当前位置:文档之家› JBT 9005.4-1999 起重机用铸造滑轮 A型

JBT 9005.4-1999 起重机用铸造滑轮 A型

JBT 9005.4-1999  起重机用铸造滑轮 A型
JBT 9005.4-1999  起重机用铸造滑轮 A型

(全)起重机械指挥模拟考试-附答案

起重机械指挥模拟考试-附答案 1、【判断题】凡能帮助和支持燃烧的物质称为可燃物。()(×) 2、【判断题】易燃易爆和有毒等危险品时,不得同车混装。严禁吸烟。夜间搬运时不得使用明火照明。(√) 3、【判断题】严禁司索人员停留在吊重下。(√) 4、【判断题】对比色中的红白相间条纹表示:禁止越过。()(√) 5、【判断题】司机对任何人发出的危险信号均应执行。(√) 6、【判断题】指挥信号标准中的指挥信号不能满足需要时,使用单位可根据具体情况适当增补。(√) 7、【判断题】任何人发出的停止信号,起重机械司机均应服从。()(√) 8、【判断题】确认司索作业规范正确是起重指挥人员的职责。()(√) 9、【判断题】凡是链环的节距L≥5d,链宽B≥3.5d的链条(d为链环直径)均属长环链。(√) 10、【判断题】对柱形物体采用平行吊装绑扎法前可不找物件的重心。(×) 11、【判断题】对于具有简单几何形状,材质均匀分布的物体,其物体重心就是该几何体的几何中心,如球形体的重心即为球心。(√)

12、【判断题】当负载到达目的地或指定区域时,指挥人员在发出吊钩或负载下降信号前,应保证降落地点的人身设备安全。(√) 13、【判断题】起重机司机要严格执行企业的法律、法规,遵章守纪。()(×) 14、【判断题】外力是指作用在物体上的力。(√) 15、【判断题】GB/T6067.1—2010《起重机械安全规程》规定:当钢丝绳绳端用绳夹固定时,绳夹夹座应在受力绳头一边。(√) 16、【判断题】《中华人民共和国特种设备安全法》中所称的特种设备是指对人身和财产安全有较大危险性的锅炉、压力容器(含气瓶)、压力管道、电梯、起重机械、客运索道、大型游乐设施、场(厂)内专用机动车辆,以及法律、行政法规规定适用本法的其他特种设备。()(√) 17、【判断题】《中华人民共和国特种设备安全法》规定:特种设备使用单位应当对其使用的特种设备进行经常性维护保养和定期自行检查,并作出记录。()(√) 18、【判断题】合力的大小与分力的大小有关,与分力间的夹角无关。(×) 19、【判断题】固定式螺旋千斤顶的螺纹由于其导角小于螺杆与螺母间的摩擦角,具有自锁作用,所以在重物的作用下,螺杆不会转动而使重物下降。(√) 20、【判断题】吊钩危险断面磨损达原尺寸的15%应报废。(×) 21、【判断题】钢丝绳的许用拉力P=9d2(kgf),其中d为钢丝绳直径(mm)。(√)

欧式起重机技术设计方案

设计技术方案 一、设计执行标准 1.1 结构及机械 欧洲物料搬运学会重型起升设备起升机构设计规则第三版FEM1001,与最新DIN、ISO、BS、CMAA标准相似。但可能与FEM标准存在微小差异。 1.2 钢结构制造 焊接标准:DIN18800,BLATT7 起重机部件设计和结构标准:DIN15018,BLATT2 焊接等级:DIN8563,BLATT3 1.3 制动器和联轴器 按DIN15434,VDE0580,DIN15431标准。 1.4 吊钩 DIN15401 单钩 DIN15402 双钩(锚钩) DIN15404 吊钩的检验证书 1.5 电器设备 VDE0113,VDE0100和CEE 1.6 电动机 IECRecommendations34-1,34-5和72-1。根据FEM标准选择电机,并完全符合瑞典起重机部件标准IKH6.30.01。 1.7 减速箱 按ISO/DIS6336/II-6336/V(DIN51150)标准设计。 注:在确定最终设计参数时,起重机部件注重当地客户的要求及安全准则,故其产品在运行时,均能到达FEM及中国的相关标准。 二、整体结构 整机采用最先进优化技术、欧式设计; 整机高度矮,降低厂房高度、节省建筑成本;

整机自重轻,减少地基和牛腿成本; 整机吊钩极限尺寸小,增加有效工作面积; 整机模块化制造,部件标准化程度高,可替换性强; 整机采用螺栓结构连接和接插式电气联接,安装及维护方便; 整机采用柔性结构,运行柔和、平稳。 三、桥架 起重机钢结构设计合理、结构优化、符合规范和标准,满足强度、刚度和稳定性的要求,设计中充分考虑现场的工作环境。钢结构的设计满足制造、检查、运输、安装和维护等方便与可能性。 起重机桥架主要由主梁、端梁等组成。主、端梁均采用箱形结构,具有良好的强度、刚度及稳定性。 双梁起重机在沿主梁方向的主电控箱一侧设有安全、方便的维修平台(兼通道作用),以便工作人员可安全顺利地进入各检修部位,并且有足够的作业空间。通道宽度不小于800mm,踏面采用花纹钢板,厚度不小于3mm。在走道旁设置有栏杆,栏杆高度不低于1000mm,底部设计有高度不小于70mm的围护板,栏杆上任何一处都应能承受1KN(100kgf)来自任何方向的载荷而不产生塑性变形。 3.1 主梁 主梁由钢板焊接成型,主梁腹板应整体下料成拱形。钢板材料符合国家的相应规范,刚度满足国家标准要求,主要钢结构材料具有良好的焊接工艺性,主要钢结构材料采用不低于Q235B,使用的材料具有材质报告及相应的合格证书。钢结构的制造、焊接、检验应按相应标准进行。重要受力对接焊缝采取开坡口对接焊接工艺,并按规定进行外观检查和无损探伤,主要结构件的焊工均持有有相应的等级证书。主要焊缝均进行无损探伤,并出具探伤报告。 主梁在设计制造时考虑上拱,合理确定主梁组装时的初始上拱度以及桥式起重机安装完成以后计入自重的上拱度,要符合现行有关规范标准。 3.2 端梁 3.2.1 欧式模块化设计,自重轻、体积小; 3.2.2 端梁由箱型梁体、轴承座、调心轴承、车轮、缓冲块、 连接板、扫轨板组成;

