人直觉地以为,采用低压铸造方法就能解决铸件的缩孔缩松缺陷,但事实并不是这么回事。运用低压铸造工艺,并不等于就能解决铸件的缩孔缩松缺陷,如果低压铸造工艺系统没有设有补缩的工艺措施,那么,这种低压铸造手段生产出来的毛坯,也是可能百分之一百存在缩孔缩松缺陷的。 由于压铸工艺本身的特点,要设立自然的”顺序凝固”的工艺措施是比较困难的,也是比较复杂的。最根本的原因还可能是,”顺序凝固”的工艺措施,总要求铸件有比较长的凝固时间,这一点,与压铸工艺本身有点矛盾。 强制凝固补缩的最大特点是凝固时间短,一般只及”顺序凝固”的四分之一或更短,所以,在压铸工艺系统的基础上,增设强制的补缩工艺措施,是与压铸工艺特点相适应的,能很好解决压铸件的缩孔缩松问题。 4、强制补缩的两种程度:挤压补缩和锻压补缩 实现铸件的强制补缩可以达到有两种程度。一种是基本的可以消除铸件缩孔缩松缺陷的程度,一种是能使毛坯内部达到破碎晶粒或锻态组织的程度。如果要用不同的词来表述这两种不同程度话,那么,前者我们可以用”挤压补缩”来表达,后者,我们可以用”锻压补缩”来表达。 要充分注意的一个认识,分清的一个概念是,补缩都是一种直接的手段,它不能间接完成。工艺上,我们可以有一个工艺参数来表达,这就是”补缩压强”。

铸造件缩孔缩松问题的终极方法

解决压铸件及其它铸造件缩孔缩松问题的终极方法压铸件存在缩孔缩松问题是一个普遍的现象,有没有彻底解决这个问题的方法?答案应该是有的,但它会是什么呢? 1.件缩孔缩松现象存在的原因 压铸件缩孔缩松现象产生的原因只有一个,那就是由于金属熔体充型后,由液相转变成固相时必然存在的相变收缩.由于压铸件的凝固特点是从外向内冷却,当铸件壁厚较大时,内部必然产生缩孔缩松问题.所以,就压铸件来说,特别是就厚大的压铸件来说,存在缩孔缩松问题是必然的,是不可以解决的. 2.决压铸件缩孔缩松缺陷的唯一途径 压铸件缩孔缩松问题,不能从压铸工艺本身得到彻底解决,要彻底解决这个问题,只能超越该工艺,或者说是从系统外寻求解决的办法.这个办法又是什么呢?从工艺原理上说,解决铸件缩孔缩松缺陷,只能按照通过补缩的工艺思想进行.铸件凝固过程的相变收缩,是一种自然的物理的现象,我们不能逆这种自然现象的规律,而只能遵循它的规律,解决这个问题. 3.缩的两种途径 对铸件的补缩,有两种途径,一是自然的补缩,一是强制的补缩. 要实现自然的补缩,我们的铸造工艺系统中,就要有能实现”顺序凝固”的工艺措施.很多人直觉地以为,采用低压铸造方法就能解决铸件的缩孔缩松缺陷,但事实并不是这么回事.运用低压铸造工艺,并不等于就能解决铸件的缩孔缩松缺陷,如果低压铸造工艺系统没有设有补缩的工艺措施,那么,这种低压铸造手段生产出来的毛坯,也是可能百分之一百存在缩孔缩松缺陷的. 由于压铸工艺本身的特点,要设立自然的”顺序凝固”的工艺措施是比较困难的,也是比较复杂的.最根本的原因还可能是,”顺序凝固”的工艺措施,总要求铸件有比较长的凝固时间,这一点,与压铸工艺本身有点矛盾.

