当前位置:文档之家› 一种基于小波变换的OTDR事件分析算法的研究

一种基于小波变换的OTDR事件分析算法的研究

一种基于小波变换的OTDR事件分析算法的研究
一种基于小波变换的OTDR事件分析算法的研究

一种基于小波变换的OTDR 事件分析算法的研究

朱 磊

(解放军理工大学通信工程学院 江苏南京 210007)

摘 要:简单分析了用OT DR 卡进行光纤检测的原理,根据小波分析检测信号突变点的理论,提出了运用小波分析对光纤断点及反射事件准确定位的方法。理论分析和实例计算表明,这种方法对O T DR 曲线中反射事件尤其是断点的定位非常准确,是一种行之有效的方法。

关键词:光缆线路监测;背向散射;小波分析;奇异点

中图分类号:T P 301.6 文献标识码:A 文章编号:1004373X (2004)0310603

Research of a Wavelet Based on OTDR Event Analysis Algorithm

ZHU L ei

(Inst i t ut e o f Comm unication Eng ineering ,PLA University of Sc ience &T echno logy ,Nanj ing ,210007,China )

Abstract :I n this paper,the pr inciple o f O T DR card in fiber testing w as fir stly discussed.A ccor ding t o the theor y of using w avelet to ex amine the sing ular po int ,a metho d o f apply ing w av elet to lo cat e the break po int and reflectio n po int o f optical fiber w as put fo rw ar d .Bo th the theo retic ana ly sis and ex per imental r esults show that t he new metho d can achieve a pr ecise locatio n in O T DR cur ve.

Keywords :o pt ical fiber test;backwar d dispersion;w avelet analysis;sing ular po int

收稿日期:20030918

20世纪八九十年代,随着光纤通信技术研究的深入和技术的成熟,以及各国对大容量、长距离数字通信的迫切需要,促使以光纤为传输媒质的通信飞速发展。现在世界各国均建成了大量光纤通信干线,不论是长途还是市话,光纤无处不在。因此建立较完善的监控系统尤为重要。

在光纤通信系统中,由于光纤传输的终端设备可靠性比较高(如美国AT &T 光缆终端设备平均无故障时间为150年),而且设备又具有自身的监控系统,即使出了故障后也能由维护人员在现场很快解决,因此光缆网维护的难点集中在传输的线路上。实际工作经验表明,在许多情况下,光缆通信的线路故障要比设备故障更为突出,约为不可用时间的95%。因此,如果只采用设备自带的监测系统,是难以保证高速、宽带、大容量光缆传输线路的畅通。因此,进行实时的光缆线路监测是十分必要的。

1 OTDR 卡检测光纤的原理(背向散射法)

光纤故障大概可以分为3类:光纤失效、光纤损耗增加和光纤接头异常。光缆线路监测系统主要是利

用光时域反射仪(OT DR )对光纤进行测试。OT DR 作为一种非破坏的光纤测量技术,在通信光纤的施工、维护、运行等方面得到了广泛的应用。OT DR 是利用背向散射法来测量光纤的衰耗特性。

光纤中的反射光有2种:一种是纤芯纵向局部折射率跳跃变化产生的菲涅耳反射光;另一种是纤芯内部存在的直径小于光波长的不均匀区而使各区域之间微弱折射率偏差产生的瑞利背向散射光,其中一部分反射到光纤的入射端,这一部分光称为背向瑞利散射光。背向散射法是将大功率的窄脉冲光注入被测光纤,然后在同一端监测沿光纤背向返回的散射光功率。因为主要的散射机理是瑞利散射,瑞利散射光的特征是他的波长与入射光波的波长相同,他的光功率与该点的入射光功率成正比,所以测量沿光纤返回的背向瑞利散射光功率就可以获得光沿光纤传输遭受损耗的信息,从而可以测得光纤的衰减,故称这种方法为背向散射法。在OTDR 显示的背向散射信号曲线上,反射峰对应着反射事件。而对不出现反射峰的事件,即非反射事件,如光纤熔接、不均匀、老化等造成的事件。

