当前位置:文档之家› 专题二方程与不等式教案

专题二方程与不等式教案

专题二方程与不等式教案
专题二方程与不等式教案

课题:方程与不等式

一、教学目标:

1、理解一次方程、一元二次方程和分式方程及一元一次不等式的概念;

2、重点掌握三种方程和一元一次不等式的解法;

3、掌握方程及不等式的应用。

二、教学重点、难点:

重点:方程及不等式的解法

难点:方程及不等式的应用

三、教学过程:

1、课堂引入:(15—20分钟)

(1)上节知识回顾:

各位同学,大家好!首先,让我们来回顾上节课所学的内容——数与式。数与式的重难点是关于实数的运算和整式的运算,所以我们必须牢牢掌握所有的运算公式。①01(0)a

a ②1

(0,)p p a a p a

是正整数③()

(0)()

m

m m a m a a a m 为偶数为奇数(奇负偶正)

幂的运算:

①同底数幂相乘

(,)m n m n a a a m n 都是整数②幂的乘方

(,)n m mn a a m n 都是整数③积的乘方()n n n ab a

b n 为整数④同底数幂相除(,)

m n m n a a a m n 都为整数乘法公式:

①平方差公式

22a b a b a b ②完全平方公式222

2a b

a a

b b ③常用恒等变形

222222224a b a b ab a b ab a b a b ab

(2)本讲导入:本讲我们要复习的是方程与不等式,接下来我们来看看方程与不等式在中考当中的题型及考察点:

一般情况下,选择题,填空题各1题(考察方程或不等式的应用)

大题1题(考察解方程或解不等式)

所以,本讲的重难点就是解方程或不等式及方程或不等式的应用

2、做课前检测试卷(

20—30分钟)

(1)做课前检测试卷(2)请第一位做好的同学在白板上书写最后一题大题解题步骤

(3)按照出错率由高到低依次讲解(老师讲解)

3、复习重难点:(60分钟)

(1)解一元一次方程的步骤:

①去分母②去括号③移项④合并同类项⑤系数化为

1(2)一元二次方程的解法:

①直接开平方法:适合于

20x a b b 或22ax b cx d 形式的方程②因式分解法:把方程化成

0ab 的形式,得0a 或0

b ③公式法:当240b a

c 时,242b b ac

x a

④配方法:配成完全平方的形式,再利用①

(3)

分式方程的解法:方程两边同乘分式的最简公分母,约去分母,化为整式方程,在求根,验根(4)一元一次不等式的解法:

①去分母②去括号③移项④合并同类项⑤系数化为

1

4、做课堂达标试卷(

20—30分钟)(1)做课堂达标试卷

(2)请第一位做好的同学在白板上书写最后一题大题解题步骤

(3)按照出错率由高到低依次讲解(学生讲解,老师补充)四、反思与总结:

本讲优点:与学生之间的课堂互动较第一堂课自然很多,知识点的讲解也能收放自如不足之处:根据考生做完试卷的结果来看,在出题难度方面还需斟酌,个别题难题大,可以删除

【新教材】新人教A版必修一 均值不等式及其应用 教案

均值不等式及其应用 课程目标 知识提要 均值不等式及其应用 均值不等式及其应用的知识主要包含:均值不等式的含义和均值不等式的应用及实际应用.均值不等式是指:若a,b >0,则 2 1a +1b ?√ab ?a +√ab +b ?a +b ?2(a 2+ab +b 2)?√a 2+b 2?a 2+b 2 . 其中21a + 1b 称为调和平均数,√ab 称为几何平均数, a+√ab+b 3 称为希罗平均数, a+b 2 称为代数平均数, 2(a 2+ab+b 2)3(a+b) 称为形心平均数,√ a 2+ b 2 2 称为平方平均数, a 2+ b 2a+b 称为反调和平均数. 其中常用的是: 2 1a +1b ?√ab ?a +b 2?√a 2+b 2 2.

想要利用均值不等式求代数式的最值,就必须构造出积为定值的若干式子的和的形式或者和为定值的若干式子的积的形式.在利用均值不等式的时候,还需要注意考虑等号取到的条件,对式子进行系数的调整. 均值不等式的含义 ?均值定理如果a,b∈R+,那么a+b 2 ?√ab.当且仅当a=b时,等号成立.对任意两个正 实数a,b,数a+b 2 叫做a,b的算术平均值,数√ab叫做a,b的几何平均值.均值不等式可以表达为:两个正实数的算术平均值大于或等于它的几何平均值.均值不等式也称为基本不等式.两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值. 均值不等式的应用 基本不等式的应用非常广泛,如求函数最值,证明不等式,比较大小,求取值范围,解决实际问题等.其中,求最值是其最重要的应用.利用均值不等式求最值时应注意“一正,二定,三相等”,三者缺一不可. 均值不等式的实际应用 ?利用基本不等式解决实际问题的一般步骤: ①正确理解题意,设出变量,一般可以把要求最大(小)值的变量定为函数; ②建立相应的函数关系式,把实际问题抽象成函数的最大值或最小值问题; ③在定义域内,求出函数的最大值或最小值; ④正确写出答案. 精选例题 均值不等式及其应用 1. 已知x>0,则f(x)=x+2 x 的最小值为. 【答案】2√2 【分析】因为x>0,所以x+2 x ?2√x?2 x =2√2,当且仅当x=√2时取等号.

