当前位置:文档之家› 激光的生物作用

激光的生物作用

激光的生物作用
激光的生物作用

激光的生物学作用基础

目前认为激光生物学作用的生物物理学基础主要虽光效应、电磁场效应、热效应、压力与冲击波效应。

(一)光效应

激光照射生物组织所引起的光效应中主要决定于组织对于不同波长激光的透过系数(T)和吸收系数(A)。不同的组织及组织中的不同物质对于不同波长的激光的透过系数和吸收系数是不同的,对组织的光效应大小由T与A的乘积决定。T·A的积愈大,则此种激光对该组织的光效应也愈大,例如:用于视网膜凝固,波长为6943的红宝石激光作用于视网膜时,T·A=71%,这个数值比较大,故光凝固效果好,但对视网膜乃是波长为5750的激光的T与A的乘积最大,即光效应最佳。

组织吸收了激光的量子之后可产生光化学反应、光电效应、电子跃迁、继发其它波长的辐射(如荧光)、热能、自由基、细胞超微发光(生物化学发光、系自由基重新结合时释放出来的),可造成组织分解和电离,最终影响受照射组织的结构和功能,甚至导致损伤。

光化学反应在光效应中有重要的作用,普通光所引起的各种类型的光化学反应,激光也都可引起。

激光作用于活组织的光效应大小,除激光本身的各种性能外,组织的着色程度或称感光体(色素)的类型起着重要的作用,互补色或近互补色的作用效果最明显。不同颜色的皮肤,不同颜色的脏器或组织结构对激光的吸收可有显著差异。

在医疗和基础研究中,为增强激光对组织的光效应,可采用局部染色法,并充分利用互补色作用最佳这一特点。另一方面,也可利用此法限制和减少组织对激光的吸收。

(二)热效应

激光的本质是电磁波,若其传播的频率与组织分子等的振动频率相等或相近,就将增强其振动,这种分子振动即产生热的机理,故也称热振动。在一定的条件下作用于组织的激光能量多转变为热能,故热效应是激光对组织作用的重要因素。分子热运动波长主要表现在红外线波段附近,因此二氧化碳激光器输出的红外激光对组织的热作用甚强烈,一定类型和功率的激光照射生物组织时,在几毫秒内可产生200~1000℃以上的高温,这是因为激光,特别是聚焦激光能够在微细的光束内集中极大的能量,例如:数十焦耳的红宝石激光或喜A激光聚焦于组织微区,能在数毫秒内使该区产生数百度的高温,以致破坏该部位的蛋白质,造成烧伤或气化,而数十焦耳的普通光是根本无此作用的。此外,还发现激光引起的升温,当停止照射后,其下降的速度比任何方式引起的升温下降速度慢,例如:数十焦耳红宝石或喜A脉冲激光引起的升温要下降到原正常温度,约需数十分钟。

(三)压强效应

当一束光辐射到某一物体时,在物体上产生辐射压力,激光比普通光的辐射压力强的多。若焦点处的能量密度为108瓦/平方厘米,其压力为40克/平方厘米;当激光束聚焦到0.2毫米以下的光点时,压力可达200克/平方厘米;用107瓦巨脉冲红宝石激光照射人体或动物的皮肤标本时,产生的压力实际测定为175.8公斤/平方厘米。

当激光束照射活组织时,由于单位面积上的压力很大,故活体组织表面的压

力传入到组织内部,即组织上辐射的部分激光的能量变为机械压缩波,出现压力梯度。如果激光束压力大到能使照射的组织表面粒子蒸发的程度,则喷出活组织粒子,并导致同喷出的粒子运动方向相反的机械脉冲波(反冲击)——冲击波出现,这种冲击波可使活组织逐层喷出不同数量的粒子,最后形成圆锥形“火山口”状的空陷。

除上述由于强大的辐射压引起的反冲击压而形成的冲击波外,组织的热膨胀也可能产生冲击波。由于在短时间内(毫秒或更短)温度急剧上升,瞬间释放出来的热来不及扩散,因而产生加速的体热膨胀,例如:用60焦耳的红宝石激光照射小鼠腹壁,在几毫秒内腹壁形成半圆形突起,此即被照射的皮下组织处产生了爆炸性的体热膨胀。

因体热膨胀而在组织内形成的压力以及反冲压,都可产生弹性波向其它部位传播,最初是形成超声波,逐渐因减速而变为声波,进而变为亚声波形式的机械波,最后停止传播。

在组织的微腔液体层内,因超声波听传播同时可出现空穴现象,因空穴的积聚可造成明显的组织塌陷现象,有时又可产生数值较大的压缩冲击波,这一系列的反应均可造成损伤。

弹性波对组织的影响可远离受照射的部位,例如:用极微弱的红宝石激光照射人和动物的眼部时,在头皮层均可记录到声波和超声波。

在强激光束造成的极强的电场中,组织的电致伸缩现象也可产生冲击波和其它弹性波。

(四)电磁场效应

在一般强度的激光作用下,电磁场效应不明显;只有当激光强度级大时,电磁场效应才较明显。将激光聚焦后,焦点上的光能量密度达106瓦/平方厘米时,相当于105伏/平方厘米的电场强度。电磁场效应可引起或改变生物组织分子及原子的量子化运动,可使体内的原子、分子、分子集团等产生激励、振荡、热效应、电离,对生化反应有催化作用,生成自由基,破坏细胞,改变组织的电化学特性等;激光照射后究竟引起哪一种或哪几种反应,与其频率和剂量有重要的关系,例如:电场强度只有高到1010伏/厘米以上时,才能形成自由基。激光照射肿瘤时,只是直接照射一部分组织,但对全部肿瘤可有良好的作用,其中可能的作用机理之一,有人认为就是电磁场作用的结果

五、激光的治疗作用

(一)激光的生物刺激和调节作用

激光与其它各种物理因子对组织器官直至机体的基本作用规律是相同的,即小剂量作用时具有刺激(加强)作用和调节作用。原则上不论使用哪一种激光均符合这一概念。以氦激光为例介绍如下:

小功率的氦氖激光照射具有明显的生物刺激作用和调节作用。目前认为:小功率的氦氖激光照射的治疗作用基础不是温热效应,而是光的生物化学反应。

小功率的氦氖激光照射皮肤时,在光生物化学反应的基础上,可影响细胞膜的通透性,影响组织中一些酶的活性,如激化过氧化氢酶,进而可调节或增强代谢,可加强组织细胞中核糖核酸的合成和活性,加强蛋白质的合成;可使被照射的部位中糖原含量缯加;可使肝细胞线粒体合成三嵯佘眨TP)的功能增强。

小功率的氦氖激光照射具有消炎、镇痛、脱敏、止痒、收敛、消肿、促进肉芽生长、加速伤口、溃疡、烧伤的愈合等作用。

小功率的氦氖激光照射可使成纤维细胞的数目增加,因而增加胶原的形成,

可加快血管的新生和新生细胞的繁殖过程,基于其对代谢和组织修复过程的良好影响,可促进伤口愈合,加快再植皮瓣生长,促进断离神经再生,加速管状骨骨折愈合,促进毛发生长等。

小功率的氦氖激光照射不能直接杀灭细菌,但可加强机体的细胞和体液免疫机能,如可加强白细胞的吞噬功能,可使淌细胞增加或增强巨噬细胞的活性,可使γ-球蛋白及补体滴度增加;此外,微生物检查发现:激光照射可改变伤口部葡萄球菌对抗菌素的敏感性。

小功率的氦氖激光照射可影响内分泌腺的功能,如加强甲状腺、肾上腺等的功能,因而可调节整个体内的代谢过程;此外,并可引起周围血液和凝血系列的改变,其基本规律是具有调节作用。

小功率氦氖激光照射可改善全身状况,调节一些系统和器官的功能。用小功率的氦氖激光照射氏粘膜或皮肤溃疡面,神经节段部位,交感神经节、穴位等不同部位,与某些局部症状改善的同时,可出现全身症状的改善,如精神好转、全身乏力减轻、食欲增加、原血沉加快者于照后血沉减慢等。据报导:高血压患者经氦氖激光照射治疗后,不仅可使血压降低,一疗程照射后还可使血液的凝固性降低,使血清中总蛋白的含量升高,血浆及红细胞内钾的含量升高。此外,据动物实验:用1.5mw的氦氖激光照射兔或狗的皮肤,对全身代谢有刺激作用;用1~1.5mw的氦氖激光照射兔眼,可引起全身性的血液动力学变化。

小剂量氛氖激光多次照射过程中可有累积效应,在临床工作中我们体会到:在激光照射的前两次往往不出现效果,而在三、四次照射后即可出现疗效,因此要呈现激光照射的疗效,需经过一定作用的累积过程。当然,也有一次照射后即出现疗效的情况,但这往往是局部症状的改善。

小功率的氛氖激光多次照射的生物学作用和治疗作用具有抛物线特性,即在照射剂量不变的条件下,机体的反应从第3~4天起逐渐增强,至第10~17天达到最大的限度,此后,作用效果逐渐减弱,若继续照射下去,到一定的次数后可出现抑制作用。根据上述的基本规律,我们认为,小功率的氦氖激光照射同一部位的次数,在一般情况下不宜超过12~15次,如需作第二疗程照射,则两疗程应有两周左右的间距。

对于小功率的氦氖激光的生物学作用机理,有人用Гурвич所提出的生物场的理论来解释,即机体的各项组织与器官之间除了神经控制和体液调节,还包含有复杂的能量关系,细胞和组织被生物场所包围,各种内外环境的不利因素可以破坏这种能量关系,导致病理过程的产生和发展。在1923的Гурвич的实验研究发现:细胞丝状分裂期所辐射的极微弱的紫外线(现今可以用光子计数器记录下来),可以刺激其它细胞的分裂,并认为这就是生物场存在的一个证明。西方学者的研究也证实了这一点

激光从蛋白质分子粗细的小孔穿过美科学家这项成果在激光物理学领域具有里程碑意义

2009/9/2/9:26

据美国《每日科学》网站8月31日报道,美国加州大学伯克利分校制出世界最小半导体激光器,能使激光从一个蛋白质分子粗细的小孔中穿过。相关论文8月30日在线发表在《自然》杂志网站上。该成果在激光物理学领域具有里程碑式的意义,将有可能开创光学研究的新时代。

加州大学伯克利分校纳米科学与工程中心主任张翔(音译)说:“该研究打破了传统意义上对激光极限的认识,在生物学、通信和计算机领域有着广泛的应用前景。”

据了解,在分子生物学上,纳米级的激光可用于对DNA分子进行探测和控制;在通信领域可大幅提高基于光传导的信息传送速度和带宽;在光学计算机领域对现有技术也有极大的促进作用。

在传统观点看来,包括激光在内的电磁波最细只能聚焦到其波长的一半。经过努力,科学家们找到了一种将电子和光子相互震荡并让其沿着金属表面传播的方法,才将激光压缩到几十纳米细,这种沿着金属表面传播的电磁表面波就是表面等离子体。此后各国科学家开始竞相建造等离子体激光器,但由于金属内在电阻的干扰,表面等离子体在产生后极易衰减,研究人员不得不为此再制造磁场以汇聚光线。

张翔和他的研究小组破解了这个难题。他们用比头发丝还要细1000倍的硫化镉纳米丝在金属银的表面分隔出一个5纳米宽的缝隙。在这个结构中所产生的激光比其波长小20倍。由于光能主要集中在这个极为狭小的缝隙中,其在传播中损耗也被降到了最低。自发辐射率的增加程度是衡量该设备的一个重要指标,在这项研究中,研究人员在该设备5纳米的间隙中测量到了6倍的自发辐射率。