铸钢件缩孔及缩松缺陷的消除

铸钢件缩孔及缩松缺陷的消除 【摘要】通过分析铸钢件缩孔及缩松产生的机理,总结出铸件产生缩孔及缩松缺陷的部位,提出从改进浇注系统、改变铸件结构、适当提高浇注温度及控制浇注速度等几个方面消除铸件中的缩孔及缩松。 缩孔及缩松缺陷是铸钢件生产中的一大难题,长期以来困扰着广大铸造工作者。这两种缺陷多发生在铸件内部,通过机械加工或X 射线检查可以发现,要进行挽救比较困难,也有发生在表面上的,通过安放冒口可以消除。这两种缺陷很相似,危害都很大,可以归为一类。由于缩孔及缩松缺陷的消除需要综合考虑浇注系统、浇注温度、铸件结构、冒口及冷铁等工艺因素,在实际生产中难以控制。本文拟对铸钢件生产中出现的缩孔、缩松缺陷的消除作一探讨,供有关人员参考。 一、缩孔及缩松缺陷产生的机理 铁液在铸型内冷凝的过程中,体积要发生三次收缩:第一次是合金液从浇注温度冷却到开始凝固的温度,称为液态收缩; 第二次是从开始凝固的温度冷却到金属液全部凝固的温度,称为凝固收缩; 第三次是从全部凝固的温度冷却到室温,称为固态收缩。液态收缩的大小与浇注温度有关,铁液每降低100 ℃,体积约缩小0. 78 % ~1. 2 % ,因此浇注温度越高,液态收缩越大。一般情况下,在能保证流动性的前提下,应尽量降低铁液的浇注温度。液态及凝固收缩受合金成分的影响较大,比如,在其他成分相同的情况下,碳、硅含量越大,收缩就越小; 而锰、硫含量越多,则收缩量越大。一般铸钢件在凝固收缩阶段的线收缩率为2. 0 % ~3. 5 % ,因此在砂型铸造中制造模样时,除了加放一定的加工余量外,还要按铸造合金的收缩特性,加上一定量的合金收缩率。当金属液进入型腔后,靠近型壁的金属液散热快,冷却速度快,而后向铸件中心逐次凝固。铸件在冷却凝固的过程中,一般液态收缩时可以得到浇包中液态金属的补缩,这个阶段的收缩对铸件质量影响不大; 固态收缩对形成缩孔、缩松缺陷的影响也不大,但如果在凝固收缩时得不到补缩,就会在铸件最后凝固的部位( 如温度最高的中心处) 形成细小或分散的孔洞,即缩孔、缩松缺陷。 二、缩孔及缩松缺陷产生的部位 实际生产中,有时候要区分是缩孔还是气孔或是夹渣缺陷,并不是很容易,需要综合考虑铸件的结构因素来判断。总结起来,缩孔及缩松缺陷在铸件上产生的部位肯定是最后凝固的地方,而导致最后凝固主要有以下两种情况: ( 1) 最常见是发生在铸件断面突增或铸件几何热节的部位,因为这些地方金属液的散热最慢,最后凝固而形成缺陷。 ( 2) 并非是铸件的几何热节,而是因为金属液长时间流经某处,使该处过热,也会产生缩孔及缩松缺陷,通常称之为物理热节。 三、缩孔及缩松缺陷的防止措施 要使铸钢件在凝固过程中不产生缩孔及缩松缺陷,必须将铸件最后凝固的部位引出铸件本体,这就需要在铸件内形成顺序凝固的温度梯度,使金属液从较低温度开始凝固,而最后凝固的部位在冒口中。生产中常用的方法有以下几种。 1. 使用冒口 在浇注一般的小铸钢件或结构简单的小型铸件时,有无冒口影响不大,因为铸钢件自身有一定的补缩能力。而当铸钢件较复杂时,冒口的作用就比较明显。冒口有明冒口和暗冒口两种。明冒口暴露在空气中,冷却速度快,浇注一段时间后就凝固了,使冒口中的金属液与外界隔离,降低了冒口的补缩效率,对此可在浇注的最后阶段,将一部分金属液由冒口浇入,以强化冒口的补缩效果。冒口的位置需根据铸件壁厚和冷却的情况而定,应设置在铸件最后凝固的部位。冒口的断面一般为被补缩断面的1. 5 ~2 倍,冒口的高度应为其直径的1. 5 ~2.

