当前位置:文档之家› 函数一致连续的比较判别法

函数一致连续的比较判别法

函数一致连续的比较判别法
函数一致连续的比较判别法

函数一致连续的比较判别法

熊昌萍;朱军;唐国彬

【摘要】在一般教材上对无穷区间上的函数,通常都采用定义的方法判别其一致连续性,对于复杂的函数,判别其是否一致连续一般来说常常比较困难.本文给出了判别无穷区间上函数一致连续性的一种比较判别法.

【期刊名称】《大学数学》

【年(卷),期】2009(025)004

【总页数】4页(P170-173)

【关键词】一致连续函数;比较判别法;无穷区间

【作者】熊昌萍;朱军;唐国彬

【作者单位】杭州电子科技大学,理学院,信息与数学科学系,杭州,310018;杭州电子科技大学,理学院,信息与数学科学系,杭州,310018;杭州电子科技大学,理学院,信息与数学科学系,杭州,310018

【正文语种】中文

【中图分类】基础科学

第 25 卷第 4 期2009 年 8 月大学数学COI_LEGE MATHEMATICS

Vol.25 ,No.4Aug.2009函数一致连续的比较判别法熊昌萍,朱军,唐国彬(杭州电子科技大学理学院信息与数学科学系,杭州 310018 ) [ 摘要] 在一般教材上对无穷区间上的函数,通常都采用定义的方法判别其一致连续性,对于复杂的函数,判别其是否一致连续一般来说常常比较困难.本文给出

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

函数连续性

第四章 函数的连续性 §1 连续性概念 Ⅰ. 教学目的与要求 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. Ⅱ. 教学重点与难点: 重点: 函数连续性的概念. 难点: 函数连续性的概念. Ⅲ. 讲授内容 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说,连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我 们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数 的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一 函数在一点的连续性 定义1 设函数f 在某U ()0x 内有定义.若()x f x x 0 lim →=()0x f , 则称f 在点0x 连续. 例如,函数连续()x f 12+=x 在点2=x 连续,因为 2lim →x ()x f =2 lim →x ()()2512f x ==+ 又如,函数()x f ???=0 ,00,1sin =≠x x x x ,在点0=x 连续,因为 ()()001sin lim lim 00f x x x f x x ===→→ 为引入函数()x f y =在点0x 连续的另一种表述,记0x x x -=?,称为自变量x (在点 0x )的增量或改变量.设()00x f y =,相应的函数y (在点0x )的增量记为: ()()()()0000y y x f x x f x f x f y -=-?+=-=? 注 自变量的增量x ?或函数的增量y ?可以是正数,也可以是0或负数.引进了增 量的概念之后,易见“函数()x f y =在点0x 连续”等价于0lim 0 =?→?y x . 由于函数在一点的连续性是通过极限来定义的,因而也可直接用δε-方式来叙述, 即:若对任给的0>ε,存在0>δ,使得当δ<-0x x 时有 ()()ε<-0x f x f (2) 则称函数f 在点0x 连续.

函数项级数一致收敛的判别

函数项级数一致收敛的判别 姓名: 学号: 指导老师: 摘要:函数项级数问题是数学分析中极其重要的部分,判别其一致收敛的方法有多种。本文探讨了对函数项级数一致收敛的判别方法,并对有关的注意事项进行了分析。 关键字:函数项级数 一致收敛 判别法 Judgment on Uniform Convergence for Function Series Name: Student Number: Advisor: Abstract: Issue of function series plays a very important role in Mathematical Analysis.There are various methods to judging the uniform convergence of function series .This paper gives several methods of juding the uniform convergence of function series. Apart from that, the paper also analysizes some relative points that need to be paid special attention. Key words: Function series Uniformly convergence Judgment 在数学分析中级数问题是一个特别重要的问题。级数内容主要分为两大块,即数 项级数与函数项级数。数项级数通常被认为是函数项级数的一个典型例子,而函数项级数,在某种意义上,是对数项级数的延伸。在研究内容和性质上,它们又有着许多类似的地方,例如使用第n 个部分和数列的敛散性来判断级数的敛散性,以及判别收敛性的方法等。对于函数项级数,研究它的性质和一致收敛的判别则是学习的重点,并且它还是研究级数问题最重要的工具,对进一步研究函数项级数的性质起着重要的作用。教材中判别一致收敛的方法有很多,下面给出一种最基本的方法,即根据一致收敛的定义来进行判别。 一 利用一致收敛的定义 定义1[1] : 设函数项级数()1n n u x ∞ =∑在D 上和函数为()S x ,称()( )n R x S x =-() n S x 为函数项级数()1 n n u x ∞ =∑的余项. 定义2[1] : 设函数项级数()1 n n u x ∞ =∑在区间I 上收敛于和函数()S x ,若任给 0,ε>N N n N x I +?∈?>?∈,,,有()()()n n S x S x R x ε-=<,则称函数项级数