科学家利用激光将金属栅变成纳米点阵列

2009/9/1/8:42

金属纳米点(nanodot)的可应用在如催化、环境修复(environmental remediation)、DNA侦测与高密度数据存储等领域,其中某些应用需要周期性金属纳米点阵列,而目前主要制作方法包括以自组成为主的湿式化学处理与以光刻技术为主的纳米图案化技术。湿式化学处理有高产量的特性,但纳米微粒成份必须为水溶性或具生物兼容性。而电子束光刻术与聚焦离子束等光刻工具虽能得到的排列规则且大小相近的纳米点,产量却很低。

为解决这个问题,美国普林斯顿大学的研究人员发展出一个既新颖又简单的方法,来制作大面积的周期性金属纳米点阵列。该团队将此低成本、高产量的技术称为熔化诱发碎裂(melting induced fragmentation, MIF)。

首先,研究人员利用纳米压印光刻技术(nanoimprint lithography, NIL)在基板上制作出金纳米栅图案,接着以单发激光脉冲熔化纳米栅,在线状液体的

雷利不稳定性(Rayleigh instability)作用下,纳米栅图案会碎裂并形成周期排列的圆型金属纳米点阵列。

用激光将金属栅变成纳米点阵列

为了进一步改善纳米点的周期性,在进行金属栅光刻术前,研究人员改用事先图案化的基板,以加强控制稍后因熔化而产生的碎裂过程。基板上预制的浅沟槽与金属栅的走向垂直,有助于熔化的金属顺利流入沟槽与栅的交点,以降低系统能量。因此纳米点在原纳米栅方向上的周期,不再取决于天然的MIF作用,而是由基板上浅沟槽的周期所主宰,这使纳米点阵列的周期性变得更规律。

上述方法承袭了一般NIL技术的低成本、高产量特点。此外,宽度仅20 ns 的激光脉冲对基板造成的热效可以被忽略,因此MIF技术可以应用在更多基板材料上,包括塑料。这个简单的制造方法可以推广至其它材料,也能广泛地应用在各种领域如磁学、等离子学、表面增强型拉曼散射与其它光电组件。详见Nanotechnology 20, p.285310 (2009)。

英文链接: https://www.doczj.com/doc/4c5068468.html,/cws/article/tech/39824

激光与物质相互作用国家重点实验室计划会议西安召开

2009/8/12/10:5来源:科技部

2009年7月30日,科学技术部基础研究司在西安组织召开了激光与物质相互作用国家重点实验室建设计划可行性专家论证会议。总装备部司令部、西北核技术研究所、中国科学院长春光学精密机械与物理研究所、科技部基础司等单位的相关领导与专家出席会议。论证专家组由国内相关领域知名专家组成。

专家组听取了实验室的建设计划报告,对实验室进行了详细考察,并仔细听取了实验室主管部门、依托单位、实验室负责人对实验室相关情况的介绍。专家组认为激光与物质相互作用国家重点实验室具有良好的建设基础和科研积累。实验室建设目标明确,措施可行;研究方向设置合理,重点明确;重视体制机制的改革和人才队伍建设;主管部门与依托单位积极支持实验室的建设。专家组经过认真讨论,一致同意激光与物质相互作用国家重点实验室通过论证,并就实验室的实际情况提出了相关建议。

依托国防科研机构建设国家重点实验室,围绕国家重大战略需求开展基础研究和应用基础研究,对促进我国创新能力的持续提高,引领未来科学和技术的发展具有重要意义。

激光快速成型农机制造中应用

2009/8/6/16:32来源:中国激光网

快速成型技术就是直接根据CAD模型快速生产样件或零件的技术总称。它集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。它能根据CAD模型(电子模型)自动、直接、快速、精确地将设计思想物化为具有一定功能的原型或直接制造零件,在不用模具和工具的条件下生成几乎任意复杂的零部件,解决了从设计到制造的快速对接问题。因此,该技术可以对产品设计进行快速评价及修改,有效地缩短了产品的研发周期,降低了开发成本,满足了当今竞争口益激烈的市场对新产品快速开发和快速制造的要求,提高了产品的市场竞争力和企业的综合竞争能力。

激光选区烧结是快速成型制造中的重要工艺方法之一。该技术采用逐层材料添加的原理,对三维实体模型进行切片分区处理,生成激光烧结的扫描路径;然后,通过x-Y激光扫捕仪使激光束沿扫描路径扫描,逐层烧结同化同体粉末材料(如塑料粉、尼龙粉、蜡、陶瓷或)、金属与粘结剂的混合粉或金属粉等,经过烧结与层层叠加后,最终形成所需的三维工件。这种制造方法具有成型速度快、精度高、表面质量好、后置处理简单和省时等特点,是一个具有生命力的技术,为制造技术的发展创造了一种新方法。

农业机械生产过程具有特殊性。零件多具有较复杂的形状,如耕地机械、整地机械和收获机械等。此外,复杂曲面较多,如犁体曲面、旋耕机旋刀、水泵叶轮和送料螺旋等,而且根据具体的生产情况不同,其形状还需相应调整。因此,利用传统的机械加工方法研制这种农业机械零件,不仅研制开发时间长,加工工艺复杂,而且很难达到理想的效果。运用先进的激光快速成型集成技术,不仅大大缩短新产品的开发周期,降低开发成本,而且制造质量也优于传统制造方法。

直接发光绿色氮化铟镓(InGaN)激光试验成功

2009/8/19/10:53

欧司朗光电半导体成功研发直接发光绿色氮化铟镓(InGaN) 激光,标志着实验室研究取得重大突破。该款激光的光输出高达 50 mW,发射波长为 515 nm 的真绿光线。与目前采用倍频技术的半导体激光相比,直接发光绿色激光器体积更小,温度稳定性更高,调制能力更强,更易于控制。

欧司朗光电半导体已成功突破氮化铟镓 (InGaN) 材料系统以往的局限性。在预开发阶段,欧司朗光电半导体即已采用氮化铟镓 (InGaN) 材料成功生产出首款光输出较高的直接发光绿色激光二极管。该款二极管可发射“真绿”光线,光谱范围介于 515 至 535 nm 之间。在这个光谱范围内,目前市售的优质高效半导体激光器仅限于倍频版本。然而,从中期来看,直接发光绿色激光器可在众多应用中取代倍频激光器,因为相比之下,直接发光绿色激光器更易于控制,温度稳定性更高,体积更小,而且在数百兆赫时调制能力更强。

该款激光器的初步性能数据已非常振奋人心。在脉冲模式下,实验室原型在室温下的光输出已达到 50 mW,阀值电流密度约为9 kA/cm2。欧司朗光电半导体技术总监 Christian Fricke 博士表示:“这台演示器足以证明,可以使用氮化铟镓 (InGaN) 生产绿色激光器。因此,我们将着手开始生产具有成本效益的紧凑型高品质绿色激光光源。”绿色激光器广泛应用于医疗和工业领域,也可用作移动迷你投影机的光源。采用直接发光绿色激光器,可使这类投影机的体积更小、性能更佳。目前,欧司朗光电半导体已推出商用蓝色氮化铟镓 (InGaN) 激光二极管。

由德国教育与研究部 (German Ministry for Education and Research) 资助的 MOLAS 研究项目(截至 2011 年 3 月,FKZ 13N9373),正全力开发应用于超紧凑型移动激光投影系统的技术。激光投影机拥有强大的优势,可始终呈现清晰、真彩、高对比度的图像,而不受投影距离和投影表面的影响。这些巨大优势有朝一日必将惠及手机和相机用户。作为该项目的参与者,欧司朗正着力开发适用于移动投影系统的基于氮化铟镓 (InGaN) 材料系统的高效激光光源。首款直接发光绿色激光器的研制成功,标志着欧司朗已实现重大的初期目标。

图片来源:欧司朗

实验室可靠数据证明:凭借新研发的直接发光绿色激光,欧司朗光电半导体在移动激光投影领域开创了一个重要的新里程碑。

文献资料 - 医学书籍 - 理疗学

第五节激光疗法

(Laser therapy)

一、概述

激光即由受激辐射的光放大而产生的光,又称莱塞(Laser是英语“Light Amplification by stimulated Emission of Radiation”的几个字首的缩写)。

激光技术的成功被认为是本世纪最重大的四项科学成果之一(即原子能、半导体、计算机、激光)。

早在1949年美国物理学家朗斯(Lyons)首先发现氨分子在振动过程中释放出频率为24,000MHz的电磁波,其波长为1.25cm,位于微波波段。因此,人们断定氨分子的能级之间的能量相差相当于一个波长为1.25cm的光子,或低能级的氨分子吸收了一个1.25cm的波长的光子后被激发到高能级上去。1953年美国物理学家汤斯(Towns)设法将处于高能级的氨分子分离出来,然后用相应能量的微波光子激励它们,射入的是很少的几个微波光子,射

出的却是大批的同样的光子,射出的微波束被放大了许多倍。这就是激光受激辐射的原理。1960年美国物理学家梅曼(Maiman)用这个原理制成了第一台红宝石激光器。同年伊朗籍物理学家贾范(Javan)相继制成了氦-氖激光器。

激光刚一出现,它的发展前景就引起人们的强烈兴趣,不久就相继出现了数百种能发射不同波长的相干光的激光器。1964年美国卡斯珀(Kasper)制成了第一台化学激光器。1966年兰卡德(Lankard)等人首先制成了有机染料激光器,到目前为止,全世界已生产了几千种类型的激光器,并研制成了高压气体激光器、气动激光器、高功率化学激光器、准分子激光器,自由电子激光器和X线激光器等新品种。目前激光器输出功率最大可达1013W,最小为mw。

激光问世后,很快受到医学和生物学界的极大重视。1961年扎雷特(Zaret),以后坎贝尔(Campbell)等人相继用激光研究视网膜剥离焊接术,并很快被用于临床。目前激光在临床上除气化、凝固、烧灼、光刀、焊接、照射等治疗应用外,在诊断和基础理论研究方面出现了许多新技术,如激光荧光显微检查,激光微束照射单细胞显微检查技术,激光显微光谱分析,生物全息摄影及细胞或分子水平的激光检测和微光手术等充分显示激光一系列独特性能。激光配合导光纤维的应用对各种体腔内肿瘤及其他疾患的诊治,以及结合各种内窥镜进行激光光敏疗法诊治腔内肿瘤新技术提供有利手段。目前已研究利用激光治疗心脏疾病和血管内斑块栓塞,包括冠状动脉粥样硬化阻塞后的激光血管再通已获初步成功。

基于医用激光的迅速发展,在激光生物医学领域中形成了一些专门学科,如激光分子生物学,激光细胞学,激光人体生理学,激光诊断学,激光治疗学,医用激光工艺学,激光防护学,分子生物激光工程学等。在诊治方面,激光已用于每一临床学科,最近据有人预测到本世纪末,应用激光技术诊治疾病的新方法将超过传统的诊治方法,激光技术将引起内外科治疗的一场“革命”。预计在本世纪末的五至十年内,激光技术将广泛应用于发现和治疗癌瘤,进行咽喉外科手术以及缝合血管、神经、肌腱和皮肤,治疗动脉硬化斑、血管栓塞和内科、皮肤科等的许多疾病。

二、激光产生的原理

白炽灯、日光灯、高压脉冲氙灯、激光灯的发光现象,都是光源系统中原子(或分子、离子)内部能量变化的结果。原子的能级结构是发光现象的物质基础,激光的产生,不外乎通过以下几个过程和步骤:

(一)激发

一般原子系统中,绝大多数的原子不是处于低能级的基态,而是处于高能级的激发状态的原子数目,相比之下是非常少的。例如:在室温(27~28℃)的情况下,红宝石晶体中处

于基态的铬离子数目为激发态的1030倍,因此,红宝石铬离子基本上是处于基态的。如果要使这些处于基态的粒子产生辐射作用,首先必须把这些基态上的粒子激发到高能级去,从低能级到高级去的这一过程称为激发或抽运。这个吸收能量的过程,称做光的受激吸收(图4-26-4)。激发的方法很多,主要是给基态粒子外加一定能量,例如光照、电子碰撞、分解或化合以及加热等。基态粒子吸收能量后即被激发,例如红宝石激发器就是脉冲氙灯照射的方法施加光能,使铬离子从基态激发到高能级的激发态上。又如氦-氖激光器通过电子与氦原子碰撞,使氦原子获得能量。氦原子通过碰撞又将能量传给氖原子,氖原子获得能量后从基态激发到高能级去。化学激发器是用分解或化合的方法作为激发能源。

图4-26-4 激光(吸收能量)

由于原子内部结构的不同,在相同的外界条件下,原子从基态被激发到各个高能级去的可能性是不一致的。通常把原子从基态激发到某一能级上去的可能性,叫做该能级的“激发机率”。各能级的激发机率是不同的,有的很大,有的很小,这种机率取决于物质自身的性质。

(二)辐射

原子(或分子、离子)总是力图使自己的能量状态处于基态上,被激发到高能级后的粒子,力图回到基态上去,与此同时放出激发时所吸收的能量。基态是粒子能量最平衡最稳定的状态,从高级回到低能级去的过程称为跃迁,跃迁时释放的能量即辐射。跃迁的形式有以下几种:

1. 自发跃迁不受外界能量的影响,只是由于原子内部运动规律所导致的跃迁称为自发跃迁。这种跃迁释放能量的形式又有两种:一种是变为热运动释放能量,叫做无辐射跃迁;另一种是以光的形式将能量辐射出来,叫做自发辐射跃迁(图4-26-5)。自发辐射出来的光频率γ,由发生跃迁的两能级间之能量差所决定。

图4-26-5自发辐射(释放能量)

普通光源如白炽灯、日光灯、高压水银灯、氙灯等都是通过自发跃迁辐射产生光,这种光是非相干光。

2. 受激跃迁由于入射光子的感应或激励,导致激发原子从高能级跃迁到低能级去,这个过程称为受激跃迁或感应跃迁。这种跃迁辐射叫做“受激辐射”。受激辐射出来的光子与入

射光子有着同样的特征,如频率、相位、振辐以及传播方向等完全一样。这种相同性就决定了受激辐射光的相干性。入射一个光子引起一个激发原子受激跃迁,在跃迁过程中,辐射出两个同样的光子,这两个同样的光子又去激励其它激发原子发生受激跃迁,因而又获得4个同样的光子。如此反应下去,在很短的时间内,辐射出来大量同模样、同性能的光子,这个过程称为“雪崩”。雪崩就是受激辐射光的放大过程。受激辐射光是相干光,相干光有叠加效应,因此合成光的振幅加大,表现为光的高亮度性(图4-26-6)。

图4-26-6受激辐射(释放能量)

激发寿命与跃迁机率取决于物质种类的不同。处于基态的原子可以长期的存在下去,但原子激发到高能级的激发态上去以后,它会很快地并且自发地跃迁回到低能级去。在高能级上滞留的平均时间,称为原子在该能级上的“平均寿命”,通常以符号“τ”表示。一般说,原子处于激发态的时间是非常短的,约为10-8秒。

激发系统在1秒内跃迁回基态的原子数目称为“跃迁机率”,通常以“A”表示。大多数同种原子的平均跃迁机率都有固定的数值。跃迁率A与平均寿命τ的关系:

A=1/τ

由于原子内部结构的特殊性,决定了各能级的平均寿命长短不等。例如红宝石中的铬离子E3的寿命非常短,只有10-9秒,而E2的寿命比较长,约为数秒。寿命较长的能级称为“亚稳态”。具有亚稳态原子、离子或分子的物质,是产生激光的工作物质,因亚稳态能更好地为粒子数反转创造条件。

(三)粒子数反转和激光的形成

当光子通过某一介质时,它可能被原子(或离子、分子)所吸收,从而使原子从低能级激发到高能级去,这个过程称为“共振吸收”或称光的受激吸收。另外,入射光也能引起处于高能级的原子发生受激辐射。

在一般情况下,处于低能级的原子数目远远超过处于高能级的原子数目。要想得到受激辐射,就必须先使原子(或离子、分子)激发到高能级去。人为地施加一定能量,使高能级上具有较多的粒子数分布,这种状态称为“粒子数反转”。产生粒子数反转的物质就称为活性物质。如何实现粒子数反转,下面以红宝石激光器为例加以说明。

红宝石激光器的激发是通过氙灯输送能量。E1、E2、E3是铬离子相对应的三个能级,

使铬离子从基态E1激发到共振吸收带E3上去,形成了E3对E2粒子数反转(图4-26-7(1))。但是由于E3的寿命很短(即自发跃迁机率很大),因此铬离子的能级就很快地并且以无辐射跃迁的形式落入E2中,同时放出热能。E2是寿命较长的亚稳态,跃迁机率较小,因此E 2就积聚了大量的铬离子。当氙灯光足够时,则E2上的粒子(铬离子)数就大为增加,此时E2对E1来说就出现了粒子数反转(图4-26-7(2))。若用E2与E1间跃迁相对应频率[γ=(E2-E1)/h]的光子引发时,上述活性系统就可产生E2对E1的受激辐射。受激辐射可以使光放大,这种放大是由于该系统受激发时从外部吸收的能量和引发的能量一举放出的结果,如图4-26-8所示。

图4-26-7 粒子数反转

处于粒子数反转状态的活性系统,可以产生“雪崩”。雪崩过程可以使光再次放大。该过程的继续进行,必须通过一定的装置,这种装置就是光学共振腔。从共振腔中持续发出来的、特征完全相同的大量光子就是激光。

(四)光学共振腔

激光所以具有良好的单色性、方向性以及较高的亮度,主要是取决于光学共振腔的作用。于工作物质的两端加上两快相互平行的反光镜,其中一块是全反射镜,另一块是半反射镜,这就是光学共振腔的主要结构(图4-26-9)。

在光学共振腔中的活性物质,受到外加能量的激励而产生的光子可以射向各个方向,但其中传播方向与反射镜垂直者,则在介质中来回反射振荡。在反射振荡的过程中,引发介质中其它活性物质点受激辐射,因此这种辐射的强度越来越大。由于受激辐射反复振荡产生的大量光子都具有相同的特征和一致的传播方向,因此决定了激光具有良好的单色性和准直的定向性。又由于光子来回不断地进行振荡,辐射强度借以得到极度的增大,因此又保证了激光的高度性。激光在光学共振腔中形成的过程如图4-26-10所示。

图4-26-8光的吸收与放大

图4-26-9光学共振腔示意图

三、激光的物理特性

应着重指出,激光本质上和普遍光线没有什么区别,它也可受光的反射、折射、吸收、

透射等物理规律的制约。但是由于激光的产生形式不同于一般光线,故它具有一些特点。

(一)激光的高亮度性

一般规律认为,光源在单位面积上向某一方向的单位立体角内发射的功率,就称为光源在该方向上的亮度。激光在亮度上的提高主要是靠光线在发射方向上的高度集中。激光的发射角极小(一般用毫弧度表示),它几乎是高度平等准直的光束,能实现定向集中发射。因此,激光有高亮度性。

另外,激光的亮度也取决于它的相干性。相干性是一切波动现象的属性。光有波动性,因此也有相干性。

一般光源发射出来的光是非相干光,它是波长不等、杂乱无序的混合光束。由于非相干光的波长、相位、振幅极不一致。因此它们的合成波也是一条杂乱无章、毫无规律的曲线(图4-26-1),从中不易找出它的周期性来。普通光源如日光、灯光等所辐射的就是这非相干光线。

图4-26-1非相干辐射

发光系统中,处于激发状态的原子(或分子、离子)受相应的外界能量(例如入射光子)激励时,它就从高能级跃迁到低能级,同时释放出一个光子,这个被释放的光子和入射的光子是完全一样的。它们两者的波长、传播方向、振辐及相位都完全一样。这样的辐射波具有相干性,它们的谱线很窄。

根据波的迭加原理,如果两列波同时作用于某一点上,则该点的振动等于每列波单独作用时所起的振动代数和。因此,相干光的合成波就是迭加效应的结果(图4-26-2)。合成波的相位、波长、传播方向皆不改变,只是振幅急剧地增加了。因此,通过迭加后的光色不变,只光的强度极大地增加了。激光所以有高亮度的特点也是由于相干光迭加效应的结果。激光的亮度可以比太阳表面亮高1010倍。

一束激光经过聚焦后,由于其高亮度性的特点,能产生强烈的热效应,其焦点范围内的温度可达数千度或数万度,能熔化甚至于气化对激光有吸收能力的生物组织或非生物材料。如工业上精密器件的焊接、灯孔、切割;医学上切割组织(光刀)、气化表浅肿瘤以及显微光谱分析等这些新技术都是利用激光的高亮度性所产生的高温效应。

激光功率密度的单位为mw/cm2或W/cm2,能量密度为焦尔/厘米2。

(二)激光的高单色性

一般理疗上常用光源,有热光源(如白炽灯、红外线灯)和气体放电发光光源(如紫外线灯)。这类光源的发光物质比较复杂,以自发辐射形式产生光子,发出的光线很不纯,它们的谱线范围是连线的或是带状的光谱。

图4-26-2相干辐射

一般“单色光”被分光镜分解后,它也不是连续的色带,而是一条条独立的、并且具有特定位置的亮光,通常称这为谱线。临床上所谓的单色光也并非是单一波长的光,而是有一定波长的谱线。波长范围越小,谱线宽度越窄,其单色性也越好。因此,谱线的宽度是衡量光线单色性好坏的标志。

激光是物质中原子(或分子、离子)受激辐射产生的光子流,它依靠发光物质内部的规律性,使光能在光谱上高度地集中起来。在激光的发光形式中,可以得到单一能级间所产生的辐射能,因此,这种光是同波长(或同频率)的单色光。光谱高度集中时,其纯度甚至接近单一波长的光线,例如氦-氖激光就是6328的单色红光。

(三)激光的高度定向性

激光的散射角非常小,通常以毫弧计算。例如红宝石激光的散射角是0.18°,氦-氖激光只有1毫弧度。因此,激光几乎是平等准直的光束,在其传播的进程中有高度的定向性。手电筒照明时,由于光的散射角大,远达数十米后,光散开并形成大而暗淡的光盘。激光由于散射角小,可以准直地射向远距离目的物。1962年,将激光发射向月球,经过40多万公里的进程后,其散开的光斑的直径也不过只有两公里多。利用激光的准直性进行测距,从地球到月球之间的误差不超过1.5m。

由于激光的单色性和方向性好,通过透镜可以把光束集中(聚焦)到非常小的面积上,焦点的直径甚至可以接近激光本身的波长,这是普通光源所不及的。因为从普通光源中发射出来的光束向各个方向传播,它们是互不平行的光,所以通过透镜只能看到某种尺寸的物相(图4-26-3(1))。另外,从普通光源中发射出来的光含有很多波长不等的光成份,当通过透镜时,由于不同波长光的折射率不同,所以不同波长光的焦点不在一个平面上(图4-2 6-3(2))。只有激光才能辐射出几乎是平行的光束,并且波长一致(单色性好),因此可以聚焦成为很小的光点(图4-26-3(3))。聚焦激光光束的能量密度可以达到很高的程度,这种特点是临床外科和细胞外科使用光刀的决定条件。

