当前位置:文档之家› 第二讲 Part3 离散傅里叶变换_难点

第二讲 Part3 离散傅里叶变换_难点

第二讲 Part3 离散傅里叶变换_难点
第二讲 Part3 离散傅里叶变换_难点

第三讲 Part3 DFT 的理论难点

1、抽样定理

连接离散信号与连续信号的桥梁。

()(){

()()j t a a j j n

s

n X j x t e dt

X e x nT e

ω

ω∞

-Ω-∞

-=-∞

Ω==

?∑

根据频域卷积定理推导 ()

()()()

{1()()()()()2j j j j j y n x n h n Y e X e H e X e H e d πωωωθωθπ

θ

π--==*=? 得到:1

()()j a

s k s

X e X

j jk T ω

=-∞

=

Ω-Ω∑

2、FT 中的待研究的理论难点与关键之处

2.1 DFT 与DTFT 的关系

两种论述方法:

方法1:书P119-P120的论述;请同学看书后,上黑板叙述推演相关的过程。 方法2:书P121,连续频谱的抽样也必然使原来的时域信号变成周期的。

2.2 DFT 的()X k 是“()x n 的傅里叶变换”的某种程度上的近似。 用DFT 对连续信号和离散信号进行谱分析的基本原理和方法

2.2.1 怎样理解DFT 对FT 的近似?

由于用DFT 对连续信号做频谱分析的过程中隐含了频域和时域的两个周期延拓,又由于信号时宽和带宽的制约关系,因此,做DFT 得到的()N X k ,及由()N X k 做IDFT 得到的

()N x n 都是对原()a X j Ω及()a x t 的某种近似。

如果s T 选得足够小,则式1

()|()s j a T a

s l s

X e X

j jl T ω

ω∞

=Ω=-∞

=

Ω-Ω∑ 中将避免或大大减轻

频域的混叠。

如果N 选得足够大,一方面可以减轻式()()*()j j j a X e X e D e ω

ω

ω

=的窗口效应,另一方面也会减轻式()(),0,1, (1)

l x n x

n lN n N ∞

=-∞

=

+=-∑的时域混叠。

结论:在这两个条件均满足的情况下,上述的近似误差将减小到可接受的程度,从而

使()N x n 和()N X k 都是()a x t 和()a X j 的极好近似。

如何理解上述的陈述与结论?

DFT 对连续信号进行谱分析必然是近似的,其近似程度与信号带宽、采样频率和截取长度有关?

课本2之P123 “DFT 的图形解释”。

2.2.2另外一种近似的解释(西交大):

设连续信号()a x t 持续时间为p T ,最高频率为c f 。(符合爆振信号的特点) 信号()a x t 的频谱分析是2()[()]()j ft a a a X jf FT x t x t e dt π∞

--∞

==

?