试分析新型门式起重机的设计及优化(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 试分析新型门式起重机的设计 及优化(新版) Safety management is an important part of production management. Safety and production are in the implementation process

试分析新型门式起重机的设计及优化(新 版) 将老式门式起重机在某一些方面优化就可以成为新型便捷的工程设备。门式起重机又是在桥式起重机的基础上研发而来的,它是桥式起重机的改造和优化。门式起重机是一种结构简便、使用可靠的起重机,它具有许多特点,安全性能优良,经济性能的性价比较高。本文通过对新型起重机的设计结构,设计方法的研究分析,找到了门式起重机部分性能缺点。说明了一些能够优化门式起重机的方法和措施,分析出更优良的新型门式起重机的优化特点。 门式起重机作为起重设备,在各类工程中,如水电站启闭阀,交通运输行业的港口、中转站装卸集装箱或件杂货都应用广泛。然而,如今使用门式起重机的频率已经大大的增加了,它的起重量也在增重。老式的门式起重机已经无法满足这些过大的使用要求,因

此,对门式起重机进行优化设计是非常有必要的。可以提高它的安全性能,让施工人员使用放心。增加它的使用效率,使得工程进度进一步的加快。优化它的经济性能,让更多的人能够以优质的价格使用它。另外,它的构件也有许多设计不合理的地方,影响了设备的质量和性能。其他的,还增加了过多的而不必要的投资。因此将设备更好的优化,提高设计性能,是新型门式起重机中设计所需要的。 门式起重机的构造 门式起重机是桥式起重机的一种变形。它的主要作用范围是室外的货场,散货的装卸。它的结构大体上是有门型框架,主梁组成。大部分的门型框架是金属构造的,承受力,剪应力都很强。主梁下的支撑脚可以直接在轨道上行走,便于货物的装卸。 1.1.门框结构 门式起重机的门框架构可以分为门式起重机和悬臂门式起重机。门式起重机的主梁没有悬伸,小车在主跨度内进行。 1.2.主梁结构

铸造起重机吨位结构设计

铸造起重机吨位结构设计 第一章总体方案设计 §1.1 原始参数 起重量Q(主/副) 180/50t 跨度S 22m 工作级别Ai A8 起升高度H(主/副) 20/22m 起升速度V(主/副) 4.5/11.4 m/min 运行速度(主/副/大车) 36/33.7/73.5 m/min 轮距(主/副/大车) 4080/1850/9800 mm 轨距(主/副/大车) 8700/3000/22000 mm 轮压(主/副/大车) 34500/19640/87600 kg 起重机重量 220t §1.2总体结构及设计 根据已给参数,此桥式铸造起重机吨位、跨度较大,为减少结构的超静定次数,改善受力,方便运输,选用六梁铰接式结构。结构框架如图(1) 图(1) §1.3 材料选择及许用应力 根据总体结构,铸造起重机工作级别A8为重级,工作环境温度较高,设计计算时疲劳强度为其首要约束条件,选用Q235-A,考虑起重量较大,主/副梁均采用偏轨箱型梁。

材料的许用应力及性能常数见表1、表2。 表1.1 材料许用应力 表1.2 材料性能常数表 §1.4各部件尺寸及截面性质 1. 主主梁尺寸 初选高度1111417H S ??= ??? :=1294~1571mm 考虑大车运行机构安装在主梁内,且主主梁与副主梁的高度差必须满足一定得要求,故将主主梁取为大截面薄钢板的形式,以达到节省材料、重量轻的要求。因此取腹板高度 2400h =mm 。 为了省去走台,对宽型偏轨箱型梁11/ 1.0 1.5H B =:,主主梁腹板内侧间距取 12200B =mm> 50 L =440mm 。 上下翼缘板厚度018δ=mm ,上翼缘板长2530mm ,下翼缘板长2326mm ,主腹板厚度 114δ=mm ,副腹板厚度 212δ=mm 。上下翼缘板外伸部分长 不相同。有轨道一侧上翼缘板外伸长度015270e b δ≤=mm ,取e b =250mm 。其它翼缘外伸部分长度 1.527e f b h ≥=mm 。 018f h δ==mm (焊缝厚度) 取'e b =50mm 。 轨道侧主腹板受局部压应力,应将板加厚,由局部压应力的分布长度,设计离上翼缘板350mm 的一段腹板板厚取为18mm 。

MQ100门式起重机总体计算书(附cad图)