图4-26-3普通光与激光聚焦效果的不同

(1)互为不平行的光束,不能集中到一点上

(2)互为不同波长光束,不能集中到一点上

(3)严格平行的等波长光束,能集中到一点上

光点的直径是由透镜的焦距和光束的发散角所决定,如果我们知道焦距的发散角的数值,就可以用下列公式计算光点的直径大小。

d=f·θ

上式中,f为透镜的焦距(m),d为光点的直径(m),θ为光束的发射角(弧度)。例如,选择焦距为5cm的透镜,光束发散角为10-4弧度,求光点直径。

根据上述公式从理论上推算:

d=0.05×10-4=5μ

实际,常常由于激光器的质量不好(单色性程度差),影响到光点的高度集中,达不到理论上的效果。

四、激光的生物学作用基础

目前认为激光生物学作用的生物物理学基础主要虽光效应、电磁场效应、热效应、压力与冲击波效应。

(一)光效应激光照射生物组织所引起的光效应中主要决定于组织对于不同波长激光的透过系数(T)和吸收系数(A)。不同的组织及组织中的不同物质对于不同波长的激光的透过系数和吸收系数是不同的,对组织的光效应大小由T与A的乘积决定。T·A的积愈大,则此种激光对该组织的光效应也愈大,例如:用于视网膜凝固,波长为6943的红宝石激光作用于视网膜时,T·A=71%,这个数值比较大,故光凝固效果好,但对视网膜乃是波长为5750的激光的T与A的乘积最大,即光效应最佳。

组织吸收了激光的量子之后可产生光化学反应、光电效应、电子跃迁、继发其它波长的辐射(如荧光)、热能、自由基、细胞超微发光(生物化学发光、系自由基重新结合时释放出来的),可造成组织分解和电离,最终影响受照射组织的结构和功能,甚至导致损伤。

光化学反应在光效应中有重要的作用,普通光所引起的各种类型的光化学反应,激光也都可引起。

激光作用于活组织的光效应大小,除激光本身的各种性能外,组织的着色程度或称感光体(色素)的类型起着重要的作用,互补色或近互补色的作用效果最明显。不同颜色的皮肤,不同颜色的脏器或组织结构对激光的吸收可有显著差异。

在医疗和基础研究中,为增强激光对组织的光效应,可采用局部染色法,并充分利用互补色作用最佳这一特点。另一方面,也可利用此法限制和减少组织对激光的吸收。

(二)热效应激光的本质是电磁波,若其传播的频率与组织分子等的振动频率相等或相近,就将增强其振动,这种分子振动即产生热的机理,故也称热振动。在一定的条件下作用于组织的激光能量多转变为热能,故热效应是激光对组织作用的重要因素。分子热运动波长主要表现在红外线波段附近,因此二氧化碳激光器输出的红外激光对组织的热作用甚强烈,一定类型和功率的激光照射生物组织时,在几毫秒内可产生200~1000℃以上的高温,这是因为激光,特别是聚焦激光能够在微细的光束内集中极大的能量,例如:数十焦耳的红宝石激光或钕玻璃激光聚焦于组织微区,能在数毫秒内使该区产生数百度的高温,以致破坏该部位的蛋白质,造成烧伤或气化,而数十焦耳的普通光是根本无此作用的。此外,还发现激光引起的升温,当停止照射后,其下降的速度比任何方式引起的升温下降速度慢,例如:数十焦耳红宝石或钕玻璃脉冲激光引起的升温要下降到原正常温度,约需数十分钟。

(三)压强效应当一束光辐射到某一物体时,在物体上产生辐射压力,激光比普通光的辐射压力强的多。若焦点处的能量密度为108瓦/平方厘米,其压力为40克/平方厘米;当激光束聚焦到0.2毫米以下的光点时,压力可达200克/平方厘米;用107瓦巨脉冲红宝石激光照射人体或动物的皮肤标本时,产生的压力实际测定为175.8公斤/平方厘米。

当激光束照射活组织时,由于单位面积上的压力很大,故活体组织表面的压力传入到组织内部,即组织上辐射的部分激光的能量变为机械压缩波,出现压力梯度。如果激光束压力大到能使照射的组织表面粒子蒸发的程度,则喷出活组织粒子,并导致同喷出的粒子运动方向相反的机械脉冲波(反冲击)——冲击波出现,这种冲击波可使活组织逐层喷出不同数量的粒子,最后形成圆锥形“火山口”状的空陷。

除上述由于强大的辐射压引起的反冲击压而形成的冲击波外,组织的热膨胀也可能产生冲击波。由于在短时间内(毫秒或更短)温度急剧上升,瞬间释放出来的热来不及扩散,因而产生加速的体热膨胀,例如:用60焦耳的红宝石激光照射小鼠腹壁,在几毫秒内腹壁形

成半圆形突起,此即被照射的皮下组织处产生了爆炸性的体热膨胀。

因体热膨胀而在组织内形成的压力以及反冲压,都可产生弹性波向其它部位传播,最初是形成超声波,逐渐因减速而变为声波,进而变为亚声波形式的机械波,最后停止传播。

在组织的微腔液体层内,因超声波听传播同时可出现空穴现象,因空穴的积聚可造成明显的组织塌陷现象,有时又可产生数值较大的压缩冲击波,这一系列的反应均可造成损伤。

弹性波对组织的影响可远离受照射的部位,例如:用极微弱的红宝石激光照射人和动物的眼部时,在头皮层均可记录到声波和超声波。

在强激光束造成的极强的电场中,组织的电致伸缩现象也可产生冲击波和其它弹性波。

(四)电磁场效应在一般强度的激光作用下,电磁场效应不明显;只有当激光强度级大时,电磁场效应才较明显。将激光聚焦后,焦点上的光能量密度达106瓦/平方厘米时,相当于105伏/平方厘米的电场强度。电磁场效应可引起或改变生物组织分子及原子的量子化运动,可使体内的原子、分子、分子集团等产生激励、振荡、热效应、电离,对生化反应有催化作用,生成自由基,破坏细胞,改变组织的电化学特性等;激光照射后究竟引起哪一种或哪几种反应,与其频率和剂量有重要的关系,例如:电场强度只有高到1010伏/厘米以上时,才能形成自由基。激光照射肿瘤时,只是直接照射一部分组织,但对全部肿瘤可有良好的作用,其中可能的作用机理之一,有人认为就是电磁场作用的结果。

五、激光的治疗作用

(一)激光的生物刺激和调节作用

激光与其它各种物理因子对组织器官直至机体的基本作用规律是相同的,即小剂量作用时具有刺激(加强)作用和调节作用。原则上不论使用哪一种激光均符合这一概念。以氦激光为例介绍如下:

小功率的氦氖激光照射具有明显的生物刺激作用和调节作用。目前认为:小功率的氦氖激光照射的治疗作用基础不是温热效应,而是光的生物化学反应。

小功率的氦氖激光照射皮肤时,在光生物化学反应的基础上,可影响细胞膜的通透性,影响组织中一些酶的活性,如激化过氧化氢酶,进而可调节或增强代谢,可加强组织细胞中核糖核酸的合成和活性,加强蛋白质的合成;可使被照射的部位中糖原含量缯加;可使肝细胞线粒体合成三磷酸腺苷(ATP)的功能增强。

小功率的氦氖激光照射具有消炎、镇痛、脱敏、止痒、收敛、消肿、促进肉芽生长、加速伤口、溃疡、烧伤的愈合等作用。

小功率的氦氖激光照射可使成纤维细胞的数目增加,因而增加胶原的形成,可加快血管的新生和新生细胞的繁殖过程,基于其对代谢和组织修复过程的良好影响,可促进伤口愈合,加快再植皮瓣生长,促进断离神经再生,加速管状骨骨折愈合,促进毛发生长等。

小功率的氦氖激光照射不能直接杀灭细菌,但可加强机体的细胞和体液免疫机能,如可加强白细胞的吞噬功能,可使吞噬细胞增加或增强巨噬细胞的活性,可使γ-球蛋白及补体滴度增加;此外,微生物检查发现:激光照射可改变伤口部葡萄球菌对抗菌素的敏感性。

小功率的氦氖激光照射可影响内分泌腺的功能,如加强甲状腺、肾上腺等的功能,因而可调节整个体内的代谢过程;此外,并可引起周围血液和凝血系列的改变,其基本规律是具有调节作用。

小功率氦氖激光照射可改善全身状况,调节一些系统和器官的功能。用小功率的氦氖激光照射咽峡粘膜或皮肤溃疡面,神经节段部位,交感神经节、穴位等不同部位,与某些局部症状改善的同时,可出现全身症状的改善,如精神好转、全身乏力减轻、食欲增加、原血沉加快者于照后血沉减慢等。据报导:高血压患者经氦氖激光照射治疗后,不仅可使血压降低,一疗程照射后还可使血液的凝固性降低,使血清中总蛋白的含量升高,血浆及红细胞内钾的含量升高。此外,据动物实验:用1.5mw的氦氖激光照射兔或狗的皮肤,对全身代谢有刺激作用;用1~1.5mw的氦氖激光照射兔眼,可引起全身性的血液动力学变化。

小剂量氛氖激光多次照射过程中可有累积效应,在临床工作中我们体会到:在激光照射的前两次往往不出现效果,而在三、四次照射后即可出现疗效,因此要呈现激光照射的疗效,需经过一定作用的累积过程。当然,也有一次照射后即出现疗效的情况,但这往往是局部症状的改善。

小功率的氛氖激光多次照射的生物学作用和治疗作用具有抛物线特性,即在照射剂量不变的条件下,机体的反应从第3~4天起逐渐增强,至第10~17天达到最大的限度,此后,作用效果逐渐减弱,若继续照射下去,到一定的次数后可出现抑制作用。根据上述的基本规律,我们认为,小功率的氦氖激光照射同一部位的次数,在一般情况下不宜超过12~15次,如需作第二疗程照射,则两疗程应有两周左右的间距。

对于小功率的氦氖激光的生物学作用机理,有人用А.Гурвич所提出的生物场的理论来解释,即机体的各项组织与器官之间除了神经控制和体液调节,还包含有复杂的能量关系,细胞和组织被生物场所包围,各种内外环境的不利因素可以破坏这种能量关系,导致病理过

程的产生和发展。在1923的Гурвич的实验研究发现:细胞丝状分裂期所辐射的极微弱的紫外线(现今可以用光子计数器记录下来),可以刺激其它细胞的分裂,并认为这就是生物场存在的一个证明。西方学者的研究也证实了这一点。

1973年苏联学者在实验中发现“镜映细胞病理效应”,其要点是一个组织培养物的细胞在损伤和死亡时,与它同隔着一片石英的另一组织培养物里也发生了相应的损伤症状,从而生物场的理论又得到了一个新的论据。

在七十年代,有的学者以生物场概念为基础,又进一步提出:由于生物结构带有半导体的特性(特别是细胞内的膜),把机体可看成是一个巨大的晶体,有错综地组成的传导带。由于在膜的传导带里的代谢过程,保持着确定的自由电荷密度(生物等离子体);在各种不利的内、外环境因素的影响下,生物等离子体的内稳态被扰乱,因而引起病理过程的发展。若激光的能量参数比较接近于代谢过程的能量的频率,当激光照射,通过共振作用可使生物等离子体恢复稳定,保持正常的能量级;氦氖激光的能量参数——波长6328,量子能量1. 9电子伏特,接近物体的能量参数,当照射机体时,在传导带里发生量子移动,随着机体的能量平衡的改变,能促使恢复正常生理状态。

小功率的氦氖激光照射穴位时,通过对经络的影响,改善脏腑功能,从而起到治疗作用。在临床应用中我们体会到:激光穴位照射的效果如何,关键是在祖国医学理论观点指导下,辩证论治,选经取穴的水平和经验,处理得当者,全身状况、脏腑征象、舌象脉象等均可效明显的好转。