铸造件缩孔缩松问题的终极方法

解决压铸件及其它铸造件缩孔缩松问题的终极方法 压铸件存在缩孔缩松问题是一个普遍的现象,有没有彻底解决这个问题的方法?答案应该是有的,但它会是什么呢? 1.件缩孔缩松现象存在的原因 压铸件缩孔缩松现象产生的原因只有一个,那就是由于金属熔体充型后,由液相转变成固相时必然存在的相变收缩.由于压铸件的凝固特点是从外向内冷却,当铸件壁厚较大时, 内部必然产生缩孔缩松问题. 所以,就压铸件来说,特别是就厚大的压铸件来说,存在缩孔缩松问题是必然的,是不可以解决的. 2.决压铸件缩孔缩松缺陷的唯一途径 压铸件缩孔缩松问题,不能从压铸工艺本身得到彻底解决,要彻底解决这个问题,只能超越该工艺,或者说是从系统外寻求解决的办法. 这个办法又是什么呢? 从工艺原理上说,解决铸件缩孔缩松缺陷,只能按照通过补缩的工艺思想进行.铸件凝固过程的相变收缩,是一种自然的物理的现象,我们不能逆这种自然现象的规律,而只能遵循它的规律,解决这个问题. 3.缩的两种途径 对铸件的补缩,有两种途径,一是自然的补缩,一是强制的补缩. 要实现自然的补缩,我们的铸造工艺系统中,就要有能实现”顺序凝固”的工艺措施.很多人直觉地以为,采用低压铸造方法就能解决铸件的缩孔缩松缺陷,但事实并不是这么回事.运用低压铸造工艺,并不等于就能解决铸件的缩孔缩松缺陷,如果低压铸造工艺系统没有设有补缩的工艺措施,那么,这种低压铸造手段生产出来的毛坯,也是可能百分之一百存在缩孔缩松缺陷的. 由于压铸工艺本身的特点,要设立自然的”顺序凝固”的工艺措施是比较困难的,也是比较复杂的.最根本的原因还可能是, ”顺序凝固”的工艺措施,总要求铸件有比较长的凝固时间,这一点,与压铸工艺本身有点矛盾. 强制凝固补缩的最大特点是凝固时间短,一般只及”顺序凝固”的四分之一或更短,所以,在压铸工艺系统的基础上,增设强制的补缩工艺措施,是与压铸工艺特点相适应的,能很好解决压铸件的缩孔缩松问题. 4.补缩的两种程度:挤压补缩和锻压补缩 实现铸件的强制补缩可以达到有两种程度.一种是基本的可以消除铸件缩孔缩松缺陷的程度,一种是能使毛坯内部达到破碎晶粒或锻态组织的程度.如果要用不同的词来表述这两种不同程度话,那么,前者我们可以用”挤压补缩”来表达,后者,我们可以用”锻压补缩”来表达. 要充分注意的一个认识,分清的一个概念是,补缩都是一种直接的手段,它不能间接完成.工艺上,我们可以有一个工艺参数来表达,这就是”补缩压强”.物理原理上,压强这个概念有两种情况可出现,一种是在液体场合,即”帕斯卡定律”的场合,为分清楚,我们定义它为”液态压强”,而另一种出现在固态场合,我们定义它为”固态压强”.要注意的是,这两种不同状态下出现的压强概念的适用条件.我们如果混淆了,就会出现大问 题. “液态压强”,它只适用于液体系统,它的压强方向是可以传递的,可以转弯的,但在固相系统完全不适用. 压铸件的补缩,是在半固态与固态之间出现的,它的压强值,是有方向的,是一种矢量压强,它的方向与施加的补缩力方向相同. 所以,那种以为通过提高压铸机压射缸的压力,通过提高压射充型比压来解决压铸件的缩孔缩松,以为这个压射比压可以传递到铸件凝固阶段的全过程,实现铸件补缩思想,是完全错误的.