《基本不等式》教案

《基本不等式》教案 教学三维目标: 1、知识与能力目标:掌握基本不等式及会应用基本不等式求最值. 2、过程与方法目标:体会基本不等式应用的条件:一正二定三相等;体会应用基本不等式求最值问题解题策略的构建过程;体会习题的改编过程. 3、情感态度与价值观目标:通过解题后的反思,逐步培养学生养成解题反思的习惯;通过变式练习,逐步培养学生的探索研究精神. 教学重点、难点: 重点:基本不等式在解决最值问题中的应用. 难点:利用基本不等式失效(等号取不到)的情况下采用函数的单调性求解最值. 学情分析与学法指导: 基本不等式是求最值问题中的一种很重要的方法,但学生在运用过程中“一正、二定、三相等”的应用条件一方面容易被忽视,另一方面某些问题看似不符合前面的三个条件,但经过适当的变形又可以转化成运用基本不等式的类型学生解决起来有一定的困难。在本节高三复习课中,结合学生的实际编制了教学案,力求在学生的“最近发展区”设计问题,逐步启发、引导学生课前自主预习、小组合作学习. 教学过程: 一、基础梳理 基本不等式:如果a,b 是正数,那么2a b + (当且仅当a b 时取""=号 ) 代数背景:如果22a b + 2ab (,,a b R ∈当且仅当a b 时取""=号 )(用代换思 想得到基本不等式) 几何背景:半径不小于半弦。 常见变形: (1)ab 22 2a b + (2)222a b + 2 2a b +?? ??? (3)b a a b + 2(a ,b 同号且不为0) 3、算术平均数与几何平均数

如果a 、b 是正数,我们称 为a 、b 的算术平均数,称 的a 、b 几何平均数. 4、利用基本不等式求最值问题(建构策略) 问题: (1)把4写成两个正数的积,当这两个正数取什么值时,它们的和最小? (2)把4写成两个正数的和,当这两个正数取什么值时,它们的积最大? 请根据问题归纳出基本不等式求解最值问题的两种模式: 已知x ,y 都大于0则 (1)“积定和最小”:如果积xy 是定值P ,那么当 时,和x +y 有最小值 ; (2)“和定积最大”:如果和x +y 是定值S ,那么当 时,积xy 有最大值 . 二、课前热身 1、已知,(0,1)a b a b ∈≠且,下列各式最大的是( ) A. 22a b + B. C. 2ab D. a b + 2、已知,,a b c 是实数,求证222a b c ab bc ac ++≥++ 3、.1,0)1(的最小值求若x x x +> .)1(,10)2(的最大值求若x x x -<< 4、大家来挑错 (1)2121=?≥+ x x x x 21的最小值是x x +∴ (2)2121,2=?≥+ ≥x x x x x 则 21,2的最小值是时x x x +≥∴ 5、的最小值求若31,3-+ >a a a 三、课堂探究 1、答疑解惑 方法:小组提交预习中存在的疑问,由其他组学生或教师有针对性地答疑。 2、典例分析 例1、设02,x <<求函数y =. 例2、41,3lg lg x y x x >=++ 设求函数的最值. 变式1:将条件改为01x << 变式2:去掉条件1x > 变式3:将条件改为1000≥x 例3、若正数,3,a b ab a b ab =++满足则的取值范围是 . 变式:求a b +的取值范围.

方程与不等式之一元二次方程技巧及练习题含答案

方程与不等式之一元二次方程技巧及练习题含答案 一、选择题 1.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 【答案】D 【解析】 试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ), 2013年的产量为100(1+x )(1+x )=100(1+x )2, 即所列的方程为100(1+x )2=144, 故选D . 点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键. 2.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元,下面所列方程中正确的是( ) A .168(1+a %)2=128 B .168(1-a %)2=128 C .168(1-2a %)=128 D .168(1-a 2%)=128 【答案】B 【解析】 【分析】 【详解】 解:第一次降价a%后的售价是168(1-a%)元, 第二次降价a%后的售价是168(1-a%)(1-a%)=168(1-a%)2; 故选B. 3.将方程()2 2230x x x m n --=-=化为的形式,指出,m n 分别是( ) A .1和3 B .-1和3 C .1和4 D .-1和4 【答案】C 【解析】 【分析】 此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数. 【详解】 移项得x 2-2x=3, 配方得x 2-2x+1=4, 即(x-1)2=4, ∴m=1,n=4.