浅析函数连续与一致连续性的判定论文

学科分类号:___________ 学院 本科学生毕业设计 题目名称:浅析函数连续与一致连续性的判定学生姓名:学号: 系部:数学与应用数学系 专业年级:应用数学专业 指导教师: 2008年5 月9 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1前言 (2) 2函数 (2) 2.1 函数连续性的定义 (2) 2.2 函数在区间上的连续性判定 (3) 2.3 判断函数的连续性常用方法 (4) 2.4 初等函数的连续性 (6) 3 函数的一致连续性 (7) 3.1 函数一致连续性定义 (7) 3.2 函数在任意区间上的一致连续性的判定 (8) 3.3 两种常用的判别方法 (9) 3.4 函数一致连续性的几个条件 (11) 4 函数连续与一致连续性的关系 (14) 5 总结 (16) 参考文献: (17) 致谢 (17)

浅析函数连续与一致连续性的判定 摘要:本文首先从连续函数的定义和连续性定理出发,给出了各种区间上函数连续的条件,并且总结了判断函数连续性的常用方法。然后给出了一致连续函数的定义及相关定理。从G﹒康托尔定理出发,给出了两个关于一致连续性的十分重要的判别方法,并说明了使用一致连续性的充要条件来讨论函数在区间上的一致连续性的方法。最后我们从两者的概念出发,深刻地揭示了它们之间的内在联系,更加深入地理解和掌握函数的连续性与一致连续性。 关键词:初等函数;区间;连续;一致连续;非一致连续 Simply analyze the judgment of function’ continuity and consistent continuity Abstract:Firstly, this article is proceed from the definition of conditions of continuous function and continuity theorem, providing with kinds of function continuously in intervals, and also it summarized the conventional methods of judge function continuity. Then it gives out the definition and some relevant theorems of consistent function. With the G.. cantor theorem, it gives two vital important discriminate methods with were concerned with consistent continuity and it illustrated abundant conditions of using consistent continuity functions in interval. Finally, starting from these two conceptions, it reveals their inner relation profoundly and it makes us understand master continuity and consistent continuity of function more penetrate. Key words: elementary function; interval; continuous; consistent continuous; no consistent continuous

函数项级数一致收敛的判定开题报告

一、本课题研究现状及可行性分析 目前通用的数学分析教材(如华东师范大学,复旦大学,吉林大学,北京师范大学等)其介绍的主要内容如下:M 判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的收敛性进行了讨论。当前对级数的收敛性的讨论研究已经到达比较高级阶段,分枝也比较细,发展也相对较完善。但在许多实际解题过程中,往往不是特定的级数,用特殊的方法不能解决。故需对特殊级数情况要总结和发展。 函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于()n u x 一致收敛性的判别法,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效地运用函数项级数一致收敛的判别法。而此课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。 二、本课题研究的关键问题及解决问题的思路 关键问题:对函数项级数一致收敛性判别法总结和推广。 基本思路:首先从定义出发,让读者了解函数项级数及一致收敛的定义,对函数项级数一致收敛有一个大致的认识,并对其进行一定的说明,且将收敛与一致收敛做一个比较,使读者对其有一个更深刻的认识。随后给出一些常见的一致收敛的判别法,并附上例题加以说明。当熟悉了一般的判别法后,我将其加以推广,得到一些特殊的判别法,如比式判别法,根式判别法,对数判别法等。

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

含参量反常积分一致收敛的判别法

题目含参量反常积分一致收敛的判别法学生姓名 学号 系别数学系 年级2010级 专业数学与应用数学 指导教师 职称 完成日期

摘要 含参变量的反常积分是研究和表达函数的的有力工具。要更好的研究含参量反常积分所表达的函数,关键问题在于判断他的一致收敛性。本文通过研究判断含参量反常积分一致收敛的判别法,以帮助研究含参量反常积分所表达的函数。关键词:含参量反常积分;一致收敛;判别法