铸造缩孔及缩松的形成

铸造缩孔及缩松的形成 在金属的铸造过程中,易产生缩孔和缩松,缩孔和缩松如何识别?缩孔和缩松如何区别?哪些铸造合金容易产生缩松?铸件的凝固过程如果没有合理的控制,铸件易产生缩孔,缩松 一铸件的凝固 1凝固方式: 铸件凝固过程中,其断面上一般分为三个区:1—固相区2—凝固区3—液相区 对凝固区影响较大的是凝固区的宽窄,依此划分凝固方式 逐层凝固:纯金属,共晶成分合金在凝固过程中没有凝固区,断面液,固两相由一条界限清楚分开,随温度下降,固相层不断增加,液相层不断减少,直达中心糊状凝固合金结晶温度范围很宽,在凝固某段时间内,铸件表面不存在固体层,凝固区贯穿整个断面,先糊状,后固化. 中间凝固大多数合金的凝固介于逐层凝固和糊状凝固之间 2影响铸件凝固方式的因素 合金的结晶温度范围 范围小:凝固区窄,愈倾向于逐层凝固,如:砂型铸造,低碳钢逐层凝固,高碳钢糊状凝固2)铸件的温度梯度 合金结晶温度范围一定时,凝固区宽度取决于铸件内外层的温度梯度.温度梯度愈小,凝固区愈宽.(内外温差大,冷却快,凝固区窄)二合金的收缩 液态合金从浇注温度至凝固冷却到室温的过程中,体积和尺寸减少的现象---.是铸件许多缺陷(缩孔,缩松,裂纹,变形,残余应力)产生的基本原因. 1收缩的几个阶段 液态收缩:从金属液浇入铸型到开始凝固之前.液态收缩减少的体积与浇注温度质开始凝固的温度的温差成正比.2)凝固收缩:从凝固开始到凝固完毕.同一类 合金,凝固温度范围大者,凝固体积收缩率大.如:35钢,体积收缩率3.0%,45钢4.3%3)固态收缩:凝固以后到常温.固态收缩影响铸件尺寸,故用线收缩表示. 2影响收缩的因素1)化学成分:铸铁中促进石墨形成的元素增加,收缩减少.如:灰口铁C,Si↑,收↓,S↑收↑.因石墨比容大,体积膨胀,抵销部分凝固收缩.2)浇注温度:温度↑液态收缩↑3)铸件结构与铸型条件铸件在铸型中收缩会受铸型和型芯的阻碍.实际收缩小于自由收缩.∴铸型要有好的退让性. 3缩孔形成 在铸件最后凝固的地方出现一些空洞,集中—缩孔.纯金属,共晶成分易产生缩孔.*产生缩孔的基本原因:铸件在凝固冷却期间,金属的液态及凝固受缩之和远

缩孔、缩松的预测

铸铁缩孔、缩松的热分析测量与预防 天津汇丰探测装备有限公司马建华 概述: 铁水质量的热分析方法源于金属学中的相图理论,在发达国家早已广泛用于铁水的在线检测和控制,是高质量铸铁生产中依赖的检测手段,在提高资源利用率、节能减排中发挥着重要的作用。 随着我们对热分析技术的了解,能够改变我们以往仅从成分角度来进行材质控制的初级状态。可以使我们对活性成分的概念、型核物质的作用、消除缺陷的机理从理念上发生质的飞跃。 为了使大家能够掌握热分析技术的优势,正确使用热分析解决生产中具体的质量问题,普遍提高我国的铸件材质水平和参与国际市场竞争的能力。在此依个人之浅见就热分析测量和预防缩孔、缩松方面的作用,向大家做一个介绍。 一、热分析测量缩孔、缩松的方法 取铁水浇入H-3QG样杯,用HF-08H型炉后铁水质量管理仪对孕育或球化后的铁水进行热分析。热分析仪首先记录下样杯内铁水的凝固温度曲线:

炉后铁水质量管理仪通过对凝固温度曲线的解析,找出铁水凝固过程的各种相变特征参数。将相变特征参数值带入数学模型,即可计算出铁水凝固组织中的:初生奥氏体生成量、过冷段石墨生成量、再辉后石墨生成量,进而可以计算出凝固组织的缩孔概率和缩松概率。 二、热分析测量缩孔概率的机理: 铁水降温到初晶温度点(TL),在铸型的激冷作用下首先凝固出一个封闭的激冷壳。从初晶温度点(TL)到共晶过冷点(TEL)的凝固过程,是初生奥氏体晶芽生长成树枝状奥氏体枝晶的过程。由于液态的铁水可以在树枝状枝晶间流动,降温、凝固收缩产生的体积空位,可由上部的液态铁水绕过树枝状枝晶进行填补。因此在封闭的激冷壳内,凝固产生的体积收缩经流动铁水的补充后,在中心的上部合并成一个集中的体积空位,这就是缩孔的形成过程。 热分析能够测量出凝固铁水的初晶温度点(TL)和共晶过冷点(TEL),可以通过测量凝固铁水在这个区间释放的热量,计算出初生奥氏体生成量和体积收缩率。因此可以在浇注前预测铁水的缩孔率。 简而言之:从初晶点(TL)到共晶过冷点(TEL)的凝固过程,放热量越大被测铁水的缩孔率越大。 需要说明的是:热分析测量的缩孔概率,不包含液态降温(浇注温度到初晶温度)产生的体积收缩。

缩孔缩松产生原因

缩孔缩松产生原因 1、铸件结构方面的原因 由于铸件断面过厚,造成补缩不良形成缩孔。铸件壁厚不均匀,在壁厚部分热节处产生缩孔或缩松。 由于铸孔直径太小形成铸孔的砂芯被高温金属液加热后,长期处于高温状态,降低了铸孔表面金属的凝固速度,同时,砂芯为气体或大气压提供了信道,导致了孔壁产生缩孔和绣松。 铸件的凹角圆角半径太小,使尖角处型砂传热能力降低,凹角处凝固速度下降,同时由于尖角处型砂受热作用强,发气压力大,析出的气体可向未凝固的金属液渗入,导致铸件产生气缩孔。 2、熔炼方面的原因 液体金属的含气量太高,导致在铸件冷却过程中以气泡形式析出,阻止邻近的液体金属向该处流动进行补缩,产生缩孔或缩松。 当灰铸铁碳当量太低时,将使铁水凝固时共晶石墨析出量减少,降低了石墨化膨胀的作用,使凝固收缩增加,同时也降低铁水的流动性。认而降低铁水的自补缩能力,使铸件容易产生缩孔或缩松。 当铁水含磷量或含硫量偏高时,磷是扩大凝固温度范围的元素,同时形成大量的低熔点磷共晶,凝固时减少了补缩能力。硫是阻碍石墨化的元素,硫还能降低铁水的流动性。同时,铁水氧化严重,也降低液体金属的流动性,使铸件产生缩孔或缩松。 孕育铸铁或球墨铸铁在浇注前用硅铁等孕育剂进行孕育处理时,如果孕育不良,将导致铁水凝固时析出大量的渗碳体,从而使凝固收缩增加,产生缩孔或缩松。 3、工艺设计的原因 (1)浇注系统设计不合理浇注系统设计与铸件的凝固原则相矛盾时,可能会导致铸件产生缩孔或缩松。主要表现为浇注位置不合适,不利于顺序凝固,内浇口的位置及尺寸不正确。对于灰铸铁和球墨铸铁,如果将内浇口开在铸件厚壁处,同时内浇口尺寸较厚,浇注后,内浇口则长时间处于液体状态。在铁水凝

球铁铸件缩孔、缩松的成因与防止

球铁铸件缩孔、缩松的成因与防止

————————————————————————————————作者: ————————————————————————————————日期: ?