(二)激光手术

激光手术是用一束细而准直的大能量激光束,经聚焦后,利用焦点的高能、高温、高压的电磁场作用和烧灼作用,对病变组织进行切割、粘合、气化。实验确定,切割人体组织所需的功率密度为103~105瓦/平方厘米。二氧化碳激光器、掺钕钇铝石榴石激光器和氩激光器所输出的光束的焦点功率密度可达到上述要求,特别是二氧化碳激光器,其光能几乎完全被大部分生物组织吸收到表层200μ内,因此易于控制切割深度。二氧化碳激光器不仅用于体表病变的手术切割,而且70年代在苏联和西德先后用以给病人做了心脏手术,在捷克用以成功地做了心血管外科的动物实验和手术,76年在澳大利亚用以成功地切除了大脑肿瘤。新近利用激光导管对冠状动脉或肢体血管斑块、血栓阻塞患者进行血管再通术获得成功。

激光手术的优点和经验如下:

1.只要功率掌握适当,软硬组织均可切割,在一般情况下使用时,激光的功率宜在80瓦以上。动物实验结果表明:80~100瓦切割后可一期愈合,病理切片检查结果损伤较轻;

2.出血量少,可在切面形成一层均匀的、粘合性良好的干性凝固区,因此对于直径1毫米以内的动脉,和直径2mm以内的静脉有封闭作用;适用于切割血管丰富的实质性器官,易于出血的或年老体弱的患者;清除烧伤创面的焦痂,可使其气化而无出血;

3.高能的激光束有直接杀死细菌的作用,故术后感染率显著降低;可用于切除坏死组织、疤痕组织,甚至死骨等;感染的创面术前无需准备即可手术;

4.皮下注射生理盐水造成人为的水肿,可减少组织损伤,因为水分对波长为10.6μ的远红外线吸收性好,可防止热量迅速向周围传播,可减轻切面两侧组织的损伤;

5.激光切割时术者的熟练程度甚为重要,因为切面的深浅、组织损伤的轻重均与激光光斑停留的时间有关,时间长则组织损伤大,时间短则切割深度不够;

6.应用激光切割的同时必须喷吹惰性气体,否则在切割脂肪组织时,脂肪熔化成油状,并立即燃烧,其火焰可高达10余cm,由于脂肪熔化成液态状,吹氮后即可灭火,又可使周围组织冷却,因而可减少切口周围的热损伤;

7.激光切割术疼痛较轻,甚至不痛,因为手术区的神经被热凝固;术后形成的疤痕也较柔软。

激光切割存在的问题和缺点如下:

1. 对于直径5mm以上的血管仍需压迫结扎止血;

2. 皮肤切口愈合比一般手术后的切口慢;

3.切割效果与组织色泽有关,需积累一定的实践经验,方能操作准确;

4. 切割时产生的臭气很浓,需加用排气系统;

5. 激光切割肝组织,术后粘连较重。

(三)激光治疗肿瘤

激光治癌主要是基于其生物物理学方面的特殊作用,即激光的高热作用可使被照射部位

长脉冲激光与金属相互作用影响分析

第26卷第6期 2011年12月光电技术应用 ELECTRO-OPTIC TECHNOLOGY APPLICATION Vol.26,No.6 December,2011 1高功率激光对靶面的作用 高功率激光光束作用于靶材时,靶表面吸收大量激光能量,引起温度升高、熔融、气化、喷溅等现象。具体过程依赖于激光参数(能量、波长及脉宽等)、材料特征和环境条件。一般说来,在不同数量级的激光功率密度作用下靶表面发生的物理现象是[1]:103-104W/cm2104-106W/cm2106-108W/cm2108-1010W/cm2 加热熔融气化等离子体 激光与物质相互作用时产生两个典型效应:二次非线性光学效应和高压冲击波(光力学)效应。当高功率激光辐照在靶材上时,一部分被靶材表面反射,一部分通过靶材透射,一部分散射,而大部分则被靶材吸收[2]。 1.1强激光对物质作用的研究现状 国内外科学工作者在高功率激光与物质相互作用方面做了大量的研究工作。其中以美国和前苏联 ·激光技术· 长脉冲激光与金属相互作用影响分析 任天宇,王洋,薛阳 (长春理工大学,吉林长春130012) 摘要:通过使用1064nm,Nd:YAG长脉冲激光作用在金属材料从理论和数值模拟的角度研究各种因素对激光加热效应的影响。针对国内外目前长脉冲激光与物质相互作用研究的现状,分析和模拟了长脉冲激光与材料相互作用过程中的各种现象和问题,特别是对长脉冲激光与金属相互作用时的温度场及应力场进行了较全面的理论分析。就靶材物质对激光的反射、吸收和转化的基本机制,激光对金属材料加热的温度场、应力场及其熔融的温度场和固-液态界面的移动速度及液态质量迁移、激光引起材料的气化、烧蚀的质量迁移,进行了系统的讨论。 关键词:激光与金属相互作用;数值模拟;数值研究 中图分类号:TN249文献标识码:A文章编号:1673-1255(2011)06-0028-05 Analysis of Long Pulse Laser-metal Interaction REN Tian-Yu,WANG Yang,XUE Yang (Changchu University of Science and Technology,Changchun130012,China) Abstract:The effect of a variety of factors on the laser heating from the theory and numerical simulation, by using1064nm Nd:YAG long pulse laser interaction with metal.The phenomenon and problem in the pro?cess of the laser-matter interaction are analyzed and simulated,as for laser-metal interaction research at home and abroad,especially the temperature field and stress field of the long pulse laser-metal interaction are ana?lyzed theoretically.The effect of the basic mechanism of the laser reflection,the absorption and the transforma?tion on the target material,the temperature field,the stress field and the melting temperature of the metal mate?rial heated by the laser,the moving velocity of the solid-liquid interface,the liquid mass transfer,the material gasification and the ablation mass transfer are analyzed. Key words:laser-metal interaction;numerical simulation;numerical research 收稿日期:2011-12-10 基金项目:国家自然科学基金(61077024/F050205) 作者简介:任天宇(1983-),男,浙江绍兴人,博士研究生,研究方向为物理电子学;王洋(1982-),女,吉林长春人,博士研究生,研究方向为物理电子学.

激光与材料的相互作用

激光与材料的相互作用 发布日期:2007-10-04 我也要投稿!作者:网络阅读: [ 字体选择:大中小] 680 作为能量源的激光束可以聚焦成很小的一个光斑,无需直接接触,即可与材料发生相互作用。激光的性能不断提高,现在的激光具有各种不同的波长、功率和脉冲宽度,这些参数的不同组合适用于各种不同的加工需要。为了更好地了解激光的潜能,工程师们必须熟悉这种技术以及其中的细微差别。在决定使用何种激光前,工程师应该了解激光工作原理、激光与材料的相互作用、激光参数以及何时可利用激光进行医疗材料加工。了解这些知识后,工程师设计医疗器械时就能做出正确的决定。 激光在器械加工中的应用机会 激光可用于器械制造的许多加工环节中。例如,激光切割便是一种常见用途,常用于制造支架等小型器械。激光还可用于加工通沟或盲孔。该技术可用于加工医疗诊断设备的微流体通道以及给药用微量注射器的小孔。目前,人们正利用激光加工技术研制用于芯片实验室上的微型传感器和传动器上的硅制微型机械。激光焊接和打标常用于植入器械和手术器械的制造中。此外,激光还常用于表面纹理加工中,例如:可用于矫形外科植入物的表面处理上,提高表面的粘附性。 激光工作原理 激光的工作原理较为简单。通过一个光子激发其他光子,使大量光子以光束的形式一起发射出去。肉眼可能无法看见的光束由激光腔中发射出去,然后被传导至材料加工工作站中。根据激光波长的不同,光束可通过光纤传播或者经光学元件直接传播。 目前使用的激光大都早在20世纪60年代就已经问世,包括Nd:Y AG激光、二氧化碳激光和半导体激光。激光器集成到工业用机械中经过了数年的时间,尽管技术已经成熟,但激光器仍在不断改进,例如:人们研制出能产生很短脉冲宽度的如皮秒和飞秒激光器。此外,激光材料在光纤激光器、光碟激光器和焊接用绿光激光器内的独特排列进一步丰富了材料加工的方法。 表I. 材料加工中常用的激光波长。(点击放大) 材料加工所用激光波长从紫外线一直到红外线,包括了可见光谱。常用激光类型及其波长列于表I中。除激光类型外,选择激光时还要考虑其他许多方面,例如:激光腔的设计、光学传送元件和激光与材料相互作用。最为关键的是,医疗器械设计人员必须了解激光束如何与不同器械材料发生相互作用以及如何用于材料加工中。 激光与材料的相互作用

免疫学在生物学和医学发展中的作用

免疫学在生物学和医学发展中的作用 一、免疫学与医学 免疫学的发展及其向医学各学科的渗透,产生了许多免疫学分支学科和交叉学科,如免疫理学、免疫遗传学、免疫药理学、免疫毒理学、神经免疫学、肿瘤免疫学、移植免疫学、生殖免疫学、临床免疫学等。这些分支学科的研究极大地促进了现代生物学和医学的发展。免疫学的发展必将在恶性肿瘤的防治、器官移植、传染病的防治、免疫性疾病的防治、生殖的控制,以及延缓衰老等方面推动医学的进步。 二、免疫学与生物学 免疫系统对自己与非己的识别,以及对自己成分的免疫耐受和对非已成分的免疫应答,都涉及细胞间的信息传递、细胞内信号传导和能量转换等生命过程的基本特性。 免疫系统的功能受遗传控制。目前对机体各种生理功能的遗传控制还知之甚少。免疫遗传学的研究第一次揭开了机体生理功能系统的遗传控制机制。这对在基因水平研究机体的生理功能具有重要意义。 免疫细胞在发育成熟的过程中都伴随有膜表面标志的变化。在发育的任何阶段发生恶性变的免疫细胞,都具有其固有的、特定的膜标志。这些不同分化阶段的恶性肿瘤细胞是研究细胞恶性变机制的理想模型,对研究恶性肿瘤发生学具有重要意义。 MHC基因复合体的结构和功能研究、免疫球蛋白基因表达的等位排斥现象的研究、免疫球蛋白以及其他免疫分子基因的研究、对DNA结合蛋白调节细胞因子表达的研究等都大大地丰富了分子生物学的研究内容,促进了对真核细胞基因结构和表达调控的认识。免疫学技术的发展,为生命科学的研究提供了有力的手段。单抗的应用给生物科学的发展带来了突破性的变革;免疫组化技术与分子杂交技术的结合,使得对基因及其表达的研究可达到定量、定性、定位的程度。显然,免疫学在生物学的发展中具有重要作用。 三、免疫学与生物技术的发展 回顾免疫学的发展历史,可以清楚地看到,免疫学每一步重要进展都推动着生物技术的发展。上世纪末本世纪初,免疫学在抗感染方面的巨大成功,促进了生物制品产业的发展。人工主动免疫和被动免疫的应用,有力地控制了多种传染病的传播。在过去30年中,免疫学的巨大进展在更深的层次和更广阔的范围内,推动了生物高技术产业的发展。用细胞工程产生的单克隆抗体,用基因工程产生的细胞因子为临床医学提供了一大类具有免疫调节作用的新型药物。这些新型药物主要着重于调节机体的免疫功能,则副作用较少,因而在多种疾病的治疗上具有传统药物所不可替代的作用。目前以免疫细胞因子和单克隆抗体为主要产品的生物高技术产业,已成为具有巨大市场潜力的新兴产业部门。