Abstract Improper integral with variable is the study and expression tool function. To better function of parameter improper integral expression of the key problem lies in the judgment, the uniform convergence of his. Through the study of judging function discriminant method of parameter improper integral converges uniformly to help the study of parameter improper integral expression. Key words: Improper integral with variable;uniform convergence; discriminant analysis

目录 1引言 (1) 2基本概念 (1) 2.1含参量反常积分 (1) 2.2含参量反常积分一致收敛 (2) 3含参量反常积分一致收敛的判别方法 (2) 3.1定义法 (2) 3.2柯西准则法 (3) 3.3变上限积分的有界性法 (3) 3.4确界法 (4) 3.5微分法 (5) 3.6级数判别法 (6) 3.7维尔斯特拉斯判别法(简称M判别法) (6) 3.8狄里克莱判别法 (8) 3.9阿贝尔判别法 (8) 4结束语 (1) 参考文献 (10) 致谢 (11)

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 定理11.1 无穷积分()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便 有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()221 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

函数一致连续的若干方法

函数一致连续的若干方法 学生姓名:钱建英 学号:20115031297 数学与信息科学学院 数学与应用数学专业 指导教师:段光爽 职称:讲师 摘 要 函数在区间上的一致连续性是学习数学分析课程中的重要理论之一,本 文主要讲述了函数在有限区间与无线区间上一直连续的若干方法并举例说明 关键词 函数;一致连续;极限; Several methods of uniformly continuous function Abstract The function uniform in interval is one of the most of important theories in the mathematics analysis course .this paper describes several methods function on a finite interval with a wireless range has been continuous and illustrated. Key words : function consistent-continuity limit. 0 前言 一致连续是在数学分析中频繁用到的概念,是数学分析中经常涉及的问题,并且一致连续性问题是数学分析中的主要理论,函数一致连续与处处连续有着本质的区别:处处连续是局部概念而一致连续是函数和区间共同决定的,是整体的概念.目前数学分析课本上的判别法大多是利用函数一致连续的定义,没有提出一些直观的判别法.对于初等函数一致连续的问题并没有系统的总结,函数非一致连续也是利用定义,没有直观判别. 函数一致连续性的判定是学习数学分析的重点和难点,因此寻找函数一致连续性的较为直观的判定方法非常重要,对于今后的学习以及数学分析教学有帮助,学习函数一致连续性时有更加直观的感觉,建立感性认识,将一致连续与其他知识联系起来,开阔分析问题的思路,为其他问题的解决奠定基础,本文给出了一些判定方法. 1有限区间上函数一致连续 1.1 一致连续性定义 设f 为定义在区间I 上的函数.若对任给的0>ε,存在()0>=εδδ,使的对任何的I x x ∈''',,只要δ<''-'x x ,就有 ()()ε<''-'x f x f . 则称函数f 在区间I 上一致连续. f 在I 上一致连续意味着:任意的两点x x ''',,不论这两点在I 中处于什么位置,只要它们的距离小于δ,就可得到()()ε<''-'x f x f .

函数项级数一致收敛性的判别法

函数项级数一致收敛性的判别法 摘 要 函数项级数是数学分析中的重点和难点,因此讨论和分析它的性质和判别方法显得尤为重要,本文给出了函数项级数的定义以及函数项级数一致收敛性的判别定理,并用之来解决函数项级数一致收敛性的一些问题比较容易. 关键词 函数项级数;一致收敛性;判别法. 中图分类号 O173.1 Function Seies Convergence Criterion Abstrac t :Function is a mathematical analysis of series of focus and difficult, so the discussion and analysis of its nature and it is particularly important to identify methods.In this paper, the definition of Function series and uniform convergence of Function series of discriminant theorem,and used to solve the series of uniform convergence of Function of some of the problems is easier. Key words :Function series; Uniform convergence of; Discriminance 1 引言及预备知识 如果函数项级数具有一致收敛性,函数项级数的和函数或余和易于求得,判别它的一致收敛性可应用一致收敛定义,如果很难求得它的和函数或余和,就根据函数自身的结构,找到判别一致收敛性的判别法. 定义1.1[1] 设()12(),,u x u x …()n u x ,…是一列定义在D 上的函数,把这些函数的各项用加号连接起来的表达式 ()()12u x u x ++…+()n u x +…或()1n n u x ∞ =∑, (1) 称为函数项级数.a D ?∈ 函数级数在a 对应一个数值级数 1 ()U n a ∞ =∑ =12()()u a u a ++...+()n u a +. (2) 它的敛散性可用数值级数敛散性的判别法判别,若级数(2)收敛,则称a 是函数级数(1)的收敛点;若级数(2)发散,则称a 是函数级数(1)的发散点. 定义 1.2[1] 函数项级数(1)的收敛点的集合,称为函数项级数(1)的收敛域,若收敛域是一个区间,则称此区间是函数项级数的收敛区间. 定义 1.3[1] 设数集E 为函数项级数()1 n n u x ∞ =∑的收敛域,则对每个x E ∈记S(x)= ()1 n n u x ∞=∑称S(x)为函数项级数()1 n n u x ∞ =∑的和函数.