MQ100 门式起重机总体 设 计 计 算 书 (共16页,含封面) XXX机械工程研究所 2004年4月

一. 总体计算 计算原则:MQ100门式起重机设计计算完全按《起重机设计规范》GB3811执行,并参照下列标准进行设计计算: 《塔式起重机设计规范》GB/T13752-92 《法国塔式起重机设计规范》NFE52081 工作级别 A 5 利用等级 U 5 起升机构 M 5 变幅机构 M 4 回转机构 M 4 行走机构 M 4 最大幅度 13m 最大起重量 8000Kg (一) 基本参数: 回转速度 0.7r/min 回转制动时间 5s 行走速度 12.5/25m/min 行走制动时间 6s 回转惯性力 ()Kg RM M g t R n F 002242.0.60..25.1=?? =π回 其中 g=9.81 n=0.7r/min t=5s 行走惯性力: ()Kg M M g t v F 0106184.0.605.1=?? =行 其中 g=9.81 V=25m/min t=6s

(二) 载荷组合: 自重力矩、惯性力及扭矩 上表中的回转惯性力到轨顶面的力矩总计为:-1971kg.m 上表中的行走惯性力到轨顶面的力矩总计为:5378kg.m

(三)起重小车、吊钩和吊重载荷 起重小车265kg 绳60kg 吊钩230kg 起升动载系数(起升机构用40RD20): =1.136, q=8t V=16m/min时, 2 吊重q=8000kg, 幅度R=13m (1) 吊载 Q=(8000+230+60/2)×1.136+(265+60/2)×1.1 =9708kg M=9708×13=126204kg.m (2) 风载(包括起重小车、吊钩和吊重) 迎风面积A=5.52+1.6×82/3=11.92m2 风力:F=11.92×25=298kg =298×13=3874kg.m 风扭矩:T n 风力到轨道上平面的力矩:M=298×12=3576kg.m (3) 回转惯性力 F=0.002242×(8000+230+265+60)×13=249kg =249×13=3237kg.m 回转惯性扭矩: T n 回转惯性力到轨道上平面的力矩:M=249×12=2988kg.m (4)行走惯性力 F=0.0106184×(8000+230+265+60)=91kg

桥式起重机毕业设计

桥式起重机毕业设计 由于工业生产规模不断扩大生产效率日益提高以及产品生产过程中物料装卸搬运费用所占比例逐渐增加促使大型或高速起重机的需求量不断增长起重量越来越大工作速度越来越高并对能耗和可靠性提出更高的要求。起重机已成为自动化生产流程中的重要环节。起重机不但要容易操作容易维护而且安全性要好可靠性要高要求具有优异的耐久性、无故障性、维修性和使用经济性,起重机的出现大大提高了人们的劳动效率以前需要许多人花长时间才能搬动的大型物件现在用起重机就能轻易达到效果尤其是在小范围的搬动过程中起重机的作用是相当明显的。在工厂的厂房内搬运大型零件或重型装置桥式起重机是不可获缺的。桥式起重机作为物料搬运机械在整个国民经济中有着十分重要的地位。经过几十年的发展我国桥式起重机制造厂和使用部门在设计、制造工艺设备使用维修、管理方面不断积累经验不断改造推动了桥式起重机的技术进步。本论文主要通过电气系统的设计使5t桥式起重机规定的各种运动要求。现根据起重机的新理论、新技术和新动向结合实例简要论述国外先进起重机的特点和发展趋势。 1.1起重机的特点和发展趋势现根据起重机的新理论、新技术和新动向结合实例简要论述国外先进起重机的特点和发展趋势。1.1.1大型化和专用化由于工业生产规模的不断扩大生产效率日益提高 以及产品生产过程中物料装卸搬运费用所占比例逐渐增加促使大型或高速起重机的需求量不断增长。起重量越来越大工作速度越来越高并对能耗和可靠性提出更高的要求。起重机已成为自动化生产流程中的重要环节。起重机不但要容易操作容易维护而且安全性要好可靠性要高要求具有优异的耐久性、无故障性、维修性和使用经济性。目前世界上最大的浮游起重机起重量达6500t最大的履带起重机起重量达3000t最大的桥式起重机起重量为1200t集装箱岸边装卸桥小车的最大运行速度已达350m/min堆垛起重机最大运行速度是240m/min垃圾处理用起重机的起升速度达100m/min 。工业生产方式和用户需求的多样性使专用起重机的市场不断扩大品种也不断更新以特有的功能满足特殊的需要发挥出最佳的效用。例如冶金、核电、造纸、垃圾处理的专用起重机防爆、防腐、绝缘起重机和铁路、船舶、集装箱专用起重机的功能不断增加性能不断提高 适应性比以往更强。德国德马格公司研制出一种飞机维修保养的专用起重机在国际市场打开了销路。这种起重机安装在房屋结构上跨度大、起升高度大、可过跨、停车精度高。在起重小车下面安装有多节伸缩导管与飞机维修平台相连并可作360度旋转。通过大车和小车的位移、导管的升降与旋转可使维修平台到达飞机的任一部位进行飞机的维护和修理极为快捷方便。 1.1.2模块化和组合化用模块化设计代替传统的整机设计方法将起重机上功能基本相同的构件、部件和零件制成有多种用途有相同联接要素和可互换的标准模块通过不同模块的相互组合形成不同类型和规格的起重机。对起重机进行改进只需针对某几个模块。设计新型起重机只需选用不同模块重新进行组合。可使单件小批量生产的起重机改换成具有相当批量的模块生产实现高效率的专业化生产企业的生产组织也可由产品管理变为模块管理。达到改善整机性能降低制造成本提高通用化程度用较少规格数的零部件组成多品种、多规格的系列产品充分满足用户需求。目前德国、英国、法国、美国和日本的著名起重机公司都已采用起重机模块化设计并取得了显著的效益。德国德马格公司的标准起重机系列改用模块化设计后比单件设计的设计费用下降12% 生产成本下降45%经济效益十分可观。德国德马格公司还开发了一种KBK柔性组合式悬挂起重机起重机的钢结构由冷轧型轨组合而成起重机运行线路可沿生产工艺流程任意布置可有叉道、转弯、过跨、变轨距。所有部件都可实现大批量生产再根据用户的不同需求和具体物料搬运路线在短时间内将各种部件组合搭配即成。这种起重机组合性非常好操作方便能充分利用空间运行成本低。有手动、自动多种形式还能组成悬挂系统、单梁悬挂起重机、双梁悬挂起重机、悬臂起重机、轻型门式起重机及手动堆垛起重机甚至能组