讲义-第二章《方程与不等式》

第二章 方程与不等式 ★2.1一元二次方程 1. 定义:只含有1 个未知数,且未知数的最高次数是2的整式方程。 2. 整式 单项式:数或字母的乘积,如4,a , 4a , 23 aa 2 多项式 :若干个单项式的和或差 如4a+2c ,a-5b 分式:形如a a 的式子,且A ,B 为整式,B 中有字母。 √且√下含有字母的式子 3. 解一元二次方程ax 2+bx+c=0(a ≠0)的常用方法: (1)配方法:二次项系数化为1?移向(把常数项移到方程右边)?配方(方程的两边各加上一次项系数 一半的平方),把方程化成(x+m )2=n 的形式?用直接开平方的方法求解。 (2)求根公式法:a =?a ±√a 2?4aa 2a 注意条件△=b 2-4ac >0时,方程有2个不相等的实数根,△=b 2-4ac=0时,方程有2个相等的实数根,△=b 2-4ac <0时,方程无实数根。 (3)因式分解法或直接开平方法:适用于缺少一次项或常数项的一元二次方程。如:x 2=9x , 4 x 2=5等 4. 注意:一元二次方程的实数根或者有2个,或者没有。例如x 2=2x ,不能把x 约去,否则 会丢根。 ★2.2不等式 1. (复习)任意两个实数a,b 具有的基本性质:a-b >0?a >b a-b <0?a <b a-b=0?a=b 2. 比较两个实数或代数式的大小的方法:通常用做差比较法。 方法是:把要比较的两个实数(或代数式)做差,然后进行化简,或配方,或因式分解,直到能判断实数或代数式的符号为止,最后根据结果的符号来判断大小。 3.不等式的基本性质: (1)a >b ?a+c >b+c (或a-c >b-c ) 不等式的两边同时加上或减去同一个整式,不等号的方向不变。 (2)a >b ,c >0?ac >bc (或a a >a a ) 不等式的两边同时乘以或除以同一个正数,不等号的方向不变。 (3)a >b ,c <0?ac <bc (或a a <a a ) 不等式的两边同时乘以或除以同一个负数,不等号的方向改变。4.5. 6.解题时要理解“且”和“或”的关系,且是取交集,表示都得满足,或是取并集,表示都可以满足。例如:x-3<0或x+4≤0的解集是? 7.在解8.一元二次不等式(一般形式ax 2+bx+c >0或ax 2+bx+c >0,a ≠0)的解法:一元二次不等 式经过配方再开方,变成含有绝对值的不等式,最后转化成一元一次不等式(组),从而求出解集。 当m >0时,X 2≤m 2?|x|≤m ,即-m ≤x ≤m X 2≥m 2?|x|≥m ,即x ≥m 或x ≤-m

高中数学_均值不等式教学设计学情分析教材分析课后反思

必修5 第三章 不等式 3.2 均值不等式(新授课) 一、教学目标确立依据 1.课程标准要求 (,0)2 a b a b +≤ ≥ ①探索并了解基本不等式的证明过程; ②会用基本不等式解决简单的最大(小)问题. 2.课程标准解读 对上述①的解读:首先给学生创设探索的平台得到基本不等式,同时给学生机会让学生用所学方法证明基本不等式; 对上述②的解读:首先教师用问题的方式搭建平台让学生发现基本不等式的限制条件,同时教师由浅入深给学生探究最值的平台,由理论到实践操作将最值问题与实际问题挂钩,让学生在探究和实践过程中学会用基本不等式解决简单的最大(小)问题. 3.学情分析与教材分析 学生已经学习“不等式的性质”、“不等式的解法”及“线性规划”的基础上对不等式的进一步研究.知晓不等式证明以及函数求最值的某些方法. “均值不等式” 是必修5的重点内容,在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了分类讨论、化归等重要数学思想,有利于培养学生良好的思维品质. 为了帮助学生构建知识体系,教科书分三个层面来展现:第一层面,从简单的不等式证明入手,在降低难度的基础上让学生体会基本不等式在证明不等式总中的作用;第二层面,通过应用题,体现基本不等式在实际问题的应用,以及让学生体会简单的基本不等式的应用;第三层面,通过分母是一次函数,分子是二次函数的分式形式,循序渐进的增加难度,让学生学会判断条件学会拼凑或者添项转化为公式所需要的条件.本课正处于第一、第二个层面以及第三层面的初级阶段. 本节内容体现了数学的工具性、应用性,同时也渗透了转化与化归、数形结

数学苏教版必修5基本不等式(教案)