一致收敛性及应用初步

龙源期刊网 https://www.doczj.com/doc/4417224313.html, 一致收敛性及应用初步 作者:缪彩花何天荣 来源:《文理导航》2018年第03期 【摘要】本文对函数项级数一致收敛性的判别法进行介绍和举例,还介绍了一致收敛函数项级数性质的初步应用,有助于加深对一致收敛的理解,体会一致收敛的作用,增强数学的应用意识。 【关键词】级数;一致收敛;判别法 函数项级数具有高度的抽象性,特别是函数项级数的一致收敛性更是教学和学习中的难点,以下我们介绍函数项级数一致收敛性的判别方法及其初步应用。 一、函数项级数一致收敛性的判别法 1.M判别法 M判别法的适用范围虽然较窄,但当它适用時,用起来却很方便。 如对于函数项级数,x∈[-1,1]。由于对任意的x∈[-1,1]有u (x)≤ ,而级数收敛,所以由M判别法知原函数项级数在[-1,1]上一致收敛。该函数项级数也可用“裂项相消法”去求 部分和序列,证明其一致收敛,但和M判别法比较,就可以发现M判别法简单得多。 2.狄利克雷判别法和阿贝尔判别法 狄利克雷判别法和阿贝尔判别法均适用于讨论通项是两个函数相乘的函数项级数,如对于函数项级数,x∈[0,+∞),记u (x)= ,v (x)= , u (x)在[0,+∞)上一致收敛。 ∨x∈[0,+∞),函数列{v (x)}是单调减少的,又因为v (x)≤1对一切x∈[0,+∞)和任意n∈N都成立,所以{v (x)}在[0,+∞)一致有界,由阿贝尔判别法知函数项级数 u (x)v (x)在[0,+∞)上一致收敛。 3.柯西准则及其推论 判别函数项级数一致收敛的M判别法,狄利克雷判别法,阿贝尔判别法都是充分性判别法,不能用它们来判别函数项级数不一致收敛。判别函数项级数不一致收敛可应用柯西准则及其推论。对于函数项级数 2 sin(x/3 ),x∈(0,+∞),记u (x)=2 sin(x/3 ),取ε =1,∨N>0, n>N及x =π3 /2∈(0,+∞)有u (x )=2 >1,由此得{u (x)}在(0,+∞)上不一致收敛于零,由柯西准则的推论得:函数项级数 2 sin(x/3 )在(0,+∞)上不一致收敛。

函数项级数一致收敛的几个判别法及其应用

函数项级数一致收敛性判别法及其应用 栾娈 20111101894 数学科学学院 数学与应用数学11级汉班 指导老师:吴嘎日迪 摘要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用.另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法. 关键词:一致收敛,函数项级数,和函数 1.函数列与一致收敛性 (1)函数项级数一致收敛性的定义:设有函数列{S n (x )}(或函数项级数∑∞ =1 )(n n x u 的 部分和序列)。若对任给的0>ε,存在只依赖于ε的正整数N (ε),使n > N (ε)时,不等式 ε<-)()(x S x S n 对X 上一切x 都成立,则称{S n (x )}(∑∞ =1 )(n n x u )在X 上一致收敛于S (x ). 一致收敛的定义还可以用下面的方式来表达: 设 =-S S n X x ∈s u p )()(x S x S n -, 如果 0lim =-∞ →S S n n 就称S n (x )在X 上一致收敛于S(x ). 例1 讨论 = +=X x n nx x S n 在2 2 1)([0,1]的一致收敛性 由于S (x )=0, 故 2 11)(m a x 1 = ?? ? ??==-≤≤n S x S S S n n x o n , 不收敛于零,故在[0,1]上非一致收敛 (2)函数项级数一致收敛的几何意义:函数列{f n }一致收敛于的f 几何意义:对任 给的正数ε ,存 N ,对一切序号大于N 的曲线y=f n (x )都落在以曲 线y= f (x )+ε与y=f (x )-ε为上,下边界的带形区域内. 2.函数列一致收敛的判别准则(充要条件)