施工用缆索式起重机设计计算教材

施工用缆索式起重机设计计算Design and simplified calculation for cable crane 攀钢集团冶金工程技术有限公司机电安装工程分公司 Pangang Group Metallurgical engin eeri ng tech no logy co,,ltd Electromecha nical subsidiary compa ny 朱明 2012年3月7日

一、概述 缆索式起重机(架空索道)在我公司的工程施工中被广泛运用,我们曾承建了会理锌矿 长距离架空索道及设备安装、502电厂架空索道的安装,由于我市及周边地区处于山区,运 输条件极为不便,在设备安装施工中也广泛采用了缆索式起重机运送设备和管道的运送方式,如会理县云甸乡20t渡槽安装、会理黎溪电站水轮机组吊装(分解后设备单件重5t),攀钢白马铁矿至西昌二基地精矿压力输送管道管廊吊装、攀钢耐密煤气管线敷设吊装、大直 径浓缩池中心耙架及设备吊装等,自己多次参与架空索道的选择及计算应用实例,现结合现场实际情况将有关计算理论附列如下: 支架1 图1施工用缆索式起重机要件构成 图2 白马矿至西昌基地精矿压力输送管通廊吊装 有关型式及说明: 在此以攀钢白马矿至西昌精矿浆长输管线施工用缆索起重机为例,见图1、图2,起吊 重量G=5t,水平运距150m,运送点与支架1落差约150 m,安装点在深山峡谷间无路可往,在支架1处有临时便道公路通往,支架2未采用,而是直接在峡谷对面山上埋桩代替。 二、缆索起重机结构及计算 1、支架高度H=h1+h2+h3+h4+h5+h6+f

hl —所需最大起重咼度,此处取 0.2 m ; h2 —上述咼度与所吊起构件间的间隙, 一般采用2m ; h3—被吊装构件的最大高度,在此取 1.2 m ; h4—吊索的栓系绑扎高度,一般采用 1 m ; h5—起重滑轮组的最小长度,在此取 0.5 m ; h6—起重小车净高,一般采用 1m ; £ L L f —缆索(承重索)在跨度中央的下垂度,可按经验选取 f =0.05~0.07L 或- 一 ■— 1S 20 L 表示跨距,按150m 代入,相对垂度f/L 的数值越小,承重钢丝绳的拉力越大, f/L 数 值过小,贝U 所需支架高度就比较高,同时运行阻力较大,牵引索要加大。根据以上数值,可 取 H=10 m 。 2、承重索计算及依据 悬挂在两支点上的钢索, 在其均布荷载的作用下所呈现的线形如图 3所示,在其上取一 微小线段dL 进行受力分析,由力的平衡原理得钢丝绳微段在平衡静态时的方程为: T cos ( 0 +d 0 ) =Tcos 0 =H T sin ( 0 +d 0 ) =Tsin 0 +qdL 又由于 y =tg 0 ; dy =dtg 0 , 联立这几个式子得微分方程式: 当x=0时,一 一 小的,可以省略不计,并将曲线的坐标原点移动一个 a 值的位置,则得悬挂钢索曲线的近以 A( q 为悬索单位长度的质量 , ) V — 7 T' +d H' H ■ r ―=— qdL T --------- V = -=:称为补偿函数,即可解得 ■,将此式展开为代数函数的形式有: 在上式中若补偿函数 a 值较大,即悬挂钢索的挠度系数较小时, 第三项以后的值是很微

起重机小车设计说明书

机械课程设计说明书 题目:50/10吨通用桥式起重机小车设计 班级:机自041218 姓名: 学号:200422060

目录 设计任务书-----------------------------------------------------------------------------------------------1 概述------------------------------------------------------------------------------2第1章小车主起升机构计算-------------------------------------------------------------7 1.1 确定传动方案,选择滑轮组和吊钩组---------------------------------7 1.2选择钢丝绳-------------------------------------------7 1.3确定卷筒尺寸并验算强度--------------------------------8 1.4初选电动机-------------------------------------------10 1.5选用标准减速器---------------------------------------11 1.6 校核减速器输出轴强度--------------------------------------------------11 1.7 电动机过载验算和发热验算--------------------------------------------11 1.8选择制动器--------------------------------------------12 1.9选择联轴器-------------------------------------------13 1.10验算起动时间-----------------------------------------13 1.11验算制动时间-----------------------------------------14 1.12高速轴计算------------------------------------------15 第2章小车副起升机构计算------------------------------------------------------------17 2.1 确定传动方案,选择滑轮组和吊钩组--------------------------------17 2.2钢丝绳的选择------------------------------------------17 2.3确定卷筒尺寸并验算强度--------------------------------18 2.4初选电动机-------------------------------------------21 2.5选用标准减速器---------------------------------------21 2.6校核减速器输出轴强度----------------------------------22 2.7 电动机过载验算和发热验算-------------------------------------------22 2.8选择制动器--------------------------------------------23 2.9选择联轴器-------------------------------------------23 2.10验算起动时间-----------------------------------------24 2.11验算制动时间-----------------------------------------25 2.12高速轴计算------------------------------------------25 第3章小车运行机构计算-----------------------------------------------------------------------27