对()a x t 以采样间隔为s T 采样得()()a s x n x nT =,设有N 个采样点,s t nT = 并对()a X jf 作零阶近似,得到:1

20

()()s

N j fnT s

a

s

n X jf T x nT e

π--==∑

对f 的连续周期函数()a X jf 在区间[0,]s f 上等间隔采样N 点,采样间隔为F 。 参数,,,s p f T N F 满足关系式1

s s

f F N NT =

=

,另有s p NT T = 所以有1p

F T =

而且f kF =,代入得到:21

()(),01N j

kn N

s

a

s

n X jkF T x nT e

k N π--==≤≤-∑

令()(),()()a a s X k X jkF x n x nT ==,则有21

()()[()]N j kn N

a s s n X k T x n e

T DFT x n π--===∑

反过来,逆变换有1

()[()]a s

x n IDFT X k T =

结论1:()a X k 看不到()a X jf 的全部频谱特性,只能看到N 个离散采样点的谱特性,这就是所谓的栅栏效应。

结论2: 如果()a x t 持续时间无限长,进行截断处理,则会产生频率混叠和泄漏现象,使谱分析产生误差。 2.2.3

02/2/()()()()()()..................................................()()()*()s

s s

a a a N t nT j j j a a a T NT x t x n x n d n x n x n FT DTFT DTFT DFT DFS

x j X e X e D e ωωωππ=Ω=Ω=????→???→???→??→←????Ω????→???→s 周期延拓

抽样截短取一个周期周期延拓卷积抽样()()N X k X k ????→?????→←????周期延拓取一个周期

抽样定理:()s x nT 与()x t 的关系?()j X e ω

和()X j Ω的关系。

此乃数字信号处理中的基本问题。

()()j t a a X j x t e dt ∞

-Ω-∞

Ω=?,这里2f πΩ=为角频率,()a X j Ω为频谱密度。

()()j j n

s

n X e x nT e

ω

ω∞

-=-∞

=

/1

()()|()s j s T a

s k s

X e X j X

j jk T ω

ω∞

Ω==-∞

=Ω=

Ω-Ω∑,本式的推导见P116-P117,即周期延拓

相对频率Ω,周期为2/2s s s T f ππΩ==; 相对圆频率ω,周期为2π。

变成周期的方法是将()a X j Ω在频率轴上以s Ω为周期移位后再叠加,并除以s T ,这种现象

称为频谱的周期延拓。

频域的“混叠”现象:一个周期中的()s X j Ω不等于()a X j Ω。

所谓混叠是指()j D e ω的主瓣宽度4/B N π=过大,无法区分欲区分的()j X e ω谱线? 混叠与泄漏是一回事吗?

2.3 DFT 泄漏

泄漏的定义?

对确定频率的正弦信号进行频谱分析,按理其频谱图上只有确定频率处有一根谱线,但实际上由于截取有限长度的信号,形成在其频谱图上除主要频率分量外,还出现了许多附加频率分量,造成能量不是集中于确定频率,部分能量泄漏到其他频率上。从而给傅里叶变换带来误差,这种误差称为泄漏误差。

(1)对周期信号的整周期截取。 (2)对周期信号的非整周期截取。 (3)对任意信号的有限截取。 谱间干扰的定义?

例子:用DFT 计算理想低通滤波器频响曲线。

2.4 频率分辨率

信号()T x t 的长度为T 秒,()T X j Ω得频率分辨率1/f T ?=

/s M T T =

()M x n 是无穷长离散信号()x n 和一宽度为M 的矩形窗相乘的结果,频率分辨率限制

为:/s f f M ?=

DFT 的两根谱线间的距离为/s f f N ?=

2.5 加窗

为了减少由截断所造成的泄漏误差,选取某些比矩形窗函数泄漏小的其他形状的窗函数,称为加窗处理。

减少泄漏与提高分辨率是矛盾的;

(1)要求精确读出峰值的频率而不考虑幅值的精度,则可直接截断,即矩形窗。 (2)对存在强干扰的窄带信号,选用旁瓣幅度小的窗函数。

2.6 补零

补零的作用?

数据过短时泄漏将严重影响对原频谱的辨认,为什么补零可在一定程度上克服这一现象?

实际例子描述。

Part2:DFT 的实际工程应用展示

(1) 通过KNOCK 模式识别应用案例,展示理论到实际的应用过程

领域专业背景知识—〉核心问题的理论实质—〉具体算法设计—〉完整的项目实现

(2) 工程应用中揭示的理论难点分析,可以改进的余地。 (3) DFT 应用背景

背景1:以卷积和相关运算的实现为依据;

背景2:以DFT 作为连续傅里叶变换的近似,对连续信号或序列进行谱分析。

Part3 :FFT 文档解释

3.1 概述

DFT 和卷积是信号处理中两个最基本也是最常用的运算。 21

()(),0,1,...,1,N j

nk

N

N

N n X k x n

W k N W e

π

--===

-=∑

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 )()(N n kn M W n x k X ,由此可以看出,该序列时域的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π 2 (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域数字 序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值实际 位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

傅里叶变换在信号与系统系统中的应用

河北联合大学 本科毕业设计(论文) 题目傅里叶变换在信号与系统中的应用 院系理学院 专业班级07数学一班 学生姓名刘帅 学生学号200710050113 指导教师佟玉霞 2011年5月24日