医学生物学知识点资料

医学生物学知识点

医学生物学知识点 第一章生命的特征与起源 1.生命的基本特征★★★(9条 p7-p9) ①生命是以核酸与蛋白质为主导的自然物质体系 ②生命是以细胞为基本单位的功能结构体系 ③生命是以新陈代谢为基本运动形式的自我更新体系 ④生命是以精密的信号转导通路网络维持的自主调节体系 ⑤生命是以生长发育为表现形式的“质”“量”转换体系 ⑥生命是通过生殖繁衍实现的物质能量守恒体系 ⑦生命是以遗传变异规律为枢纽的综合决定体系 ⑧生命是具有高度时空顺序性的物质运动演化体系 ⑨生命是与自然环境的协同共存体系 第二章生命的基本单位-细胞 1.细胞的发现(时间、人物)(P10) 1665年,英国物理科学家胡克。 2.细胞学说的基本内容(4条)p13 ①一切生物都是由细胞组成的 ②所有细胞都具有共同的基本结构 ③生物体通过细胞活动反映其生命特征 ④细胞来自原有细胞的分裂

3.细胞的基本定义(4条)p14 ①细胞是构成生物有机体的基本结构单位。一切有机体均由细胞构成(病毒为非细胞形态的生命体除外); ②细胞是代谢与功能的基本单位。在有机体的一切代谢活动与执行功能过程中,细胞呈现为一个独立的、有序的、自动控制性很强的独立代谢体系; ③细胞是生物有机体生长发育的基本单位。生物有机体的生长与发育是依靠细胞的分裂、细胞体积的增长与细胞的分化来实现的。绝大多数多细胞生物的个体最初都是由一个细胞——受精卵,经过一系列过程发育而来的; ④细胞是遗传的基本单位,具有遗传的全能性。人体内各种不同类型的细胞,所含的遗传信息都是相同的,都是由一个受精卵发育来的,他们之所以表现功能不同是有于基因选择性开放和表达的结果。 4.细胞体积守恒定律(p14) 器官的大小与细胞的数量成正比,而与细胞的大小无关,这种关系有人称为“细胞体积守恒定律”。 5.细胞的主要共性(3条) ①所有细胞都具有选择透性的膜结构 ②细胞都具有遗传物质 ③细胞都具有核糖体 6.真核细胞和原核细胞的主要区别★★★(表2-1)

激光医疗

激光医疗 摘要 回顾医学科学的每一步进展,无不是由于各时期的新兴的科学新技术的介入。医学科学进展的标志之一是科学新技术与医学科学相结合衍生出新的边缘学科,比如电子学、核物理学、冷冻学、超声学和计算机科学等当时的新兴科学陆续与医学科学结合形成了医用电子学、核医学、冷冻医学、超声医学、医用计算机科学和物理医学等边缘科学。当代一个最重大的科技新成就激光技术,也已经不仅为研究生命科学和研究疾病的发生发展开辟了新的研究途径,而且为临床诊治疾病提供了崭新的手段,现在已经形成了又一门新兴的边缘医学科学棗激光医学。 关键字 发展简史特点激光治疗激光医疗仪器 激光医疗的发展简史 基础研究阶段 1960年,美国人Maiman在加里福尼亚休斯研究所研制成红宝石激光器,这是世界上第一台激光器。激光新技术的诞生使光学这门古老的学科跨出了划时代的一步,也为光医学跨人激光医学时代创造了物质基础。事实上,这种红宝石激光的第一批应用领域之一便是医学,直至目前,红宝石激光仍然是医学应用领域里常用的一种激光。 1961年,红宝石视网膜凝固机在美国问世,这是世界上第一台医用激光机,也是目前眼科常用的激光机。同年,美国的Solon发表了“激光的生理作用”,E icherr 发表了“相干光源产生的光凝固”,Zeret发表了“光脉冲引起的眼损伤”等三篇第一批激光医学方面的文章。 1962年,Bessis小组报导了他们用红宝石激光照射细胞器的研究成果。这是欧州第一篇激光医学方面的论文。同年,美国的Townes、Campbell、Zeret等人又分别发表了用脉冲红宝石激光研究生物效应的三篇论文。 1963年,苏联同行也开始发表激光生物效应方面的文章,这一年发表了很多文章,其中尤其是美国的McGuff发表的“激光生物效应的探讨”、Goldman发表的“激光束对皮肤的作用”和Fine发表的“激光的生物效应”等一批很有价值的论文,为临床应用提供了实验基础。 1964年,美国研究基金会在波士顿召开了关于“生物医学的激光”第一届年会,会

现代生物学与医学

现代生物学与医学 医学院邵逸夫医院 黄悦 [摘 要] 本文回顾了生物学和医学发展的历程,展望了现代医学所面临的机遇与挑战。现代生物学技术极大地促进了医学的发展,现代生物学技术使现 代医学获得了前所未有的发展机遇,同时也正遭遇着严峻挑战。 [关键词] 生物学技术, 医学, 现代生物学,正以迅猛的速度向前发展着,其影响之广泛,意义之深远,是以往任何科学技术所不可比拟的。随着现代生物学技术在医学领域的渗透,各种强有力研究手段的运用,现代医学正面临着前所未有的机遇与挑战。人类社会经历了200多万年的漫长历史,已经发展到了高度文明的阶段。伴随着古代科学技术的萌芽,产生过巴比伦、中国、印度和希腊的古代文明;从文艺复兴到19世纪,近代科学技术使得欧洲成了近代世界文明的中心;而现代生物学技术的发展使我们正处在现代生物学革命时代。 一、医学的历史发展与生物学技术发展相一致 医学是人类长期同疾病作斗争的实践经验的总结。有了人类,就有了医疗活动。医学的发展,经历了原始医学、经验医学、实验医学和现代医学几个阶段,每一个阶段医学的特点和发展水平,都是同当时社会的科学技术发展水平相一致的。 在原始社会,人们在生产实践中逐渐懂得了一些医学卫生知识,这是医学的萌芽,还谈不上科学形态的医学。到了奴隶社会,由于脑力劳动和体力劳动的分离,才有可能出现专门从事医疗工作的医生,产生了医学。古代埃及、巴比伦、中国和印度等人类文化的摇篮中,产生了经验医学。这也是与当时低水平的生物学发展相一致的。随着生物学的进一步发展,自16世纪开始了建立在实验基础上的近代实验医学时代。16、17世纪的主要成就在于基础医为。到18、19世纪,医学的重点已经转移到了临床医学。经过300多年,人们借助于近代科学技术,在细胞水平上,对人体的结构和功能,对疾病的症状和机制,进行了深入的研究,积累了大量的临床实践经验,极大地拓展了医学的领域。 进入20世纪以来,由于生物学技术的渗透,各种强有力的研究手段的运用,

8.第八章激光在医学中的应用

第8章 激光在医学中的应用 激光医学是激光技术和医学相结合的一门新兴的边缘学科。1960年,Maiman 发明第一台红宝石激光器,1961年,Campbell 首先将红宝石激光用于眼科的治疗,从此开始了激光在医学临床的应用。1963年,Goldman 将其应用于皮肤科学。同时,值得关注的是二氧化碳激光器的作为光学手术刀的出现,逐渐在医学临床的各学科确立了自己的地位。1970年,Nath 发明了光导纤维,到1973年通过内镜技术成功地将激光导入动物的胃肠道,自此实现了无创导入技术的飞速发展。1976年,Hofstetter 首先将激光用于泌尿外科。随着血卟啉及其衍生物在1960年被发现,Diamond 在1972年首先将这种物质用于光动力学治疗。在医学领域中,激光的应用范围非常广泛,不仅在临床上激光作为一种技术手段,被各临床学科用于疾病的诊断和治疗,而且在基础医学中的细胞水平的操作和生物学领域中激光技术也占有重要地位。另外,还可以利用激光显微加工技术制造医用微型仪器。再者,利用全息的生物体信息的记录及医疗信息光通信等与信息工程有关的领域,从广义来讲,也属于激光在医学中的应用。本章主要对医学临床,重点是激光对诊断和治疗领域中的应用进行论述。 由于诊断和治疗在本质上都是利用激光与生物体的相互作用,因此,有必要首先对这些基础进行介绍。在8.1节中归纳介绍了生物体的光学特性、激光对生物体的作用、激光在生物体中的应用特点等内容;然后在8.2节中通过典型的治疗应用实例,介绍了激光在外科、皮肤科、整形外科、眼科、泌尿外科、耳鼻喉科等领域中的治疗和光动力学治疗等;在8.3节中重点围绕诊断中的应用,介绍了生物体光谱测量、激光计算机断层摄影(光学CT )、激光显微镜等。在8.4节中,对激光在医学中的应用的激光装置与激光转播路线的开发动向进行介绍。最后8.5节对激光医学的前景作了展望。 8.1 激光与生物体的相互作用 8.1.1 生物体的光学特性 假设生物体中入射的单色平行光强度为0I ,若生物体是均匀的吸收物质,根据1.5节证明的(1-89)式,入射深度为x 处的光强度I 可用下述关系式表示 ()x a I I 00exp -= (8-1) 其中0a 为吸收系数(参见图8.1)。但是,由于生物体对光是很强的散射体,因此生物体内光的衰减不仅由于吸收,而且取决于散射的影响。在不能忽略散射的条件下,上式可用衰减

医学生物学复习提纲

医学生物学复习思考题 1 生物学的概念 生物学是研究生命现象的本质,并探讨生命发生,发展规律的一种生命科学。 2 生命的基本特征 核酸、蛋白质:生命大分子——共同的物质基础; 细胞——相似的生物结构和功能的基本单位; 新陈代谢——高度一致的生命基本运动形式; 信息传递——维持机体生命活动的统一机制; 生长和发育——生物体由量变到质变的表现形式; 生殖——生命现象无限延续的根本途径; 遗传和变异——决定和影响生命现象的中枢; 进化——生命活动的全部历史; 生物与环境的统一——生命自然界的基本法则。 3 生物大分子的概念;蛋白质和核酸的基本组成单位。 生物大分子包括蛋白质和核酸等,它们分子结构复杂,分子量大,分子中载有生命活动的信息,是在生命有机体中担负各种各样生理功能的有机化合物。生命大分子是一切生命有机体形态结构和生理功能最重要的物质基础。蛋白质:由许多氨基酸脱水缩合而成的大分子多聚体。 4 核酸的种类分布和分子组成。 核酸:核酸是由许多核苷酸构成的多聚体。 核苷酸:由磷酸、戊糖和含氮碱基构成。 核酸主要包括核糖核酸和脱氧核糖核酸。核糖核酸主要分布于细胞质和少量细胞核内;脱氧核糖核酸主要分布在细胞核和线粒体。 5 DNA、RNA的结构和功能。 DNA 结构分为一级结构和二级结构: 一级结构:脱氧核苷酸由3’-5’磷酸二酯键结合成多核苷酸; 二级结构:DNA 双螺旋结构。 DNA 分子能够指导细胞中蛋白质合成,进而控制细胞中蛋白质的合成、组成和各种代谢反应的完成。DNA具有自我复制能力,从而逐代传递遗传信息。RNA:不同核糖核酸由3’-5’磷酸二酯键连接;多呈链状,某些通过单键自身回折形成假 DNA 由两条走向相反的互补核苷酸链构成,两条链均按同一中心轴呈右手螺旋,两链依靠彼此的碱基在双螺旋内侧形成氢键连接。 碱基互补配对原则:A—T(2 个氢键),G—C(3个氢键)。