MQ100门式起重机总体设计

优秀设计 MQ100 门式起重机总体 设 计 计 算 书 (共16页,含封面) XXX机械工程研究所 20XX年4月

一. 总体计算 计算原则:MQ100门式起重机设计计算完全按《起重机设计规范》GB3811执行,并参照下列标准进行设计计算: 《塔式起重机设计规范》GB/T13752-92 《法国塔式起重机设计规范》NFE52081 工作级别 A 5 利用等级 U 5 起升机构 M 5 变幅机构 M 4 回转机构 M 4 行走机构 M 4 最大幅度 13m 最大起重量 8000Kg (一) 基本参数: 回转速度 0.7r/min 回转制动时间 5s 行走速度 12.5/25m/min 行走制动时间 6s 回转惯性力 ()Kg RM M g t R n F 002242.0.60..25.1=?? =π回 其中 g=9.81 n=0.7r/min t=5s 行走惯性力: ()Kg M M g t v F 0106184.0.605.1=?? =行

其中 g=9.81 V=25m/min t=6s (二) 载荷组合: 自重力矩、惯性力及扭矩 名称 自重 Kg 回转 半径 m 对中 弯矩 Kg.m 回转惯 性力 Kg 回转 扭矩 Kg.m 行走惯 性力 Kg 行走 扭矩 Kg.m 距行走轨 顶面高度 H(m) 起重臂根部 节 13.2m 1728 7.55 13046 29.3 221 18.3 139 14.937 小车牵引机构320 8.75 2800 6.3 55 3.4 30 14.937 起重臂端 部节 108 14.35 1550 3.5 50 1.1 16 14.937 起重臂拉杆429 5.34 2291 6.1 33 4.6 24 16.686 平衡臂结构1656 -3.9 -6458 -14.5 57 17.6 -69 14.637 平衡臂拉杆227 -2.12 -481 -1.1 2 2.4 -5 16.353 配重10500 -6.11 -64155 -143.8 879 111.5 -681 13.762 起升机构 (含钢丝绳) 2350 -5.8 -13630 -30.6 177 24.9 -145 15.667 塔头2237 0.2 447 1 0.2 23.8 5 14.637 称重滑轮66 0.86 57 0.1 0.1 0.7 1 14.558 驾驶室 (含电气系统) 545 1.02 556 1.2 1 5.8 6 12.818 回转支承3611 0 0 0 0 38.3 0 11.417 回转机构367 0 0 0 0 3.9 0 12.217 底架10479 0 0 0 0 111.3 0 5.146 压重30800 0 0 0 0 327 0 5.146 电缆卷筒217 2 534 0 0 2.3 0 1.4 连接附件600 0 0 0 0 6.4 0 0.55 行走机构1690 0 0 0 0 17.9 0 0.26 合计67930 -63443 -142.5 1457 721 -679 上表中的回转惯性力到轨顶面的力矩总计为:-1971kg.m 上表中的行走惯性力到轨顶面的力矩总计为:5378kg.m

桥式起重机设计毕业设计分解

新鄉学院 2012届 毕业论文(设计) 题目:桥式起重机设计(小车运行机构设计) 学位申请人姓名陈金龙 学号0905031067 所在学院名称机电工程学院 专业名称数控技术 指导教师姓名唐军 指导教师职称 完成时间:2012年5月9日

目录 内容摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1. 绪论 (2) 1.1起重机发展展望 (2) 1.2现状及国内外发展趋势 (4) 1.3起重机设计的总体方案 (4) 2.起重机的种类 (4) 2.1轻小型起重机设备 (4) 2.2桥式起重机 (4) 2.3门式起重机 (5) 2.4其它类型起重机 (6) 3.小车运行机构的计 (7) 3.1主要参数和机构布置简图 (7) 3.2轮压的计算 (7) 3.3电动机的选择 (8) 3.4制动器的选择 (11) 3.5减速器强度验算 (12) 3.6联轴器的计算 (12) 3.7车轮计算 (13) 3.8车轮轴的计算 (14) 4.小车架的计算 (15) 4.1小车架设计要求,计算说明及布置简图 (15) 4.2小车架的计算 (16) 参考文献 (27)