含参量反常积分一致收敛性的判别法资料

含参量反常积分一致收敛的判别法 王 明 星 (德州学院数学科学学院,山东德州 253023) 摘 要: 含参量反常积分是研究和表达函数特别是非初等函数的有力工具.本文通过对含参量反常积分一致收敛性的分析和研究,总结出了判别含参量反常积分一致收敛的几种简单而有效的方法和定理(柯西准则,M 判别法,确界法,狄利克雷判别法等),从而方便了含参量反常积分一致收敛性的学习和掌握. 关键词: 含参量反常积分; 一致收敛; 判别法 含参量反常积分包括含参量无穷限反常积分和含参量无界函数反常积分,两种反常积分一致收敛性的判别法是相似的,所以我们下面仅仅讨论含参量无穷限反常积分一致收敛性的判别法. 1 含参量无穷限反常积分一致收敛的概念 1.1 含参量无穷限反常积分 设函数(,)f x y 定义在无界区域(){},,R x y a x b c y =|≤≤≤<+∞上,若对每一个固定的[],x a b ∈,反常积分 (,)c f x y dy +∞ ? 都收敛,则它的值是x 在[],a b 上取值的函数,当记这个函数为()I x 时,则有 ()(,)c I x f x y dy +∞=?,[],x a b ∈ 称(,)c f x y dy +∞? 为定义在[],a b 上的含参量无穷限反常积分. 1.2 含参量无穷限反常积分收敛 若含参量无穷限反常积分(,)c f x y dy +∞? 与函数()I x 对每一个固定的 [],x a b ∈,任给的正数ε,总存在某一实数N c >,使得M N >时,都有 (,)()M c f x y dy I x ε-

广义积分的收敛判别法

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分? +∞a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?ε , 0>?δ, 只要0<δηη<

函数一致连续性的判别

函数一致连续性的判别 一.函数一致连续性的定义 1.函数一致连续性的概念 定义:设函数) (x f 在区间I 有定义,若δ δε <-∈?>?>?212,1:,0,0x x I x x 有 , )()(21ε<-x f x f 称函数) (x f 在I 上一致连续。 例1.证明:函数) 0()(≠+=a b ax x f 在),(+∞-∞上一致连续。 证 :,0>?ε由于' '' ')''()(x x a x f x f -=-,取δ= a ε ,则对任何) ,(,'''+∞-∞∈ x x , 只要 δ <-' '' x x ,就有 ε <-)()(' ''x f x f ,故函数 ) 0()(≠+=a b ax x f 在) ,(+∞-∞上一致连续。 例2. 证明:函数 x x f 1)(= 在区间[]1,a (其中10<?ε由于' ''2 ' ''' ' ''' '' ' 111)''()(x x a x x x x x x x f x f -≤ -= - = -,取ε δ 2 a =, 则对任意[],1,,'''a x x ∈当δ <-' ''x x 时,就有 ε <-)()(' '' x f x f ,故函数 x x f 1)(= 在区间[]1,a (其中10<?>?>=?δδε10,021 n ,取1 1' += n x ,(]1,01'',1 1' ∈= += n x n x ,虽 然有 ,1) 1(111 12 ' '' δ<< +<- += -n n n n n x x 但 2 11)1()(0' '' = >=-+<-εn n x x f ,故函数 x x f 1)(= 在区间(]1,0上非一致连 续。 例3.(1)叙述 ) (x f 于区间I 一致连续的定义;(2)设 ) (x f ,)(x g 都于区间I 一致 连续且有界,证明:)()()(x g x f x F =也于I 一致连续。 解: (1)若δ δε <-∈?>?>?212,1:,0,0x x I x x 有 , )()(21ε<-x f x f 称函数 ) (x f 在