基本不等式(一) 教学目标: 1. 学会推导并掌握均值不等式定理; 2. 能够简单应用定理证明不等式并解决一些简单的实际问题。 教学重点:均值不等式定理的证明及应用。 教学难点:等号成立的条件及解题中的转化技巧。 教学过程: 重要不等式:如果a 、b ∈R ,那么a 2+b 2 ≥2ab (当且仅当a =b 时取“=”号) 证明:a 2+b 2-2ab =(a -b )2 当a ≠b 时,(a -b )2>0,当a =b 时,(a -b )2=0 所以,(a -b )2≥0 即a 2+b 2 ≥2ab 由上面的结论,我们又可得到 定理:如果a ,b 是正数,那么 a +b 2 ≥ab (当且仅当a =b 时取“=”号) 证明:∵(a )2+(b )2≥2ab 4a +b ≥2ab 即 a +b 2 ≥ab 显然,当且仅当a =b 时,a +b 2 =ab 说明:1)我们称a +b 2 为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而, 此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2)a 2+b 2≥2ab 和a +b 2 ≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数. 3)“当且仅当”的含义是充要条件. 4)数列意义 问:a ,b ∈R -? 例题讲解: 例1 已知x ,y 都是正数,求证: (1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14 S 2 证明:因为x ,y 都是正数,所以 x +y 2 ≥xy (1)积xy 为定值P 时,有x +y 2 ≥P ∴x +y ≥2P 上式当x =y 时,取“=”号,因此,当x =y 时,和x +y 有最小值2P . (2)和x +y 为定值S 时,有xy ≤S 2 ∴xy ≤ 14 S 2 上式当x=y 时取“=”号,因此,当x=y 时,积xy 有最大值14 S 2.

初三数学中考复习专题2_方程与不等式知识点总结与练习

方程与不等式 一、方程与方程组 二、不等式与不等式组 知识结构及容: 1几个概念 2一元一次方程 (一)方程与方程组 3一元二次方程 4方程组 5分式方程 6应用 1、 概念:方程、方程的解、解方程、方程组、方程组的解 2、 一元一次方程: 解方程的步骤:去分母、去括号、移项、合并同类项、系数化一(未知项系数不能为零) 例题:.解方程: (1) 3131=+- x x (2)x x x -=--+22 1 32 解: (3) 关于x 的方程mx +4=3x +5的解是x =1,则m = ______________. 解: 3、一元二次方程: (1) 一般形式:()002 ≠=++a c bx ax (2) 解法: 直接开平方法、因式分解法、配方法、公式法 求根公式()002 ≠=++a c bx ax () 042422 ≥--±-= ac b a ac b b x 例题: ①、解下列方程:

(1)x 2-2x =0; (2)45-x 2=0; (3)(1-3x )2=1; (4)(2x +3)2-25=0. (5)(t -2)(t +1)=0; (6)x 2+8x -2=0 (7 )2x 2-6x -3=0; (8)3(x -5)2=2(5-x ) 解: ② 填空: (1)x 2+6x +( )=(x + )2; (2)x 2-8x +( )=(x - )2; (3)x 2+x +( )=(x + )2 (3)判别式△=b 2-4ac 的三种情况与根的关系 当0>?时 有两个不相等的实数根 ,

当0=?时 有两个相等的实数根 当0-q p B 、02 >-q p C 、042 ≥-q p D 、 02≥-q p (4)根与系数的关系:x 1+x 2=a b - ,x 1x 2=a c 例题:已知方程011232=-+x x 的两根分别为1x 、2x ,则 2 11 1x x + 的值是( ) A 、11 2 B 、211 C 、11 2- D 、2 11- 4、 方程组: ????→????→代入消元代入消元 加减消元加减消元 三元一次方程组二元一次方程组一元一次方程 二元(三元)一次方程组的解法:代入消元、加减消元 例题:解方程组? ? ?=-=+.82, 7y x y x 解

数学中考专题二——《方程与不等式》复习讲义

热点专题二 方程与不等式 【考点聚焦】 “方程与不等式”包括方程与方程组、不等式与不等式组两方面内容.“方程与不等式”均存在标准形式,其解法具有程序式化的特点,是一种重要的数学基本技能.此外,“方程与不等式”也是刻画现实世界的一个有效的数学模型,在现实生活中存在大量的“方程与不等式”问题. “方程与不等式”是初中数学的核心内容之一.就解法与自身的应用来说,“方程与不等式”是初中数学最重要的基础知识之一,同时也是学习函数等知识的基础;就所蕴含的“方程思想和转化思想”而言,它更是培养同学们分析问题和解决问题思想方面的重要源泉和场所. 同时对“方程与不等式”的考查,一方面注重对其解法和与其它知识点联系的考查,另一方面更注重对其与现实生活的联系,加强对解决简单实际问题的数学考查. 在学业考试中所有题型均可出现,题量不小,而且难度将随着题型变化而变化. 【热点透视】 热点1:设计重结果的问题考查方程与不等式的有关概念 例1(1)二元一次方程组320x y x y -=-??+=? 的解是( ) (A )12x y =-??=? (B)12 x y =??=-? (C )12x y =-??=-? (D )21 x y =-??=? (2)不等式组24010x x -