内容摘要 起重机械用来对物料作起重、运输、装卸和安装等作业的机械设备,它可以减轻体力劳动、提高劳动生产率和在生产过程中进行某些特殊的工艺操作,实现机械化和自动化。 本设计通过对桥式起重机的小车运行机构的总体设计计算,以及电动机、联轴器、缓冲器、制动器的选用;运行机构减速器的设计计算和零件的校核计算及结构设计,完成了桥式起重机的回转小车运行机构机械部分的设计。通过本次设计,完成了一台30t起重量、桥跨度为31米的设计要求,并且整个传动过程比较平稳,且小车运行机构结构简单,拆装方便,维修容易,价格低廉。 关键词桥式起重机;小车运行机构;小车架 Abstract Crane is a kind of mechanical equipments used for lifting, moving, loading/unloading, and installing. It can low the manual workload and upgrade productivity. It can be operated in some special environment, and work with high automatic level. This paper is main deal with mechanical design for crab of crane, including all design calculation selection of electrical motors, clutch, buffer, and brakes, the design and calculation of the reducer, calibration and verification of the calculation for the parts, and structure designs. Through a series of work, the design is satisfied with the functional requirements, 30 t lifting power and 31 meter bridge span. The course of drive is quite smooth. The mechanical structure of crab of crane is simple, easy to install/disassemble, and to be maintain. And it has low cost. Key words Bridge crane;crab of crane;trolley frame

铸造起重机与通用桥式起重机对有关要求的对比

铸造起重机与通用桥式起重机对有关要求的对比序项冶金起重机(铸造起重机通用桥式起重备 《通用桥吊运物品对起重机GB/T1440-1℃5℃JB/T7688.后,起重机的电起重机》室内工作钩的热辐射温度不超30的工 作环境,电起重JB/T7688.1环最低-1℃,最高不超6℃-℃4系统、制动器的1 起重物品对起重机温最高温度按合同要求,如果合同没有要求的,高温度5℃,如果合同有要求的按合同要求钩的热辐 射温度不但最高不超6℃30这个要求JB/T7688.有如下要求的要求,)司机室:一般应符GB/T1440必须能保温,室内应 设冷风机或空调机,地面GB381应铺设非导电性橡胶板3.9.1.1条和新)电气室底面宜进行隔热,室温一般不超℃,室 内应设冷风机或空调机,地面上应铺46.9.1.8主要承非导电性橡胶板冶动依合重)中规定的起重或冶金JB/T1010JB/T1010隔作用,且表面温2 没有特殊要电动机环境温度超应当选4℃的场合防15℃以上时级绝缘的电动机或采取相应当的必要的措施起重横梁下翼缘板下应设有可靠的隔热装置起重横梁装有两端缠绕的动滑轮应有防护罩措施,实际上还感器是时,应有可靠的隔热装置考虑维护、润滑其)电气设备及电缆:选用电气设备及电因素作环境温度应根据不同位置环境温度来确要进供需双方共同研究。应采用软电缆,在环温度高的车间,一般采用耐高温的电缆适用范围为主起升机构取物装置JB/T7688.1副起升机构取带两个叠片式吊钩的起重横梁《通用桥装置为吊钩的铸造起重机GB/T1440起重机》适用于一JB/T7688.1-1995依适冶金起重机技术要3 环境中工作的通用,本标准主要适用于金属冶炼、轧制范用要式起重机其中包括平炉加料…热加工等专用的起重机(注:标准中未提铸造起重机,只是说其他类的冶金起重机亦可参照使用吊具为吊钩的通用式起重机的工作级起重机工作级别:铸造起重机中,炉前兑铁水;起一般AA造起重机为炉后出钢水铸造起重机为A对于机构工作级AA工般吊钩式通用桥式4 M级铸造起重机起升机构的工作级别一般重机来说,车间及;炉后出MM(炉前兑铁水铸造起重机为繁库用M水铸造起重机为MM工作车间及仓库用为,M6~5M. 1)GB/T14405《通桥式起重机》起升根钢丝绳缠绕系JB/T7688.1,宜采根钢丝的主起升机构,当一根或对角线MM且其额定(注:这种要断裂后仍能将重物放到地面上度大5m/mi时往往只有大吨位的起重机才能采用,小的铸起重机从布置上来有一定困难法,以保证在且起MJB/T7688.起升机构的工作级别M速度5m/mi时,时,应采用电气制且其额定速度大5m/mi证0.1.0G范时,的方法,以保证在且起升速度5m/mi内下降时,制动前制动前的电动主证0.范围内下降时1.0G电动机转速降至同5 以下,该速度并且能性1/转速降至同步转速该1/以下转速定运行度并且能稳定运行起重机的静态刚性,起升额定JB/T7688.《通GB/T1440级不大A荷测主梁跨中静挠度,AA桥式起重机A级S/100级不大AS/80AAA不大S/80S/120大S/1000 大吊运物品对起重机锻钩的辐射JB/T7688.《通GB/T1440℃度不超30桥式起重机》吊运品对起重机锻钩的℃射温度不 超30)电气设备应当安牢固,方便维修,裸露的带电部分安装在电气室电气设备应当安装牢固,方便维修,无GB420 外壳防的电气设备,其防露的带电部分起GB4942.IP00安装在桥架上的电气设备,其外壳的防等级可机安装在桥架上的电IP1电气设备如安装在室外无遮等级不低6 护等防防护的场所时,其外壳防护等级不应低IP3设备,其外壳的防等,IP1等级不低3.8.4.13) JB7688.规在多粉尘环境使用只是最低要求气设备如安装在室起重控制屏应放在隔热防尘的电气室; 体环境情时,其外壳防护等不应低IP3主起升机构应有两套JB7688.1规……调速的起升动系当一套驱动系统发生故障另一套驱构应设超速保护 系统应能在额定起重量下完成一个工作循环新GB381)起升机构应设上升极限位置的双重限位定对于重要的、负(一般为重锤式和旋转式并用)……,对起升安超速会引起危险的7 的起重机还应装设下降极限位置的20保度大升机构和非平衡式位器…装工作制动器应是常闭JB7688.)规幅机构应设置超速4.2.1.GB381其制动器安全系数应不小的关。超速开关的整4.2.1.制动器应灵敏可靠条的规GB381值取决于控制系 统条的规定:吊动液态金属及其他危险品的起升机