题目傅里叶变换在信号与系统中的应用 专业数学与应用数学姓名刘帅学号200710050113 主要内容、基本要求、主要参考资料等 主要内容 傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。 基本要求 通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。 参考资料 [1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版 [2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社 [3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈 连丰审校电子工业出版社 [4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译 腾建辅审校电子工业出版社 [5]《现代通信原理》陶亚雄主编电子工业出版社 [6]《信号与系统》乐正友著清华大学出版社 [7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社 [8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电 子科技大学出版社 [9] https://www.doczj.com/doc/446532898.html,/view/191871.htm//百度百科傅里叶变换 [10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社 [11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社 完成期限 指导教师 专业负责人

离散傅里叶变换的分析与研究

XXXX大学 2012届学士学位论文 离散傅里叶变换的分析与研究 学院、专业物理与电子信息学院 电子信息工程 研究方向数字信号处理 学生姓名XX 学号 XXXXXXXXXXX 指导教师姓名XXX 指导教师职称讲师 2012年4月26日

离散傅里叶变换的分析与研究 XX 淮北师范大学物理与电子信息学院 235000 摘要离散傅里叶变换是连续傅里叶变换在时域和频域上都离散的形式,是对连续时间信号频谱分析的逼近。离散傅里叶变换不仅在理论上有重要意义,而且在各种信号的处理中亦起着核心作用。 本文首先介绍了离散傅里叶变换的定义及性质,然后介绍了离散傅里叶变换的应用,主要包括对线性卷积的计算和对连续信号的谱分析。在理解理论的基础上,在matlab环境下实现了线性卷积和对连续信号频谱分析的仿真。仿真结果表明:当循环卷积长度大于或等于线性卷积长度时,可利用循环卷积计算线性卷积;利用DFT对连续信号进行频谱分析必然是近似的,其近似的结果与信号带宽,采样频率和截取长度都有关。 关键词离散傅里叶变换;线性卷积;谱分析

The Analysis and Research of Discrete Fourier Transform XX School of Physics and Electronic Information, Huai Bei Normal University, Anhui Huaibei, 235000 Abstract The discrete Fourier transform is the form that the continuous Fourier transform are discrete both in the time domain and frequency domain,it is a approach to the analysis of continuous time signal spectrum . The discrete Fourier transform not only has important significance in theory, but also plays a central role in all kinds of signal processing . This paper introduced the definition and properties of the discrete Fourier transform first of all.Then introduced the application of the discrete Fourier transform, which mainly including the calculation of linear convolution and analysis of continuous signal the spectral. On the basement of understanding theory, we realized the linear convolution and analysis of continuous signal spectrum on the Matlab environment . The simulation results show that when the length of the cyclic convolution is equal to or greater than linear convolution,we can use cyclic convolution to calculate linear convolution;It is approximately use continuous DFT spectrum to analyze the frequency domain of continuous time signal, the approximation of the results is related to the signal bandwidth, sampling frequency and intercept length. Keywords The discrete Fourier transform; Linear convolution; Spectrum analysis

离散傅里叶变换应用举例

x=[1,1,1,1];w=[0:1:500]*2*pi/500; [H]=freqz(x,1,w); magH=abs(H);phaH=angle(H); subplot(2,1,1);plot(w/pi,magH);grid;xlabel('');ylabel('|X|'); title('DTFT的幅度') subplot(2,1,2);plot(w/pi,phaH/pi*180);grid; xlabel('以pi为单位的频率');label('度'); title('DTFT的相角')

N=4;w1=2*pi/N;k=0:N-1; X=fft(x,N); magX=abs(X);phaX=angle(X)*180/pi; subplot(2,1,1);plot(w*N/(2*pi),magH,'--');axis([-0.1,4.1,0,5]);hold on; stem(k,magX);ylabel('|X(k)|');title('DFT的幅度:N=4');text(4.3,-1,'k'); hold off; subplot(2,1,2);plot(w*N/(2*pi),phaH*180/pi,'--');axis([-0.1,4.1,-200,200]); hold on; stem(k,phaX);ylabel('度');title('DFT的相角:N=4');text(4.3,-200,'k')