球铁铸件缩孔、缩松的成因与防止 摘要:球墨铸铁大多数是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨化膨胀能力,因而铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松。球墨铸铁凝固时,在枝晶和共晶团间的最后凝固区域,收缩的体积得不到完全补充,留下的空洞形成宏观及微观缩松。La?有助于消除缩松倾向。分析缩孔缩松形成原因并提出相应的防止办法,有 助于减少由此产生的废品损失。 关键词:球墨铸铁、收缩、缩孔、缩松 1 前言 1.1缺陷形成原因 球墨铸铁生产技术日臻完善,多年技术服务的实践表明,生产中出现的铸造缺陷,完全 可以用成熟的经验予以消除。据介绍:工业发达国家的铸造废品率可以控制在1%以下[1], 国内先进水平也在2%左右,提高企业铸造技术水平,对减少废品十分重要。 球墨铸铁的缩孔、缩松缺陷是由于铁液的液态和凝固收缩引起的,缺陷分类见表1。 表1球墨铸铁缩孔缩松显微缩松的特征和部位 种类?定义 ?特 征部位 缩孔缩松铁液收缩形成较大缺失空间铁液收缩形成细小缺失空间?缩孔内表面粗糙 连续或断续米粒状疏松 ?热节的上部 缩孔下方、厚壁中心 显微缩松显微镜观察微细连续缺失空间多角形疏松枝晶间、共晶团边界间众所周知,灰铸铁是逐层凝固方式,球墨铸铁是糊状凝固方式。逐层凝固可以使铸件凝 固时形成一个坚实的封闭外壳,铸件全封闭外壳的体积收缩可以减小壳体内的缩孔容积。糊 状凝固的特点是金属凝固时晶粒在金属液内部整个容积内形核、生长,固相与液相混合存在 有如粥糊。大多数球墨铸铁是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨 化膨胀的能力,铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松缺陷。铸型冷 却能力强,有利于铸件的容积凝固转变成逐层凝固,使铸件的分散缩松转变成集中缩孔。然 而,批量生产中湿砂型铸造很难被金属型或干砂型取代。 球墨铸铁凝固有以下三个特点,决定球墨铸铁是糊状凝固方式: ①?球化和孕育处理显著增加异质核心,核心存在于整个熔体,有利于全截面同时结晶。 ②石墨球在奥氏体壳包围下生长,生长速度慢,延缓铸件表层形成坚实外壳;而片状石墨 的端部始终与铁液接触,生长速度快,凝固时间短,促使灰铁铸件快速形成坚实外壳。 ③?球墨铸铁比灰铸铁导热率小 20%-30%,散热慢,外壳生长速度降低[3]。 糊状凝固是容积凝固方式,收缩容积量是衡量,冒口也是容积凝固,因此缩松很难用冒 口的方法去除。 资料介绍:有学者通过测量铸铁的收缩、膨胀和冷却曲线研究凝固形貌与缩孔的关系。 球墨铸铁共晶凝固前期,由于析出奥氏体发生显著收缩;共晶后期,石墨球急剧长大产生膨 胀。人们期望膨胀的体积能够抵消收缩。但是大多数膨润土湿砂型的型壁退让,使膨胀补缩 不能实现。因此在铸造工艺上,应采用冒口对球铁铸件的热节共晶凝固前期进行液态补缩。 而后期的共晶膨胀则通过冒口颈的凝固,根据铸型型壁硬度,可以适当的使铸件致密。显微 缩松发生在铸铁最后凝固(Last to Freeze)区域,简称LTF 区域。分散在奥氏体枝晶或晶粒间的金属液体,收缩后留下微小孔洞,肉眼难于辨认。