【新教材】 新人教A版必修一 基本不等式 教案

基本不等式 1.了解基本不等式的证明过程,理解基本不等式及等号成立的条件. 2.会用基本不等式证明简单的不等式及解决简单的最大(小)值问题. 知识梳理 1.基本不等式错误!≥错误! (1)基本不等式成立的条件:a〉0,b〉0 . (2)等号成立的条件:当且仅当a=b时不等式取等号. 2.几个重要不等式 (1)a2+b2≥2ab(a,b∈R); (2)错误!+错误!≥ 2 (a,b同号); (3)ab≤(错误!)2(a,b∈R); (4)错误!≥(错误!)2。 3.基本不等式求最值 (1)两个正数的和为定值,当且仅当它们相等时,其积最大. (2)两个正数的积为定值,当且仅当它们相等时,其和最小. 利用这两个结论可以求某些函数的最值,求最值时,要注意“一正、二定、三相等”的条件. 热身练习 1.若a,b∈R,且ab〉0,则下列不等式中,恒成立的是(D) A.a2+b2>2ab B.a+b≥2错误! C。错误!+错误!〉错误! D。错误!+错误!≥2 A、C中,a=b时不成立,B中,当a与b均为负数时不成立,而对于D,利用基本不等式x+y≥2错误!(x>0,y〉0)成立,故选D. 2.已知a,b为正数,则下列不等式中不成立的是(D) A.ab≤错误! B.ab≤(错误!)2 C。错误!≥错误! D。错误!≥错误! 易知A,B成立,

对于C ,因为a 2+b 2≥2ab ,所以2(a 2+b 2)≥(a +b )2, 所以错误!≥(错误!)2,所以错误!≥错误!,故C 成立. 对于D,取a =4,b =1,代入可知,不等式不成立,故D 不成立. 由以上分析可知,应选D. 3.周长为60的矩形面积的最大值为(A) A .225 B .450 C .500 D .900 设矩形的长为x ,宽为y , 则2(x +y )=60,所以x +y =30, 所以S =xy ≤(x +y 2)2 =225,即S max =225. 当且仅当x =y =15时取“=",故选A 。 4.设函数f (x )=2x +错误!-1(x <0),则f (x )(A) A .有最大值 B .有最小值 C .是增函数 D .是减函数 f (x )=-[(-2x )+(-错误!)]-1≤-2错误!-1, 当且仅当x =-错误!时,等号成立, 所以函数f (x )有最大值,所以选A 。 5.(2017·山东卷)若直线x a +错误!=1(a >0,b 〉0)过点(1,2),则2a +b 的最小值为 8 。 因为直线错误!+错误!=1(a >0,b 〉0)过点(1,2), 所以1a +错误!=1, 所以2a +b =(2a +b )(错误!+错误!)=4+错误!+错误!≥4+2错误!=8, 当且仅当b a =4a b ,即a =2,b =4时,等号成立. 故2a +b 的最小值为8. 利用基本不等式判断大小关系 下列不等式一定成立的是

第二章-方程与不等式(组)复习教案

普文镇中学2014----2015学年下学期九年级面对面第二章 方程(组)与不等式(组)教案 主备人:唐泽燕 参与教师:兰艳李玉娇郭兵 肖兴斌李朝阳 授课班级: 授课教师:

第一节一次方程式(组) 教学目标: 1.理解方程、方程组,以及方程和方程组的解的概念 2.掌握解一元一次方程和二元一次方程组的一般步骤与方法,体会 “消元”的数学思想,会求二元一次方程的正整数解 3.能根据实际问题中的数量关系,列出一元一次方程或二元一次方 程组来解决简单的实际问题,并能检验解的合理性 教学重点: 解一元一次方程和二元一次方程组的一般步骤和方法 教学难点: 根据实际问题中的数量关系,列出一元一次方程或二元一次方程组学情分析: 教学手段及运用: 多媒体课件,运用多媒体课件让学生更容易观察理解 教学方法运用: 复习知识,教师讲解,学生练习 教学过程: 一、知识点复习 考点一等式的性质(2011版新课标新增内容) 性质1:等式两边加(或减)同一个数(或式子),结果仍相等.如果a=b,

那么 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相 等.如果a=b,那么ac=bc;如果a=b(c≠0),那么 考点二一元一次方程及解法 1. 方程:只含有一个未知数(元),未知数的次数都是1,这样的方 程叫做一元一次方程. 2. 形式:任何一个一元一次方程都可以化成ax+b=0(a、b是常数, 且a≠0)的形式. 3. 方程的解:使方程中等号左右两边相等的未知数的值,这个值就 是方程的解. 4. 一元一次方程的解法 步骤具体做法 去分母在方程两边都乘以各分母的①____________(若未知数的 系数含有分母,则先去分母) 去括号先去小括号,再去中括号,最后去大括号(若方程含有括 号,则去括号) 移项把含有未知数的项都移到方程的一边,其他项都移到 方程的另一边,注意移项时一定要改变符号 合并把方程化成ax=b(a≠0)的形式 系数化为1 方程两边都除以未知数的②______,得到方程的解③__________. 考点三二元一次方程(组)及其解法