n=(0:1:9);x=cos(0.48*pi*n)+cos(0.52*pi*n); w=[0:1:500]*2*pi/500; X=x*exp(-1i*n'*w); magx=abs(X); x1=fft(x);magx1=abs(x1(1:1:10)); k1=0:1:9;w1=2*pi/10*k1; subplot(3,1,1);stem(n,x);title('signalx(n),0<=n<=9'); axis([0,10,-2.5,2.5]);line([0,10],[0,0]); subplot(3,1,2);plot(w/pi,magx);title('DTFT幅度');xlabel('w');axis([0,1,0,10]); subplot(3,1,3);stem(w1/pi,magx1);title('DFT幅度'); xlabel('频率(单位:pi)');axis([0,1,0,10]) 实验总结:补零运算提供了一个较密的频谱和较好的图示形式,但因为在信号中只是附加了零,而没有增加任何新的信息,因此不能提供高分辨率的频谱。

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

3.2 离散傅里叶变换的基本性质

第3章 离散傅里叶变换(DFT)
3.2 离散傅里叶变换的基本性质
3.2.1 线性性质
如果x1(n)和x2(n)是两个有限长序列, 长度分别为N1 和N2。 若 y(n)=ax1(n)+bx2(n) 式中a、 b为常数. 取N=max[N1, N2] , 则y(n)的N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2 (k), 0≤k≤N-1 (3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/446532898.html,
X

第3章 离散傅里叶变换(DFT)
3.2.2
循环移位性质
1. 序列的循环移位 设x(n)为有限长序列, 长度为N, 则x(n)的循环 移位定义为 y(n)=x((n+m))NRN(n) (3.2.2)
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/446532898.html,
X

第3章 离散傅里叶变换(DFT) x(n)
n 0 1 2 3 4 5 6 7
% x ( n)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

n
% x(n + 2)

-7 -6 -5 -4 -3 -2 -1
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13
n
图 3.2.1
循环移位过程示意图 (N=8)
X
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/446532898.html,

傅里叶变换的应用.

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换; 傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面); 时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变; 频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输); 卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现 在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化

离散傅里叶变换性质证明

1. [][]()()j j ax n by n aX e bX e ωω+?+ Proof: ([][])[][]()() j n j n j n j j ax n by n e a x n e b y n e aX e bX e ωωωωω∞ --∞ ∞∞ ---∞-∞ +=+=+∑∑∑ 2. (1)[]()d j n j d x n n X e e ωω--? Proof: ()[][].()d d j n d n j n n j n d n j n j x n n e x n n e e X e e ωωωωω∞-=-∞∞---=-∞--=-=∑ ∑ (2) 00()[]()j n j e x n X e ωωω-? Proof: 000()()[][]()j n j n j n j n n e x n e x n e X e ωωωωωω∞∞ ----=-∞=-∞==∑ ∑ 3. []()j x n X e ω--? Proof: ()[][]()j n j n j n n x n e x n e X e ωωω∞∞ ---=-∞=-∞-=-=∑ ∑ if []x n is real ()j X e ω-=*()j X e ω 4. ()[]j dX e nx n j d ωω? Proof: ()[]() ()[]()[]j j n n j j n n j j n n X e x n e dX e jn x n e d dX e j nx n e d ωωωωωωωω∞-=-∞∞-=-∞∞-=-∞=?=-?=∑∑∑

5. (1)22 1|[]||()|2j n x n X e d πωπωπ∞ =-∞-=∑ ? Proof: 2*2221 |()|21 ()()21 [][]21 |[]|21 |[]| 2|[]|j j j j n j n n n n n n X e d X e X e d x n e x n e d x n d x n d x n πωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞=-∞ -∞=-∞ -∞=-∞ =====??∑∑?∑?∑ ?∑ (2) **1[][]()()2j j n x n y n X e Y e d π ωωπωπ∞=-∞-=∑ ? Proof: *****1 ()()21 ()()21 [][]21[][]21 [][] 2[][] j j j j j n j n n n n n n n X e Y e d X e Y e d x n e y n e d x n y n d x n y n d x n y n πωωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞ =-∞-∞ ∞=-∞ =-∞-∞=-∞====??∑∑?∑?∑ ∑?∑ 6. []*[]()()j j x n y n X e Y e ωω? Proof:

基于Labview的快速傅里叶变换的实现

一、概述 FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。DFT对于X(K)的每个K值,需要进行4N次实数相乘和(4N-2)次相加,对于N个k值,共需N*N乘和N(4N-2)次实数相加。改进DFT算法,减小它的运算量,利用DFT中的周期性和对称性,使整个DFT的计算变成一系列迭代运算,可大幅度提高运算过程和运算量,这就是FFT的基本思想。虽然它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。 虽然FFT大幅度地降低了常规傅立叶变换的运算量,但对于一般的单片机而言,处理FFT运算还是力不从心。主要原冈是FFT计算过程中的蝶形运算是复数运算,要分开实部和虚部分别计算。在这里利用LabVIEW来实现快速傅立叶变化。LabVIEW是一种程序开发环境,类似于BASIC开发环境;但LabVIEW与其它计算机语言相比,有一个特别重要的不同点:其它计算机语言都是采用基于文本的语言产生代码行;而LabVIEW使用图形化编程语言G编写程序,产生.的程序是框图的形式。像C或BASIC一样,LabVIEW也是通用的编程系统,有一个可完成任何编程任务的庞大的函数库。LabVIEW的函数库包括数据采集、GPIB、串口控制、数据分析、数据显示及数据存储等。LabVIEW也有传统的程序调试工具,如设置断点、以动画方式显示数据及其通过程序(子V1)的结果、单步执行等,便于程序的调试。 二、方案论证 1:单一频率正弦信号的FFT 采用Labview的信号产生模板提供的常用的信号发生器,从中找到正弦信号发生器,使其产生一个正弦信号。将此正弦信号输入到实数FFT.vi中的X端进行快速傅里叶变换处理,使时域信号转换为频域信号。然后经过复数至极坐标转换后将其显示出来。其结构如图1所示。 图1 单一频率正弦信号的FFT结构图

离散傅里叶变换

第三章离散傅里叶变换 离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理。但是,直至上个世纪六十年代,由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。 § 3-1 引言 一.DFT是重要的变换 1.分析有限长序列的有用工具。 2.在信号处理的理论上有重要意义。 3.在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在计算机上实现。 二.DFT是现代信号处理桥梁 DFT要解决两个问题: 一是离散与量化, 二是快速运算。 傅氏变换 § 3-2 傅氏变换的几种可能形式 一.连续时间、连续频率的傅氏变换-傅氏变换

对称性: 时域连续,则频域非周期。 反之亦然。 二.连续时间、离散频率傅里叶变换-傅氏级数 时域信号 频域信号 连续的 非周期的 非周期的 连续的 t ? ∞ ∞ -Ω-= Ωdt e t x j X t j )()(:? ∞ ∞ -ΩΩ Ω= d e j X t x t j )(21 )(:π 反

*时域周期为Tp, 频域谱线间隔为2π/Tp 三.离散时间、连续频率的傅氏变换 --序列的傅氏变换 p T 0= Ω时域信号 频域信号 连续的 周期的 非周期的 离散的 ? -Ω-= Ω2 /2 /00)(1 )(:p p T T t jk p dt e t x T jk X 正∑ ∞ -∞ =ΩΩ= k t jk e jk X t x 0)()(:0反