浅谈铸件缩孔、缩松产生的原因

浅谈铸件缩孔、缩松产生的原因 铸件形成后,在最后凝固部位,由于收缩出现的集中孔洞称为缩孔,分散而细小的孔洞称为缩松。缩孔和缩松通常发生在铸件内部。由于缩孔、缩松的存在,将减少铸件的有效承载截面积,甚至造成应力集中而大大降低铸件的物理和力学性能。由于铸件的连续性被破坏,使铸件的气密性、抗蚀性等性能显著降低;加工后铸件表面的粗糙度提高。所以,缩孔和缩松是铸件的主要缺陷之一,应予以防止。金属在凝固过程中,当液态收缩与凝固收缩之和大于固态收缩时,就有可能在铸件内部留下孔洞。由于金属性质和凝固条件的不同引起的缩孔、缩松类缺陷。 1、铸件结构方面的原因铸件结构方面的原因铸件结构方面的原因铸件结构方面的原因 由于铸件断面过厚,造成补缩不良形成缩孔。铸件壁厚不均匀,在壁厚部分热节处产生缩孔或缩松。由于铸孔直径太小形成铸孔的砂芯被高温金属液加热后,长期处于高温状态,降低了铸孔表面金属的凝固速度,同时,砂芯为气体或大气压提供了信道,导致了孔壁产生缩孔和绣松。铸件的凹角圆角半径太小,使尖角处型砂传热能力降低,凹角处凝固速度下降,同时由于尖角处型砂受热作用强,发气压力大,析出的气体可向未凝固的金属液渗入,导致铸件产生气缩孔。 2、熔炼方面的原因熔炼方面的原因熔炼方面的原因熔炼方面的原因 液体金属的含气量太高,导致在铸件冷却过程中以气泡形式析出,阻止邻近的液体金属向该处流动进行补缩,产生缩孔或缩松。当灰铸铁碳当量太低时,将使铁水凝固时共晶石墨析出量减少,降低了石墨化膨胀的作用,使凝固收缩增加,同时也降低铁水的流动性。认而降低铁水的自补缩能力,使铸件容易产生缩孔或缩松。当铁水含磷量或含硫量偏高时,磷是扩大凝固温度范围的元素,同时形成大量的低熔点磷共晶,凝固时减少了补缩能力。硫是阻碍石墨化的元素,硫还能降低铁水的流动性。同时,铁水氧化严重,也降低液体金属的流动性,使铸件产生缩孔或缩松。孕育铸铁或球墨铸铁在浇注前用硅铁等孕育剂进行孕育处理时,如果孕育不良,将导致铁水凝固时析出大量的渗碳体,从而使凝固收缩增加,产生缩孔或缩松。 3、工艺设计的原因工艺设计的原因工艺设计的原因工艺设计的原因

缩孔与缩松

缩孔与缩松 杨群收汇编铸件在凝固过程中,由于合金的液态收缩和凝固收缩,往往在铸件最后凝固的部位出现孔,称为缩孔。容积大而集中的孔称为集中缩孔,或简称缩孔;细小而分散的孔称为分散性缩孔,简称缩松,缩松的形状不规则、表面不光滑,可以看到发达的树枝晶末梢,有时呈氧化现象发青,可以和气孔区别开来。 在铸件中存在任何形态的缩孔都会由它们而减少受力的有效面积,以及在缩孔处产生应力集中现象,而使铸件的机械性能显著降低。因此,缩孔是铸件的重要缺陷之一,必须设法防止。 一、产生缩孔缩松的因素 缩孔形成的因素和过程是很复杂的,各种合金产生缩孔的过程及缩孔量的大小也各不相同,必须说明铸件的缩孔体积和合金的总的收缩(即液态收缩,凝固收缩和固态收缩之和)并不是同等的概念,但是这三个阶段的收缩对缩孔却能产生影响。 要研究如何解决缩孔问题,必须了解两个问题,一、合金的凝固特性和凝固收缩过程。以铸铁为例,其凝固特性逐层凝固,其总的收缩过程即液态收缩、凝固态收缩(与石墨膨胀共存)和固态收缩。二、决定铸铁收缩的影响因素主要是三个方面;即浇注温度,石墨析出量(化学成分及冷却方法)和铸型刚度(型壁移动)。

对以上专业词语,结合图形作简单通俗说明,从理论概念上知道一些。 液态收缩:从浇注温度到开始结晶。(冒口起补缩作用) 凝固态收缩:从开始结晶到完全成固态,在这个阶段里存在液态,枝晶状亚固态,石墨生成。(工艺措施及压力起补偿作用)以上两个阶段是合金的体收缩阶段,在这两个阶段里要防止铸件的缩孔,主要靠冒口,冒口高度,浇注方法及工艺上的措施。 固态收缩:从完全凝固成固态,到室温阶段的收缩,在这个阶段的收缩是线收缩(靠制作模型时放的缩尺,来弥补线收缩时铸件几何尺寸的减少)。固态收缩对铸件的缩孔一般影响不大,但是在降温线收缩过程中,往四周拉扯的 应力也可使缩孔增大些。

相关主题
文本预览
相关文档 最新文档