高端低温电镜(Titan Krios Talos) - 中国科学院生物物理研究所蛋白质

Titan Krios用户申请须知 每份用户实验申请提交后将在一星期内转发给两位专家进行评审,评审时间约为一个月。此后将评审意见及机时安排的起始及终止日期通知用户。 符合以下情况的用户实验申请将为所申请的实验在一年中分批安排所申请的机时: 1 两位评审专家均同意该实验申请 2 一位专家同意实验申请,另一位不同意实验申请,而用户提交申请的同时附上曾依托本所实验平台的Titan Krios发表的论文(论文中清楚地注明依托本所实验平台的设备) 符合以下情况的用户实验申请将根据机时需求的紧张程度,在一年中为所申请的实验安排部分申请机时: 1一位专家同意实验申请,另一位不同意实验申请 2 两位专家均不同意实验申请,但用户提交申请的同时附上曾依托本所实验平台的Titan Krios发表的论文(论文中清楚地注明依托本所实验平台的设备) 以下情况的用户实验申请将不安排机时: 1两位专家均不同意实验申请 ――――――――――――――――――――――――――――――――――――――― 专家评审要点有以下四点: 第一,对用户实验的生物学或医学或方法学上的重要性做出评定。 第二,用户使用Titan Krios 的必要性。使用其它电镜或实验方法能否达到实验目的,使用本中心其他设备能否同样达到实验目的。 本中心尚有: 透射电镜Tecnai Spirit (120kV,钨灯丝,2K×2K 底插式eagle CCD,1K*1K 侧插式OSIS 冷CCD,电子断层扫描自动化数据收集软件,配有室温单倾样品杆、Gatan 927 室温双轴高倾样品杆、Gatan 626 低温样品杆,Gatan CT3500低温样品杆,样品台最大倾转角70度,物镜球差系数3.7mm,色差系数3.7mm,点分辨率0.34nm) 透射电镜FEI Tecnai20 (200kV,LaB6灯丝,2K×2K Gatan Ultrascan 894 CCD,电子断层扫描自动化数据收集软件,配有室温单倾样品杆、Gatan 927 室温双轴高倾样品杆、Gatan 626 低温样品杆,Gatan CT3500低温样品杆,样品台最大倾转角70度,物镜球差系数2.5mm,色差系数2.5mm,点分辨率0.25nm)。 第三,使用Titan Krios能否达到用户的实验目的。 本中心的Titan Krios配置为1. 配有场发射电子枪,最高加速电压300kV,三级聚光镜系统,实现一定范围内的平行光照明;2. 自动进样系统可同时存储12个冷冻样品,样品台可倾转最大角度70度,水平旋转90度;3. 恒功率模式的电磁透镜系统保证成像的高稳定性;4. 物镜球差系数2.7mm,色差系数2.7mm; 5. 点分辨率0.25nm,信息分辨极限 0.14nm; 6. 底插式Gatan Ultrascan 985 4K×4K CCD相机;7. Gatan GIF Tridium 能量过滤器; 8. STEM 暗场模式成像; 9. 用户界面友好,远程操作;10. 配有DM和TIA图像采集和分析软件;11. 配有Xplore3D电子断层扫描自动化数据收集软件。 第四,用户的实验设计是否合理,前期实验工作是否充分,所申请的机时是否合理。 本中心的机时以11小时为单位,每天分为两个时间段,中间间隔1小时。早九点至晚八点为一个时间段,晚九点到次日早八点为另一个时间段。

名词解释激光

名词解释 第一章光与激光的特性 1、激光生物医学是一门关于激光及其在生物医学的基础研究与临床实践上的应用的科学。 2、荧光:当一个光量子被吸收时,会有一部分能量转化为较低的光量子放射出来,所放射 出来的光就是荧光。 3、准弹性光散射(动态光散射):因散射体粒子布朗运动导致的瑞利谱线增宽现象。 4、激光(Laser): Light amplification by stimulated emission of radiation,即受激辐射的光放 大,是一种因受激辐射而产生光放大作用的光。 5、自发跃迁:在无外界影响情况下而自发回到低能级及跃迁过程。 6、自发辐射跃迁:电子在自发跃迁时由于涉及能级的变化,会释放一定的能量,如果其能 量全部转化为光子并向外辐射,则该跃迁过程为自发辐射跃迁,其辐射为自发辐射。7、受激辐射:用光去照射处于激发态的原子,收到外来光子的作用,而且这个外来光子的 能量又刚好等于该原子中电子高、低能级之间的能量差时,处于高能级的电子就有可能跃迁到低能级上,并辐射出一个和外来光子位相、频率、偏振方向、传播方向完全一致的光子。 8、受激吸收(共振吸收):当原子中的电子处于低能级时,用光去照射原子,使低能级的 电子吸收该光子的能量而激发到较高能级上去的过程。(使原子处于激发态的方法之一) 第二章激光器的种类和激光的特性参数与测量 1、光参量放大:将一高能量光子,转换成2个低能量子的过程(从可见光到红外)。 ——特点:借助一旋转非线性非晶体,使输出波长可调 2、光强度:光波的能流密度,落在单位面积上的光辐射功率,即光的辐射功率与辐照面积之比,W/m^2 3、光斑面积:光强衰减至中心点的e-1时所处半径得到的面积。 ——80%的激光辐射功率集中在这一面积中。用刀口法测量

32通道视频脑电 - 中国科学院生物物理研究所

脑电图仪一套 技术规格 1. 工作条件 1.1 工作温度:适于摄氏0℃~+40℃的环境条件下运行。 1.2 工作湿度:适于相对湿度为90%的环境条件下运行。 1.3 工作电源:三相或单相,220V( 10%)/50Hz。配置符合中国有关标准 要求的插头(如果没有这样的插头,则需提供适当的转换插座)。 1.4 仪器运行的持久性:可连续运行 1.5 仪器的工作状态:较强的防震抗射频干扰能力,工作稳定 1.6 仪器设备的安全性:符合国家放射线防护安全标准和电器安全标准。 2. 设备用途 *2.1通过SFDA 认证,可用于临床患者自发或事件相关脑电信号检测 3. 硬件技术规格要求 *3.1 ≥ 30 数据采集通道,≥ 1 标记信号通道 *3.2 便携,≤ 3 KG (设备主机和必要线缆),长宽高分别≤ 30/30/10 cm 3.3 数据传输通过USB接口; 3.4 输入阻抗≥ 500MΩ(欧姆) 3.5 每通道最大采样频率: 16000Hz/Ch 3.6 模数转换(ADC):≥24Bit 3.7 频带宽度:DC -- 0.27 Hz 3.8 共模抑制比:≥120dB 3.9 信号输入范围:≥ ±93.5 mV; ≤± 4.5 V; 3.10 通道增益设置:1μV/cm —1000 mV /cm 3.11 高通:0.008Hz—53Hz 3.12 低通:1Hz—1000Hz 3.13 噪声水平≤0.2 μV r.m.s 3.14 共模抑制比CMRR:≥ 100dB 3.15 专用笔记本电脑

4 软件功能 4.1 屏幕选择,全导联设置; 4.2 自动不间断导联切换; 4.3 脑电记录显示曲线灵敏度设置; 4.4 实时记录脑电状态下阅读和分析先前脑电; *4.5 原始数据可输出; 4.6 同步采集回放功能; 注:*表示必须满足且重要的指标 5.技术服务 5.1 安装、调试与培训 仪器到货后,厂家需在接到用户通知后3个工作日内进行安装调试,对主机、附件,软件的性能和功能进行测试;提供现场免费培训,培训内容包括仪器的技术原理、仪器操作、仪器基本维护等。 5.2 验收:实现系统成套联调并达到招标文件的技术要求。 5.3 保修: 保修期为安装验收合格之日起三年,在保修期内软硬件出现的问题,接到用户通知后二十四小时内给予答复,三个工作日内给与解决方案并到达用户现场免费解决问题。重大问题或其它无法立刻解决的问题应在两周内解决或提出明确的解决方案,如不能按期解决的,保修期自动按照用户报修日至修复日顺延。 设备保修期满前1个月,卖方免费负责一次全面的检查、维护,并写出正式报告,如发现潜在问题,应负责排除。 设备供应商提供终身维修,并保证保修期满后不低于十年的零配件及消耗品的供应。 提供全套的备品备件清单。 5.4 软件升级:在硬件支持的前提下,免费提供软件升级。 5.5提供维护手册和操作手册。

激光与物质相互作用的研究进展讲解

激光与物质相互作用的研究进展 黄庆举 (广东石油化工学院物理系, 广东茂名 525000 引言 1960年激光问世后 , 对我国的工业、 军事等领域产生重要影响 , 激光与物质相互作用也成为了人们主要研究的课题 , 人们运用新技术、新设备 , 对激光的性质、状态进行研究 , 并且应用与各种领域 , 产生重要作用。在激光与物质的相互作用下 , 激光已经成为了探索物性的主要手段 , 在材料与能源上有着应用前景 , 无论是对物理学、化学还是生物、材料学 , 都进行了相互渗透 , 成为重要的研究领域。当 今社会 , 激光与物质相互作用的研究受到各国科研人员的重视 , 人们投入大量的人力、物力、财力, 运用新方法、 新手段进行研究。 1激光与物质相互作用的基础理论非线性光学、激光光谱学以及激光化学是构成激光与物质相互作用的基础理论 , 该理论不仅向人们阐述了激光与物质相互作用的 特点、性质 , 并且对未来的发展做出了相应预测 , 是对激光与物质相互作用的主要研究手段 , 在近几年 ,

三大学科得到了迅速发展 , 对人们的研究产生了良好的理论基础。 1.1非线性光学的表现 非线性光学是激光与物质相互作用的主要理论依据 , 在一定程度上 , 该理论向人们阐述了激光与物质相互作用的主要特点以及过 程。作为新兴学科 , 非线性光学在阐明激光特点的同时, 形成了非线性光学效应, 这种效应, 在以探讨、 观测为基础的同时, 对物质本身进行了研究。非线性研究的对象不仅仅是固体, 现如今以及涉及到气体、液体等物质中。它研究时出现的效应丰富多彩 , 在具备二阶效应的同时, 也产生了瞬间效应。 在非线性光学与物质的不断研究中 , 要注意以下几点 :(1 非线性光学表面与界面的研究 非线性光学表面与界面的研究 , 是对物力与化学研究的表现 [1], 在进行研究时, 表面波与表面光得到了重要研究 , 人们在了解、观察表面波的频率以及斯托克斯喇曼效应时, 对喇曼散射表面的现象进行了研究。在长约 10年的研究中 , 人们发现了表面二次谐波的反射 现象 , 对超晶体的研究也正在进行。 (2 对光学稳态的研究

激光对生物体的作用及这方面的应用

激光也是一种光,从本质上讲它和普通光源如太阳、白炽灯、火焰等所发出的光没有什么区别,因此它具有普通光所具有的性质。由于它是一种电磁波,所以又具有波粒二象性。它遵守反射、折射的定律,在传播中会出现干涉、衍射、偏振等现象。但是,激光又有着和普通光显著不同的特点,如它的单色性、相干性、方向性极好,亮度极高等。因此,它与生物体作用时会产生许多特殊的效应,这也是激光可以用来诊治疾病的原因之一。 激光美容的原理是通过组织吸收高能量的激光后所产生的光热反应,使局部温度在数秒内骤然升高到数百度或更高,组织发生凝固性坏死,甚至碳化或汽化,与此同时,由于急剧发热,组织的水分突然剧烈丧失,聚焦后,可用以切割或烧灼病变组织。常用于皮肤的激光有二氧化碳激光、红宝石激光、染料激光等。激光美容的优势是显而易见的:操作简便、省时、可同时止血,对于有些大面积斑、痣无须手术切除,自体植皮,可以起到美容和保留原有皮肤功能的双重效果。但是它同其他治疗方法一样,也会有一些副作用,在清除病变组织的同时,对正常组织也有不同程度伤害,最常见的是遗留表浅疤痕、色素减退或沉着斑。 激光的生物作用机理及生物效应 激光对生物体的作用有五种:热作用、光化作用、机械作用、电磁场作用和生物刺激作用。激光和生物体相互作用以后所引起生物组织方面的任何改变都称为“激光的生物效应”。激光与生物体作用后,不仅会引起生物效应,而且激光本身的参数(波长、功率、能量等)也可能会改变。由于激光的生物效应是“五作用”所致,故这“五作用”即为激光生物效应的机理。 一、医用强激光与弱激光 在医学上,由于强、弱激光的生物作用机理不同,所以临床应用时其目的和方法也不同。在医学领域里,不以激光本身的物理参量(如功率和能量)来衡量激光的强弱,而是以它对生物组织作用后产生生物效应的强弱来区分的。它的定义是:激光照射生物组织后,若直接造成了该生物组织的不可逆损伤,则此受照表面处的激光称为强激光;若不会直接造成不可逆损伤者,称为弱激光。