实验四 离散傅里叶变换的性质

实验四离散傅里叶变换的性质 一、实验目的 1. 熟悉matlab软件中离散傅里叶变换的实现方法及FFT函数的使用方法; 2. 通过软件仿真,加深对离散傅里叶变换性质的理解。 二、实验内容 1. 验证离散傅里叶变换的线性性质; 2. 掌握用matlab实现圆周移位的方法; 3. 验证圆周卷积与线性卷积的关系。 三、实验步骤 1. 验证线性性质 设两个有限长序列分别为xn1=[3,1,-2,2,3,4],xn2=[1,1,1,1],做4DFT[xn1]+2DFT[xn2],及DFT[4xn1+2xn2]的运算,比较它们的结果。 代码如下: clear,N=20;n=[0:1:N-1]; xn1=[3,1,-2,2,3,4];n1=0:length(xn1)-1; %定义序列xn1 xn2=[1,1,1,1];n2=0:length(xn2)-1; %定义序列xn2 yn1=4*xn1;yn2=2*xn2;[yn,ny]=seqadd(yn1,n1,yn2,n2); %计算4xn1+2xn2 xk1=fft(xn1,N);xk2=fft(xn2,N); %分别求DFT[xn1] 和DFT[xn2] yk0=4*xk1+2*xk2; %计算4DFT[xn1]+2DFT[xn2] yk=fft(yn,N); %计算DFT[4xn1+2xn2] subplot(2,1,1);stem(n,yk0);title('傅里叶变换之和') %显示4DFT[xn1]+2DFT[xn2] subplot(2,1,2);stem(n,yk);title('序列和之傅里叶变换') %显示DFT[4xn1+2xn2] 运行结果如图1所示,从图中可知,用两种方法计算的DFT完全相等,所以离散傅里叶变换的线性性质得到验证。

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

傅里叶变换及其在图像处理中的应用

傅里叶变换及其在数字图像处理中的应用 王家硕 学号:1252015 一、 Fourier 变换 1. 一维连续傅里叶变换 设 f (x)为x 的实变函数,如果f (x)满足下面的狄里赫莱条件: (1)具有有限个间隔点。 (2)具有有限个极点。 (3)绝对可积。 则 f (x )的傅里叶变换(Fourier Transformation ,FT )定义为: Fourier 正变换:dt e t f t f f F t j ? +∞ ∞ --==ωω)()]([)(; Fourier 逆变换:ωωπ ωd e f t F f t f t j ? ∞ +∞ ---= =)(21)]([)(1 , 式中:1-= j ,ω 为频域变量。 f (x )与F (w )构成傅里叶变换对,可以证明傅里叶变换对总是存在的。由于f (x )为实函数,则它的傅里叶变换F (w )通常是复函数,于是F (w )可写成 F (w ) = R (w ) + j I (w ) (1) 式中:R (w )和I (w )分别是F (w )的实部和虚部。公式1可表示为指数形式: 式中: F (w ) 为f (x )的傅里叶幅度谱,f (w )为f (x )的相位谱。 2. 二维连续傅里叶变换 如果二维函数f (x , y )是连续可积的,即∞

数字信号处理基于MATLAB的离散傅里叶变换的仿真

数字信号处理设计报告书 课题名称 应用MATLAB 对信号进行频谱分析及 滤波 姓 名 何 晨 学 号 20076089 院、系、部 电气系 专 业 电子信息工程 指导教师 刘鑫淼 2010年 6 月27日 ※※※※※※※※※ ※※ ※ ※ ※※ ※※ ※※※※※ ※※ 2007级数字信号处理 课程设计

应用MATLAB对信号进行频谱分析及滤波 20076089 何晨 一、设计目的

要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 二、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 三、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N 有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: X(k)=DFT[x(n)]= kn N W N n n x ∑ - = 1 ) ( ,k=0,1,...,N-1 N j e N Wπ2- = 逆变换:x(n) =IDFT[X(k)]= kn N W k X N n N - ∑ - = 1 ) ( 1 ,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 四、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号

傅里叶变换公式

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。 非确定性信号(随机信号):给定条件下 取值是不确定的

按取值情况分类:模拟信号,离散信号数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号 频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式 周期信号时域表达式 T:周期。注意n的取值:周期信号“无始无终” #

傅里叶级数的三角函数展开式 (n=1, 2, 3,…) 傅立叶系数: 式中T--周期;0--基频, 0=2/T。 三角函数展开式的另一种形式:周期信号可以看作均值与一系列谐波之和--谐波分析法 频谱图 周期信号的频谱三个特点:离散性、谐波性、收敛性 例1:求周期性非对称周期方波的傅立叶级数并画出频谱图 解: 解: 信号的基频 傅里叶系数 n次谐波的幅值和相角 最后得傅立叶级数 频谱图 幅频谱图相频谱图