门式起重机结构优化设计

门式起重机结构优化设计 发表时间:2018-10-25T16:51:42.843Z 来源:《防护工程》2018年第15期作者:叶恭宇[导读] 在工作过程中能够承受和传递各种载荷,其整体性能决定着起重机的使用寿命。为了提高起重机的设计质量,对结构形式进行一定的优化设计,在确保其整体性能符合要求的前提下,尽可能减轻重量,节省材料,提高企业的经济效益。 叶恭宇 浙江省特种设备检验研究院浙江省杭州市 310020摘要:门式起重机是一种常用的物料搬运机械,广泛应用于工业生产中,具有货场利用率高、运行成本低以及装卸效率高等优点。金属结构是门式起重机的骨架,在工作过程中能够承受和传递各种载荷,其整体性能决定着起重机的使用寿命。为了提高起重机的设计质量,对结构形式进行一定的优化设计,在确保其整体性能符合要求的前提下,尽可能减轻重量,节省材料,提高企业的经济效益。 关键词:门式起重机;结构设计;设计要点 1结构优化的基本概念 1.1 设计变量 每项设计方案需要通过一组基本的参数表示,这些基本参数主要包括:构件长度、截面尺寸、某些位置的坐标值、重量、惯性矩、应力、变形、固有频率以及效率等。在对某个结构进行优化设计过程中,工艺和结构布置等方面的参数可以根据设计经验进行取值,其他参数可以在优化过程中进行调整,这些一直处于变化状态中的参数,被称为设计变量。设计变量主要有连续和离散两种不同的类型,在机械优化设计中涉及到的变量大多数都是连续变量,可以通过常规的优化方法进行求解。 1.2 目标函数 判定不同机械设计方案的优劣主要通过对设计指标进行系统全面的分析,设计指标通过一定的转化能够转变为相应的设计变量函数,该函数即为目标函数。不同的优化方案具有不同的目标函数,目标函数的范围非常广泛,可以是重量、体积,可以是功耗、产量等。建立目标函数是优化设计中的关键过程,目标函数根据目标数量的不同可以分为单目标函数和多目标函数,其中单目标函数是指在优化设计过程中,只对某一问题进行优化;多目标函数是指在优化设计过程中,同时对多个目标进行优化。在实际的优化过程中,目标函数越多,越有利于提高设计的水平,能够取得较好的设计效果,但是其优化难度也较高。 2门式起重机结构优化设计的基本方法与步骤本项目开发的 800 t 吊钩门式起重机是国内较大起重量的门式起重机,具有结构复杂、制造难度大等特点,具体体现为结构轻量化、可靠性、配套件选型以及安装调试 4 个方面,其主要采用的结构优化设计的基本方法与步骤如下 2.1采用有限元分析,实现结构最优化 主结构设计时,为减轻结构自重,实现轻量化设计,采用 Midas/civil 有限元分析技术对整机结构件进行强度、刚度校核。通过有限元分析,在钢结构满足强度、刚度要求的前提下,减小主梁、支腿截面尺寸、最优筋板布置。为减小局部应力,提高焊接质量,主梁采用 T 型钢结构,以控制焊接变形,使结构设计更加合理。 2.2 欧式小车设计结构,实现起重机轻量化,并重视门式起重机结构有限元静态计算结果 常规传统起重机小车结构见图 1,采用 8 轮结构,机构布置尺寸较大,自重达 84.4 t,增加了起重机主梁的负担。因此该起重机小车采用欧式结构,如图2 所示,定滑轮放置在小车架之上,较大地提高了上极限尺寸;车轮采用 6 轮结构,合理分布轮压,起升机构布置采用了单电机、单标准减速机 + 开式齿轮、单卷筒设计的结构型式,减小了起升减速机型号,降低了配套件成本,同时也大幅地减小了小车尺寸;小车结构自重。 同时,通过静载试验可知,小车在主梁跨中时产生的应力最大,上主弦应力比下主弦要小,而小车在支腿侧时产生的应力较小,主要为腹杆受力模式;通过动载试验可知,小车在主梁跨中时产生的应力最大,上主弦应力比下主弦要小,而小车在支腿侧时产生的应力较大,其中柔性支腿侧的应力达到最大值,此时腹杆受力较小,且小于材料的许用应力。最后,跨中和悬臂端下挠值均满足国家标准的要求,位移较小,刚度满足规范要求。