《基本不等式》教案(1)(1)

基本不等式 教学目标: 1. 学会推导并掌握均值不等式定理; 2. 能够简单应用定理证明不等式并解决一些简单的实际问题。 教学重点:均值不等式定理的证明及应用。 教学难点:等号成立的条件及解题中的转化技巧。 教学过程: 重要不等式:如果a 、b ∈R ,那么a 2+b 2 ≥2ab (当且仅当a =b 时取“=”号) 证明:a 2+b 2-2ab =(a -b )2 当a ≠b 时,(a -b )2>0,当a =b 时,(a -b )2=0 所以,(a -b )2≥0 即a 2+b 2 ≥2ab 由上面的结论,我们又可得到 定理:如果a ,b 是正数,那么 a +b 2 ≥ab (当且仅当a =b 时取“=”号) 证明:∵(a )2+(b )2≥2ab ∴a +b ≥2ab 即a +b 2 ≥ab 显然,当且仅当a =b 时, a + b 2 =ab 说明:1)我们称a +b 2 为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而, 此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2)a 2+b 2≥2ab 和a +b 2 ≥ab 成立的条件是不同的:前者只要求a ,b 都是实数, 而后者要求a ,b 都是正数. 3)“当且仅当”的含义是充要条件. 4)数列意义 问:a ,b ∈R -? 例题讲解: 例1 已知x ,y 都是正数,求证: (1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14 S 2 证明:因为x ,y 都是正数,所以 x +y 2 ≥xy (1)积xy 为定值P 时,有x +y 2 ≥P ∴x +y ≥2P 上式当x =y 时,取“=”号,因此,当x =y 时,和x +y 有最小值2P .

高中数学《基本不等式》优质课教学设计

《基本不等式》教学设计 一、教学内容解析: 1、本节内容选自《普通高中课程标准实验教科书》(人教A版教材)高中数学必修5第三章第4节基本不等式,是在学习了不等式的性质、一元二次不等式的解法、线性规划的基础上对不等式的进一步的研究,本节是教学的重点,学生学习的难点,内容具有条件约束性、变通灵活性、应用广泛性等的特点; 2、本节主要学习基本不等式的代数、几何背景及基本不等式的证明和应用,为选修4-5进一步学习基本不等式和证明不等式的基本方法打下基础,也是体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养的良好素材; 3、在学习了导数之后,可用导数解决函数的最值问题,但是,借助基本不等式解决某些特殊类型的最值问题简明易懂,仍有其独到之处; 4、在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学很多章节都有联系,尤其与函数、方程联系紧密,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点. 二、学情分析: 1、学生已经掌握的不等式的性质和作差比较法证明不等式对本节课的学习有很大帮助; 2、学生逻辑推理能力有待提高,没有系统学习过证明不等式的基本方法,尤其对于分析法证明不等式的思路以前接触较少; 3、对于最值问题,学生习惯转化为一元函数,根据函数的图像和性质求解,对于根据已知不等式求最值接触较少,尤其会忽略取等号的条件。 三、教学目标: 1、知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题; 2、过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养; 3、情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过

方程与不等式之一元二次方程技巧及练习题

方程与不等式之一元二次方程技巧及练习题 一、选择题 1.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( ) A .x 1≠x 2 B .x 1+x 2>0 C .x 1?x 2>0 D .x 1<0,x 2<0 【答案】A 【解析】 分析:A 、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x 1≠x 2,结论A 正确; B 、根据根与系数的关系可得出x 1+x 2=a ,结合a 的值不确定,可得出B 结论不一定正确; C 、根据根与系数的关系可得出x 1?x 2=﹣2,结论C 错误; D 、由x 1?x 2=﹣2,可得出x 1<0,x 2>0,结论D 错误. 综上即可得出结论. 详解:A ∵△=(﹣a )2﹣4×1×(﹣2)=a 2+8>0, ∴x 1≠x 2,结论A 正确; B 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根, ∴x 1+x 2=a , ∵a 的值不确定, ∴B 结论不一定正确; C 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根, ∴x 1?x 2=﹣2,结论C 错误; D 、∵x 1?x 2=﹣2, ∴x 1<0,x 2>0,结论D 错误. 故选A . 点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 2.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22 240x a x a --+=有实数解.且关于y 的分式方程1311y a y y +-=--有整数解,则符合条件的a 的值的和是( ) A .6- B .4- C .2- D .2 【答案】C 【解析】 【分析】 由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y +-=--有整数解,确定a 的值即可判断. 【详解】