二、周期信号傅里叶级数的复指数形式 欧拉公式 或 傅立叶级数的复指数形式 复数傅里叶系数的表达式 其中a n,b n的计算公式与三角函数形式相同,只是n包括全部整数。 一般c n是个复数。 因为a n是n的偶函数,b n是n的奇函数,因此# 即:实部相等,虚部相反,c n与c-n共轭。 c n的复指数形式 共轭性还可以表示为 即:c n与c-n模相等,相角相反。 傅立叶级数复指数也描述信号频率结构。它与三角函数形式的关系 对于n>0

数字信号处理 离散傅里叶变换的性质及应用

数字信号处理实验 题目:离散傅里叶变换的性质及应用 学院: 专业: 学生姓名:班级/学号 指导老师: 一、实验目的 1.了解DFT的性质及其应用 2.熟悉MATLAB编程特点 二、实验仪器及材料 计算机,MATLAB软件

三、实验内容及要求 1.用三种不同的DFT 程序计算8()()x n R n =的256点离散傅里叶变换()X k ,并比较三种程序计算机运行时间。 (1)编制用for loop 语句的M 函数文件dft1.m ,用循环变量逐点计算()X k ; (2)编写用MATLAB 矩阵运算的M 函数文件dft2.m ,完成下列矩阵运算: 000 0121 012(1) (1)(1) (0)(0) (1)(1) (1)(1) N N N N N N N N N N N N N N N N N X x W W W W X x W W W W x N X N W W W W -----?????? ????????????=???????????? --???????????? (3)调用fft 库函数,直接计算()X k ; (4)分别调用上述三种不同方式编写的DFT 程序计算序列()x n 的离散傅里叶变换 ()X k ,并画出相应的幅频和相频特性,再比较各个程序的计算机运行时 间。 M 函数文件如下: dft1.m: function[Am,pha]=dft1(x) N=length(x); w=exp(-j*2*pi/N); for k=1:N sum=0; for n=1:N sum=sum+x(n)*w^((k-1)*(n-1)); end Am(k)=abs(sum); pha(k)=angle(sum); end dft2.m: function[Am,pha]=dft2(x) N=length(x); n=[0:N-1];

MATLAB离散傅里叶变换及应用资料

MATLAB 离散傅里叶变换及应用 一、DFT 与IDFT 、DFS 、DTFT 的联系 1、 序列的傅里叶变换(DFT)和逆变换(IDFT) 在实际中常常使用有限长序列。如果有限长序列信号为x(n),则该序列的离散傅里叶变换对可以表示为 1N ,0,1,k , W x(n)DFT [x(n)]X(k)1 N 0n nk N -===∑-= (12-1) 1N ,0,1,n , W X(k)N 1IDFT[X(k)]x(n)1N 0 k nk N -===∑-=- (12-2) 已知x(n)=[0,1,2,3,4,5,6,7],求x(n)的DFT 和IDFT 。要求: (1)画出序列傅里叶变换对应的|X(k)|和arg [X(k)]图形。 (2)画出原信号与傅里叶逆变换IDFT [X(k)]图形进行比较。 程序源代码: xn=[0,1,2,3,4,5,6,7]; N=length(xn); n=0:(N-1);k=0:(N-1); Xk=xn*exp(-j*2*pi/N).^(n'*k); x=(Xk*exp(j*2*pi/N).^(n'*k))/N; subplot(2,2,1),stem(n,xn); title('x(n)');

subplot(2,2,2),stem(n,abs(x)); title('IDFT|X(k)|'); subplot(2,2,3),stem(k,abs(Xk)); title('|X(k)|'); subplot(2,2,4),stem(k,angle(Xk)); title('arg|X(k)|'); 运行图如下: x(n) IDFT|X (k)| 2 4 6 8 |X (k)| 2 4 6 8 arg|X (k)| 从得到的结果可见,与周期序列不同的是,有限长序列本身是仅有N 点的离散序列,相当于周期序列的主值部分。因此,其频谱也对应序列的主值部分,是含N 点的离散序列。 2、 序列DFT 与周期序列DFS 已知周期序列的主值x(n)=[0,1,2,3,4,5,6,7],