简易门式起重机设计

电动葫芦门式起重机设计 一、实验目的 1、掌握简易电动葫芦门式起重机的设计过程。 2、拆装测绘电动葫芦内部结构。 二、实验设备 2吨SHH悬挂式环链电动葫芦,2吨CD型钢丝绳电动葫芦,3.2吨SHA2低建筑钢丝绳电动葫芦,1吨SH3悬挂式钢丝绳电动葫芦和5吨轻型门式起重机门架。 三、实验内容 由驱动装置(如电动机等)、传动装置(减速器)、制动装置(制动器)和取物缠绕装置(如吊钩、滑轮、钢丝绳、链条、卷筒、链轮等)紧凑地组装为一体的起重设备,称为起重葫芦(英文称为Hoist)。用电力驱动称为电动葫芦,用人力驱动称为手动葫芦,用气力驱动称为气动葫芦。 以起重葫芦作为起升机构的起重机,统称为葫芦式起重机。葫芦式起重机作为桥式和门式起重机的一个重要分支,已成为一种独特的起重机体系,量大而面广。国外统称为Hoist cranes。 起重机有四大基本机构:起升机构、运行机构、旋转机构和变幅机构。葫芦起重机一般只有两种机构,起升机构和运行机构,起升机构为电动葫芦;运行机构主要就是葫芦运行小车和起重机运行大车。 葫芦式起重机的设计计算完全遵守GB/T3811-2008《起重机设计规范》所确立的适应葫芦式起重机总体、钢结构、机构、电气控制与安全等方面必要的准则,同时还要遵守JB/T5663-2008 《电动葫芦门式起重机》机械行业标准。 设计步骤一般如下:

1、电动葫芦门式起重机总体设计我们这次主要是设计MD 型单主梁工字钢葫芦门式起重机。主要是确定门架结构的整体形式,主梁的数量,是否有悬臂,支腿结构和运行机构等。起升高度2-6米。起重机跨度3-10米。起重量由各小组所选择的电动葫芦起重量确定。 2、电动葫芦门式起重机钢结构设计计算设计计算的主要内容有 a、主梁强度计算包括吊载在跨中时主梁整体自由弯曲强度计算;约束弯曲强度计算;约束扭转强度计算和危险点的复合应力校核计算等 b、主梁刚度计算 c、稳定性计算 d、支腿强度计算 e、支腿刚度计算 f、支腿稳定性计算 3、起升机构电动葫芦的设计计算设计计算的主要内容有 a、确定电动葫芦的结构形式(串联型、并联型和套装型) b、吊钩的选用 c、钢丝绳的选用计算 d、滑轮设计 e、卷筒设计计算 f、电动机的选择与验算 g、减速器的选择 h、制动器的设计计算 4、葫芦运行小车的设计计算计算内容包括 a、运行阻力计算 b、运行电动机的选择和验算 c、减速器的计算与选择 d、制动器的计算与选择

起重机滑轮组补偿臂架的优化设计

文章编号:1001-3997(2000)01-0027-02 起重机滑轮组补偿臂架的优化设计 陈贤(珠海市东区恒升建材公司,珠海 519000)Optim al Design for the Compensation Arm of A crane CHE N XI AN [摘要]提出了在滑轮组补偿臂架起重机变幅机构设计中确定补偿点的最优化数值解法。这种方法基于优化设计的思想,利用电子计算机,选定必要的设计参量就可以得到最优化的设计结果。 关键词:起重机;补偿点;优化设计 [Abstract ]This paper puts for ward an optimal numerical method o f determining the compensation point in the design o f a crane with compensation arm o f pulley block .This method is based on the concept o f optimal design .With the help o f computer ,food design results can be obtained provided necessary design parameter s are selected . K ey w ord :crane ;compensation point ;optim al design 中国分类号:TH12 文献标识码:A 在滑轮组补偿臂架起重机设计中确定补偿点是非常重要的一项工作,因为补偿点的位置直接影响到起重机在变幅过程中驱动功率的大小及工作性能。目前,确定补偿点有两种方法:一种是图解法,反复次数多、工作量大、结果误差大。另一种是解析法,这种方法是控制变幅过程中绕臂铰轴的力矩,并给出了一定范围内的有关参数。作者分析研究了对补偿点的设计要求及两种解法的优缺点,为了提高设计质量和设计速度,研究了一种用于确定补偿点的最优数值解法。 1 补偿点位置的确定方法 1.1 确定补偿点位置简述 确定补偿点位置的设计如图1所示。当根据工作需要和 结构布置选定臂架长度L ,最大幅度R max ,最小幅度R min ,,臂架铰点O ,起升滑轮组的倍率m 1和补偿滑轮组倍率m 2后,为使起升物品在变幅过程中沿着近似水平的轨迹运动,就需适当选择补偿点A 的位置,使l 1的长度在变幅过程中得到补偿。 1.2 推导确定补偿点的数学表达式 变幅机构的运动可以看成平面问题,用于计算的坐标系 及计算简图如图1所示。 起重机钢丝绳总长(略弹性变形)应为常数,即 D =m 1l 1+m 2l 2=con st (1)式中:l 1———起升滑轮到臂架端点的距离; l 2— ——臂架端点到补偿点的距离;m 1— ——起升滑轮组倍率;m 2— ——补偿滑轮组倍率。起升滑轮组的中心高度为 s =L sin φ-l 1 (2) 把(1)式代入(2)式得 s =L sin φ-D -m 2l 2 m 1 (3) 从△OAB 中应用余弦定理得边长l 2= L 2 +x 12 +x 12 -2L x 12+x 12 sin (φ+θ )(4) 把(4)式代入(3)式得 s =L sin φ-D m 1+m 2m 1 L 2+x 12+x 22 -2L x 12+x 22 sin (φ+θ )因为 sin θ=x 1Π x 12 +x 2 2 所以 s =L sin -φ D m 1+m 2m 1 L 2+x 12+x 22-2L x 12+x 22sin[φ+arcsin (x 1Π x 12+x 22)] 图1 计算简图 — 72—《机械设计与制造》 Feb.2000 №1 M achinery Design & M anu facture 3来稿日期:1999-08-09

相关主题
文本预览
相关文档 最新文档