高三数学 第40课时 均值不等式教案

课题:算术平均数与几何平均数 教学目标:1.掌握两个正数的算术平均数不小于它们的的定理,并会简单运用; 2.利用不等式求最值时要注意到“一正” “二定”“三相等”. 教学重点:均值不等式的灵活应用。 (一) 主要知识: 1.两个数的均值不等式:若,a b R +∈,则 2 a b +(等号仅当a b =时成立) 三个数的均值不等式:若,,a b c R +∈,则a b c ++≥a b c ==时成立) 2.几个重要的不等式: ① ab ≤22a b +?? ???≤222a b + ②abc ≤33a b c ++?? ???; ③如果,a b R ∈≥2a b +≥211a b + 3.最值定理:当两个正数的和一定时,其乘积有最大值;当两个正数的乘积一定时,其和 有最小值。 (二)主要方法: 1.常见构造条件的变换:加项变换,系数变换,平方变换,拆项变换,常量代换,三角代换等. 2.当使用均值定理时等号不能成立时,应考虑函数的单调性(例如“对号”函数,导数法). (三)典例分析: 问题1.求下列函数的最值: ()113y x x = +-()3x <;()2121y x x =+-()1x >;()3241y x x =+()0x >; ()323 y x x =+()0x >;()4 ()21y x x =-()01x <<;()5 ()21y x x =-()01x << ()6y =()7 已知,,,a b x y R +∈(,a b 为常数),1a b x y +=,求x y +的最小值

问题2.已知0x >,0y >,且1x y +=,求. 问题3.求最小值()1231()1x x f x x -+=+()1x >-;()2 223sin sin y x x =+ 问题4.()1设0x >,0y >,且()1xy x y -+=,则 .A 2x y +≤.B 2x y +≥ .C )21x y +≤ .D )2 1x y +≥ ()2已知x ≥0,y ≥0,且22 12y x +=,求证:≤4 ()3若0a b >>, 求216() a b a b + -的最小值 (四)课后作业: 1.已知1>a 那么1 1-+a a 的最小值是 .A 12-a a .B 15+ .C 3 .D 2

基本不等式教案第一课时

第 周第 课时 授课时间:20 年 月 日(星期 ) 课题: §3.4 2 a b + 第1课时 授课类型:新授课 【学习目标】 1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.过程与方法:通过实例探究抽象基本不等式; 3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【能力培养】 培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。 【教学重点】 2 a b +≤的证明过程; 【教学难点】 2 a b +≤等号成立条件 【板书设计】

【教学过程】 1.课题导入 2 a b +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据 中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风 车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不 等关系吗? 教师引导学生从面积的关系去找相等关系或不等关 系。 2.讲授新课 1.问题探究——探究图形中的不等关系。 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角 形的两条直角边长为a,b 。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。 2.总结结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 结论的得出尽量发挥学生自主能动性,让学生总结,教师适时点拨引导。 3.思考证明:你能给出它的证明吗? 证明:因为 2 22)(2b a ab b a -=-+ 当22,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即.2)(22ab b a ≥+

2012年中考数学二轮复习独家精品——专题二方程与不等式

专题二:方程与不等式 孙法光 一、考点综述 考点内容: 1、方程的解、解方程及各种方程(组)的有关概念 2、一元一次方程及其解法和应用;二元一次方程组及其解法和应用 3、用直接开平方法、配方法、公式法、因式分解法角一元二次方程 4、可化为一元一次方程、一元二次方程的分式方程的解法及其应用 5、一元二次方程根的判别式及应用 6、不等式(组)及解集的有关概念,会用数轴表示不等式(组)的解集 7、不等式的基本性质 8、一元一次不等式(组)的解法及应用 考纲要求:熟练解方程和方程组;简单运用一元二次方程根的判别式以及根与系数关系;列方程和方程组解应用题;熟练解不等式或不等式组以及列不等式(组)解决方案设计问题和决策类问题。 考题分值:方程与方程组始终是中考命题的重点内容,近几年全国各地的中考试题中,考查方程和方程组的分值平均占到25%,试卷涉及的主要考点有方程和方程组的解法;一元二次方程根的判别式以及根与系数关系的简单运用;列方程和方程组解应用题三大类问题.其中列一元一次方程求解商品利润问题以选择题为主;一元二次方程的解法以选择题和解答题为主;根的判别式及根与系数的关系以选择题和解答题为主,但难度一般不大;列二元一次方程组解应用题以解答题为主,主要考查解工程类、方案设计类及愉策类问题.结合2007-2008年的中考题不难看出,课改区对方程(组)的考题难度已经有所降低,如根与系数关系的运用,课改区几乎不再考查. 不等式与不等式组的分值一般占到5-8%左右,其常见形式有一元一次不等式(组)的解法,以选择题和填空题为主,考查不等式的解法;不等式(组)解集的数轴表示及整数解问题,以选择题和填空题为主;列不等式(组)解决方案设计问题和决策类问题,以解答题为主.近年试题显示,不等式(组)的考查热点是其应用,即列不等式(组)求解实际生活中的常见问题. 备考策略:对于方程与不等式的知识的复习,关健在于扎实基本概念和基本知识。在对应用题的复习时一方面要弄清题目中的已知、未知以及它们之间的关系;另一方面要弄清基本关系量及变式,还要善于找出其中的相等关系式,还可以使用图表等多种方式来帮助分析问题。 二、例题精析 例1解方程: 2 241 1 1 x x x x - = -+- .