一致收敛判别法总结

学年论文 题目:一致收敛判别法总结 学院:数学与统计学院 专业:数学与应用数学 学生姓名:张学玉 学号:201071010374 指导教师:陶菊春

一致收敛判别法总结 学生姓名:张学玉 指导教师:陶菊春 摘要: 函数项级数一致收敛性的证明是数学分析中的难点,为了开阔思路,更好的理解和掌握函数项级数一致收敛的方法,本文对函数项级数一致收敛的几种判别法进行了分析、归纳、总结。首先对用定义判断函数项级数一致收敛的方法进行了研究,介绍了函数项级数一致收敛的充要条件,近而提供了证明函数项级数一致收敛的一般方法。同时介绍了几个较为方便适用的关于函数序列一致收敛的判别法法。并通过例题的讨论说明这些判别法的可行性及特点。 Abstract :Function Series Uniform Convergence prove mathematical analysis of the difficulties, in order to broaden their thinking, to better understand and master the functions Seies Convergence approach, this paper uniformly convergent series of functions of several discriminant method were analyzed, summarized, summary. First, determine the definition of series of functions with uniform convergence methods were studied, introduced uniformly convergent series of functions necessary and sufficient conditions, while providing nearly proved uniformly convergent series of functions of the general method. Also introduced several relatively easy to apply uniform convergence on the discriminant function sequence Law Act. And through discussion of examples illustrate the feasibility of these discriminant method and characteristics. 关键词: 函数项级数;函数序列;一致收敛;判别法 Keywords: series of functions; function sequence; uniform convergence; Criterion 引言: 函数项级数一致收敛性的证明是初学者的一个难点,教材中给出了用定义法、定理及判别法来证明函数项级数的一致收敛性。初学者需用灵活的思维以便在使用时选出正确又快捷的证明方法和技巧。为了更好的培养我们这方面的能力,总结出了函数项级数一致收敛性的若干证明方法。 一、定义 设(){}x S n 是函数项级数()x u n ∑的部分和函数列.若(){}x S n 在数集D 上一致收敛于函数()x S ,则称函数项级数()x u n ∑在D 上一致收敛于函数()x S ,或称函数项级数 ()x u n ∑在D 上一致收敛. 定理:若对?n ,?n a >0使得()()n n a x S x S ≤-()D x ∈?,并且当∞→n 时有 0→n a .则当∞→n 时()x S n 一致收敛于()x S . 例1:若()x f n 在[]b a ,上可积, ,2,1=n ,且()x f 与()x g 在[]b a ,上都可积

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 & 定理 无穷积分 ()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()2 2 1 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

函数项级数一致收敛性判别法及其应用

函数项级数一致收敛性判别法及其应用 数学科学学院08级蒙班 包艳玲 20082115054 指导老师 苏雅拉图 摘 要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用. 关键词:一致收敛,函数项级数,和函数. 下面我要给出函数项级数的一致收敛性的定义 定义 设给定函数项级数∑∞ =1 )(k k x u ,如果它的部分和序列= )(x S n ∑=π 1 )(k k x u 在 区间I 一致收敛到和函数)(x S ;那么称级数∑∞ =1 )(k k x u 在区间I 一致收敛到和函数 )(x S , 即用N -ε语言来叙述,函数项级数∑∞ =1 )(k k x u 在区间I 一致收敛到)(x S ,是指对 任给的0>ε,存在于x 无关的N ,只要N n >就有 ε<-= -∑=n k k n x S x u x S x S 1 )()()()( 对一切I x ∈一直成立. 例1 证明函数项级数∑∞ =-1 1k k x 在??? ???-21,21一致收敛. 证明 已知∑∞ =-1 1 k k x =x x n --11,?? ? ???-∈21,21x 时 x x x x S n n k k n --= =∑=-11)(1 1 ε<≤-≤-=--12111)()(n n n n x x x x x S x S ;??? ???-∈21,21x 时取121ln ln +????? ? ??????=εN 则只要N n >,就有ε<-)()(x S x S n ;??? ???-∈21,21x , ∑∞ =-1 1 k k x 在??????-21,21一致收敛.

数列收敛判别法

学士学位毕业论文设计 数列收敛的判别法 所在系别:数学与应用数学系 专业:数学与应用数学

目录 中文摘要--------------------------------------------------------------------I 英文摘要-------------------------------------------------------------------II 前言------------------------------------------------------------------III 第一章数列极限的概念--------------------------------------------------------1 1.1 数列极限的定义-------------------------------------------------------1 1.2 收敛数列的定义-------------------------------------------------------2第二章判别数列收敛的方法----------------------------------------------------3 2.1 定义法---------------------------------------------------------------3 2.2 单调有界定理---------------------------------------------------------6 2.3 迫敛性定理-----------------------------------------------------------8 2.4 柯西收敛准则---------------------------------------------------------9 2.5 关于子列的重要定理--------------------------------------------------12参考文献-------------------------------------------------------------------14致谢-----------------------------------------------------------------------15

相关主题
文本预览
相关文档 最新文档