离散傅里叶变换的分析与研究 开题报告

本科学生毕业论文(设计)开题报告题目离散傅里叶变换的分析与研究 姓名XX 专业电子信息工程 学号XXXXXXXXXX 学院物理与电子信息学院 指导教师XXX 淮北师范大学教务处制

一、本课题研究现状及可行性分析 离散傅里叶变换,其实质是有限长序列傅立叶变换的有限点离散采样,从而实现了频域离散化,使数字信号处理可以在频域采用数值运算的方法进行,这样就大大增加了数字信号处理的灵活性。更为重要的是,离散傅里叶变换有多种快速算法,统称为快速傅里叶变换,从而使信号的实时处理和设备的简化得以实现。所以说,离散傅立叶变换不仅在理论上有重要意义,而且在各种信号的处理中亦起着核心作用。 离散傅里叶变换在数字通信、语音信号处理、图像处理、功率谱估计、系统分析与仿真、雷达信号处理、光学、医学、地震以及数值分析等各个领域都有着广泛的应用。 目前,我们已具备有关的大量参考文献和基本的原始程序,对本论文的开展不存在根本性的问题,我们的研究方法是可行的。 二、本课题研究的关键问题及解决问题的思路 关键问题: 线性卷积与循环卷积之间的关系,及对信号的频谱分析。并在MA TLAB环境下的编程实现。 解决思路: 在理解和掌握线性卷积,循环卷积以及信号频谱分析的基础上,用MA TLAB语言编写线性卷积,循环卷积以及频谱分析的设计程序,最后通过仿真结果验证理论的正确性。 三、论文纲要 1 绪论 1.1 DFT的定义 1.2 DFT与傅里叶变换和Z变换的关系 2 DFT的基本性质 2.1 线性性质 2.2 循环卷积性质 2.3循环卷积定理 3 DFT的应用 3.1 用DFT计算线性卷积 3.2 用DFT对信号进行谱分析 3.3 用DFT进行谱分析的误差问题

离散傅里叶变换

第3章 离散傅里叶变换 在第二章讨论了利用序列的傅里叶变换和z 变换来表示序列和线性时不变系统的 方法,公式分别为:∑∞ -∞ =-= n n z n x z X )()(和∑∞ -∞ =-= n jwn jw e n x e X )()(。对于有限长序列, 也可以用序列的傅里叶变换和z 变换来分析和表示,但还有一种方法更能反映序列的有限长这个特点,即离散傅叶里变换。这就是我们这一章要讨论的问题。离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。这一章讨论的问题有: 1、 傅里叶变换的几种可能形式:至今学过很多种傅里叶变换形式,到底之间有什么 不 同,需要分析一下; 2、 周期序列的离散傅里叶级数(DFS):通常的周期信号都可以表示成傅里叶级数,然 后根据傅里叶级数可以得到傅里叶变换;也就是说傅里叶级数与傅里叶变换之间有一定的关系; 3、 有限长序列的离散傅里叶变换(DFT):这是我们的重点,我们会对其性质等作分析 讨论; 4、 DFT 的应用:学习了这种傅里叶变换,怎么用?计划作一个实验。 3.1 傅里叶变换的几种形式 傅里叶变换就是建立以时间为自变量的"信号"与以频率为自变量的"频率函数"之间的某种变换关系。都是指在分析如何综合一个信号时,各种不同频率的信号在合成信号时所占的比重。 如连续时间周期信号)()(mT t f t f +=,可以用指数形式的傅里叶级数来表示,可以分解成不同次谐波的叠加,每个谐波都有一个幅值,表示该谐波分量所占的比重。 傅里叶表示形式为:∑∞ -∞ =Ω= n t jn n e F t f )(? - Ω-= ?2 2 )(1T T t jn n dt e t f T F (Fn 离散、衰减、 非周期)。例如周期性矩形脉冲,其频谱为 ,1,0,/) /sin(±==n T n T n T F n πτπττ。画出图 形。

相关主题
文本预览
相关文档 最新文档