方程与不等式之二元二次方程组全集汇编及解析

方程与不等式之二元二次方程组全集汇编及解析 一、选择题 1.222620x y x xy y -=??--=? 【答案】42x y =??=? 或22x y =??=-? . 【解析】 【分析】 先将原方程组化为两个二元一次方程组,然后求解即可. 【详解】 解:原方程组变形为 ( )()2620x y x y x y -=??-+=? ∴2620x y x y -=??-=? 或260x y x y -=??+=? ∴原方程组的解为 42x y =??=? 或22x y =??=-? . 故答案为:42x y =??=? 或22x y =??=-? . 【点睛】 本题考查二次方程组的解,将二次方程组化为一次方程组是解题的关键. 2.解方程组 【答案】原方程组的解为:, 【解析】 【分析】 把第一个方程代入第二个方程,得到一个关于x 的一元二次方程,解方程求出x ,把x 代入第一个方程,求出y 即可. 【详解】 解: 把①代入②得:x 2-4x (x +1)+4(x +1)2=4, x 2+4x =0, 解得:x =-4或x =0, 当x =-4时,y =-3, 当x =0时,y =1,

所以原方程组的解为:,. 故答案为:,. 【点睛】 本题考查了解高次方程,降次是解题的基本思想. 3.如图,已知抛物线y =ax 2+bx+1经过A (﹣1,0),B (1,1)两点. (1)求该抛物线的解析式; (2)阅读理解: 在同一平面直角坐标系中,直线l 1:y =k 1x+b 1(k 1,b 1为常数,且k 1≠0),直线l 2:y =k 2x+b 2(k 2,b 2为常数,且k 2≠0),若l 1⊥l 2,则k 1?k 2=﹣1. 解决问题: ①若直线y =2x ﹣1与直线y =mx+2互相垂直,则m 的值是____; ②抛物线上是否存在点P ,使得△PAB 是以AB 为直角边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由; (3)M 是抛物线上一动点,且在直线AB 的上方(不与A ,B 重合),求点M 到直线AB 的距离的最大值. 【答案】(1)y =﹣ 12x 2+12x+1;(2)①-12 ;②点P 的坐标(6,﹣14)(4,﹣5);(35. 【解析】 【分析】 (1)根据待定系数法,可得函数解析式; (2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标; (3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值 【详解】 解:(1)将A ,B 点坐标代入,得 10(1)11(2)a b a b -+=??++=? ,

基本不等式完整版(非常全面)教案资料

基本不等式完整版(非 常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取 “=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时 取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时 取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若*,R b a ∈,则2 2111 22b a b a ab b a + ≤+≤≤+ (1)若,,,a b c d R ∈,则 22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2221 3 a b c ++≥ 4、已知,,a b c R +∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、

方程与不等式之二元二次方程组经典测试题含答案

方程与不等式之二元二次方程组经典测试题含答案 一、选择题 1.解方程组: 222(1)20(2)x y x xy y -=??--=? 【答案】1212 14,12x x y y ==????=-=?? 【解析】 【分析】 先由②得x +y =0或x?2y =0,再把原方程组可变形为:20x y x y -=?? +=?或220 x y x y -=??-=?,然后解这两个方程组即可. 【详解】 222(1)20 (2)x y x xy y -=??--=?, 由②得:(x +y )(x?2y )=0, x +y =0或x?2y =0, 原方程组可变形为:20x y x y -=??+=?或220x y x y -=??-=? , 解得:1212 1412x x y y ==????=-=??,. 【点睛】 此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组. 2.已知A ,B 两地公路长300km ,甲、乙两车同时从A 地出发沿同一公路驶往B 地,2小时后,甲车接到电话需返回这条公路上与A 地相距105km 的C 处取回货物,于是甲车立即原路返回C 地,取了货物又立即赶往B 地(取货物的时间忽略不计),结果两下车同时到达B 地,两车的速度始终保持不变,设两车山发x 小时后,甲、乙两车距离A 地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR 和线段OR . (1)求乙车从A 地到B 地所用的时问; (2)求图中线段PQ 的解析式(不要求写自变量的取值范围); (3)在甲车返回到C 地取货的过程中,当x= ,两车相距25千米的路程.

相关主题
文本预览
相关文档 最新文档