基因多态性及其生物学作用和医学意义

基因多态性及其生物学作用和医学意义一、基因多态性: 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性 (longth polymorphism)。 1.位点多态性:是由于等位基因之间在特定的位点上DNA序列存在差异,也就是基因组中散在的碱基的不同,包括点突变(转换和颠换),单个碱基的置换、缺失和插入。突变是基因多态性的一种特殊形式,单个碱基的置换又称为单核苷酸多态性(single nucleotide polymorphism, SNP), SNP通常是一种二等位基因(biallelic)或二态的变异。据估计,单碱基变异的频率在1/1000-2/1000。SNP在基因组中数量巨大,分布频密,检测易于自动化和批量化,被认为是新一代的遗传标记。 2. 长度多态性:一类为可变数目***重复序列(variable number of tandem repeats, VNTRS),它是由于相同的重复顺序重复次数不同所致,它决定了小卫星DNA (minisatellite)长度的多态性。小卫星是由15-65 bp的基本单位***而成,总长通常不超过20bp,重复次数在人群中是高度变异的。另一类长度多态性是由于基因的某一片段的缺失或插入所致,如微卫星DNA(microsatellite),它们是由重复序列***构成,基本序列只有1-8bp,如(TA)n及(CGG)n等,通常重复10-60次。长度多态性是按照孟德尔方式遗传的,它们在基因定位、DNA指纹分析,遗传病的分析和诊断中广泛地应用。 造成基因多态性的原因:1复等位基因(multiple allele)位于一对同源染色体上对应位置的一对基因称为等位基因(allele)。由于群体中的突变,同一座位的基因

医学生物学名词解释

医学生物学名词解释 生物大分子:组成原生质的有机化合物中蛋白质、酶和核酸分子质量巨大,结构复杂,功能多样,具有信息,称为生物大分子。 10个以下氨基酸分子形成的化合物称为寡肽。 多肽:相对分子质量低于6000,组成的氨基酸分子少于50-100个的化合物称为多肽,一般不具有稳定的空间结构。 蛋白质:比多肽更大的称为蛋白质,既有特定且相对稳定的空间结构。 在以肽键为主,二硫键为副键的多肽链中,氨基酸的排列顺 序,即为蛋白质的一级结构。 蛋白质的二级结构:肽链上相邻氨基酸残基间主要靠氢键维系的有规律,重复有 序的空间结构。三种基本构象:… 蛋白质的三级结构:蛋白质分子在二级结构的基础上,进一步折叠,盘曲形成的, 接近球形的空间结构。维系三级结构的主要有疏水键,酯键, 氢键,离子键和二硫键等。 蛋白质的四级结构:每条多肽链都有其独立的三级结构,成为亚基。亚基间再以 氢键,疏水键和离子键等相连,所以蛋白质的四级结构是亚 基集结的结构。 蛋白质的功能:催化,调节,保护,运输,收缩,防御,信息传输,免疫等。酶:生物催化剂,具有高效性,专一性,不稳定性。 :通过蛋白质构象变化而实现调节功能的现象。空间结构 正常,但蛋白质构象发生轻微变化,使其更有效的完成生理 功能。 变性(一级结构不变):蛋白质空间结构发生破坏,理化性质改变,生物活性丧 失的过程。 DNA的双螺旋结构模型:B-DNA由两条反向平行的多核苷酸链,围绕同一中心轴, 以右手螺旋的方式盘绕成双螺旋。磷酸和脱氧核糖位于 双螺旋的外侧,形成DNA的骨架,碱基位于双螺旋的内 侧。两条链的每一对碱基互补的原则以氢键相连。 非编码链:DNA双链中能够转录的一条链成为非编码链(或反编码链),方向(3’-5’)。另一条称为编码链(5’-3’)。 核酶:具有酶活性的RNA。 膜相结构:包括细胞膜、核膜、内质网、高尔基复合体、线粒体、溶酶体、过氧化物酶体、小泡等。 非膜相结构:包括染色质(体)、核糖体、中心体(粒)、微丝、微管、中间纤维核仁、细胞质基质、核基质等。 单位膜:由内外两层致密的深色带和中间一层疏松的浅色带构成的三层膜相结构(2×2+=) 生物膜:真核细胞内的膜系统与细胞膜统称生物膜。 原核细胞:结构简单,其核物质缺乏双层的核膜包裹即没有真正的细胞核(有 拟核),缺乏膜相结构的细胞器,细胞体积较小,没有完整的细胞膜。 但质膜外有一层由蛋白质和多糖组成的坚固的细胞壁。

生物物理所招收硕士研究生复试工作实施细则.doc

生物物理所2008年招收硕士研究生复试工作实施细则 一、复试工作的领导与管理 1.教育委员会负责本所研究生复试工作的领导和组织实施,并对复试结果负责。 2.复试的要求、评分标准和办法,经教育委员会讨论批准,并在复试中严格执行。 3.我所不少于5名以上的博士生导师组成面试考核小组对考生进行面试,复试小组应 对复试考生成绩作出排名并提出建议拟录取的名单。 二、复试原则和办法 1.凡拟录取的考生均应经过复试。复试必须体现公平、公正、公开的原则,对考生的 德、智、体全面进行衡量。 2.采取差额复试,复试比例参考国家有关规定。 3.复试办法和方式(包括体检要求等)通过互联网或电话等相关手段,告知考生。 4.复试包括专业知识面试、英语口语测试和综合素质能力考察三个部分组成。 5.每个学生面试时间不少于20分钟。 6.体检在复试后第二天,费用自理。 三、凡参加2008年硕士生复试的考生应提供下列材料: 1.报到时需持本人身份证(应届生还需出示学生证)。 2.往届生查验毕业证书、学位证书原件。 3.在职生参加复试时应提供单位人事部门同意报考的证明。 四、复试内容 (一)专业知识面试 主要考核考生的掌握专业知识的广度、深度与对知识灵活运用的程度(包括对所报考学科前沿知识和研究动态的了解情况);运用专业知识的能力;思维、逻辑能力(分析与解决问题的能力);应变反应能力;表达能力;了解考生的研究兴趣;科研能力与潜在能力等。 (二)英语测试 1.主要测试考生运用英语口头表达能力及英文文献阅读能力。 2.以考生自述、文献阅读翻译、英文对话方式进行。 (三)综合素质能力测试 1.思想政治素质和道德品质等; 2.本学科(专业)以外的学习、科研、社会实践(学生工作、社团活动、志愿服务等) 或实际工作表现等方面的情况; 3.事业心、责任感、纪律性、协作性和心理健康情况;

(推荐)《激光生物医学教案》word版

Laser Biological Medicine 激光生物医学教案 任课教师:刘莉 教研室:电子信息科学与技术

?Course name laser biological medicine ?Teaching aim to know about some medical lasers in common use and their applications on biological medicine ?Teaching fashion special topic lectures ?Main references 1. M.H.Niemz, Laser-tissue interactions——fundamentals and applications 2. 李正佳、朱长虹,激光生物医学工程 ?Teaching language English Chinese ?Course sort checking ?Teaching period 32 class hours ?Teaching arrangement Chapter one Introduction 2 class hours Chapter two Interaction mechanisms 8 class hours Chapter three Working principle of some medical lasers 12 class hours Chapter four Medical application of lasers 10 class hours 课程名称激光生物医学 教学目的了解一些常用的医用激光器的工作原理及在生物医学上的应用 教学方式专题讲座 主要参考书 1. M.H.Niemz, Laser-tissue interactions——fundamentals and interactions 2. 李正佳、朱长虹,激光生物医学工程 教学语言双语 考试方式考查课 学时 32学时 ?学时安排 第一章绪论 2学时 (激光在医学上的应用及研究发展概况) 第二章激光与物质相互作用机理 8学时 (光化学作用,光热作用,光致蚀除,等离子体诱导蚀除) 第三章几种医用激光器工作原理 12学时 , Nd:YAG 基本原理,结构,输出特性) (He-Ne, CO 2 第四章激光技术在医学上的应用 10学时 (眼科,牙科,心血管外科,神经外科) 第四章激光技术在临床诊断上的应用 2学时

激光生物学效应及医学应用

激光的生物效应及医学应用 当把激光照到生物样品并相互作用时,除可发生同波段普通光引起的生物效应外,还可引起许多特别的生物效应,如热作用、光化作用、机械作用、电磁作用以及对生物系统的刺激作用等. 根据这些生物效应,激光在医学中可用于研究、诊断和治疗. 热效应激光照射生物组织时,激光的光子作用于生物分子,分子运动加剧,与其他分子的碰撞频率增加,由光转化为分子的动能后变成热能. 为此将造成蛋白质变性,生物组织表面收缩、脱水、组织内部因水分蒸发而受到破坏,造成组织凝固坏死,当局部温度急剧上升达几百度甚至上千度时,可以造成照射部分碳化或汽化. 在照射生物组织时,不同波长的激光产生热效应的机制也不尽相同,红外激光的光子能量小,生物组织吸收后只能增加生物分子的热运动导致温度升高,所以它是直接生热;可见光和紫外光的光子能量大,生物组织吸收了光子能量后引起生物分子电子态跃迁,在它从电子激发态回到基态的驰豫过程中释放能量,该能量可能引起光化反应,也可能转化为热量产生温度升高,所以它们是间接生热. 激光热效应究竟应表现为哪种形式,在激光方面取决于其输出参数、作用时间,在生物组织方面则取决于其光学、热学特性等许多因素. 在临床治疗时基本上是用热致凝固、热致汽化、热致碳化、热致燃烧这四种热效应,相对低能量的连续激光如CO2激光或Ar+激光,准连续的激光如铜蒸汽激光或KTP激光,通常产生可控的表浅的部分厚度的热致凝固效应;将脉冲染料激光的特异性作用于微血管治疗瘢痕,也应用了热致凝固效应;采用脉冲CO2激光或Er:YAG激光进行面部疤痕和皱纹的去除,则是利用了使病变皮肤组织汽化的热致汽化效应,从而获得理想的美容效果. 随着半导体激光器波长范围的扩展,半导体激光已经用于软组织切除及组织接合、凝固、和汽化,在医学上获得广泛应用. 有时根据情况,也采用多波长激光在空间、时间上的组合使用,比如在激光美容中,通常用CO2激光(10.6 μm)作大面积去皱后,再用铒激光(2.94 μm)做精细修整,可以产生优于单一波长的医疗效果. 光化学效应当一个处于基态的分子吸收了能量足够大的光子以后,受激跃迁到激发态,在它从激发态返回到基态,但又不返回其原来分子能量状态的弛豫过程中,多出来的能量消耗在它自身的化学键断裂或形成新键上,其发生的化学反应即为原初光化学反应. 在原初光化学反应过程中形成的产物,大多数极不稳定,它们继续进行化学反应直至形成稳定的产物,这种光化反应称为继发光化反应,前后两种反应组成了一个完整的光化反应过程. 这一过程大致可分为光致分解、光致氧化、光致聚合及光致敏化四种主要类型. 光致敏化效应又包括光动力作用和一般光敏化作用. 应用光敏剂进行的光动力学疗法是其中典型的应用. 光动力学疗法,也称为光化学疗法. 在机体内注射某种光敏物质,由于肿瘤细胞和正常细胞与光敏物质的亲和力不同,使病变组织内的光敏物质浓度远大于邻近的正常组织. 选择性存积于肿瘤细胞内的光敏剂经特定波

相关主题
文本预览
相关文档 最新文档