目前国外生产的用于测试线路的光时域反射计OTDR 价格往往在100000元以上,这就限制了他在通信维护上的普及。因此如何研制自己的OT DR 并用

106

朱 磊:一种基于小波变换的OTDR 事件分析算法的研究

于光纤线路监控就具有非常美好的前景,而事件判决算法是OTDR卡研制中的一个重要部分。

文章提出了一种运用小波变换较好的定位光纤断点及反射事件的方法。

2 小波变换运用于信号奇异性检测

信号中的奇异点及不规则的突变部分经常带有比较重要的信息,他是信号的重要特征之一。长期以来,傅里叶变换是研究函数奇异性的主要工具,但傅里叶变换缺乏空间局部性,他只能确定一个函数奇异性的整体性质,而难以确定奇异点在空间的位置及分布情况。我们知道,小波变换具有空间局部性质,因此,利用小波变换来分析信号的奇异性及奇异性的位置是比较有效的。

通常情况下,信号奇异性分为2种,其中一种是信号在某一时刻内,其幅值发生突变,引起信号的非连续,幅值的突变处是第一种类型的间断点。图1是一条典型的OT DR曲线,我们可以认为反射事件属于第一种类型的间断点,可以采用小波分析的方法对其进行定位。

(1)主要由于耦合设备和光纤前端引起

的菲涅尔反射脉冲。

(2)光脉冲沿具有均匀特性的光纤段传

播时的背向散射曲线。

(3)接头或耦合不完善引起的损耗或光

纤存在某些缺陷、熔接缝、光纤弯曲、引起

的高损耗区,叫做非反射事件,只有插入损

耗,没有反射。

(4)光纤断裂处,造成折射率在玻璃和空

气之间变化,形成反射事件。在光纤尾端之后,

检测不到光信号,曲线表现为接收器的噪声。

通常,用李普西兹指数(Lipschitz)来描

述函数的局部奇异性。在利用小波分析这种

局部奇异性时,小波系数取决于f(x)在x0点的邻域内的特性及小波变换所选取的尺度。在小波变换中,局部奇异性可定义为:

设f(x)∈L2(R),若f(x)对 x∈ x0,小波 (x)可实现连续可微,并具有n阶消失矩(n为正整数),有:

W f(s,x) ≤K a s K为常数

则称为x0点的奇异性指数(也称Lipschitz指数)。

对 x∈ x0,有: W f(s,x) ≤ W f(x,x0) ,则称x0为小波变换在尺度s

下的局部极值点。

图1 典型O T DR测试曲线

3 典型OTDR曲线的小波变换

在图2中,曲线A是一条典型的OTDR曲线,从图2中可以看出,第一个较大的反射峰是光纤前端的菲涅尔反射峰,第二个对应着光纤的尾端,其后是噪声段。将曲线A经过简单的程序处理,先抛开前端的一部分菲涅尔反射峰,丢弃大部分噪声段,得到曲线B。用db1小波分解信号到第6层,对分解结构[c, l]中的第1层高频部分进行重构,得到曲线C。我们看到,在信号的小波分解中,因为信号的反射峰包含的是高频部分,第1层(D1)的高频部分将信号的断

点显示得相当明显。

图2 典型O T D R曲线的小波变换过程

4 应用实例

采用以上的算法,实现了一个光缆线路自动监测系统,采用光功率的备用纤监测方式实现了对一条全长多于1000km的光缆线路的实时监测。在监测站中,为了提高系统对故障判别的准确性,对2条备用光纤进行实时监视,一旦光功率监测告警发生,由控制模块启动OTDR对所有纤芯(包括主用纤和备用纤)进行测试。对主用纤通过WDM器件进行在线测试,对备用纤直接进行测试,告警信息和测试结果先后上传至监测中心。为了保证告警信息和测试结果数据能可靠地传送到监

107

《现代电子技术》2004年第3期总第170期仿真与测试

测中心,采用了3条通信线路互为备份的策略,利用通信系统提供的话音通道、专用通道和数字通道可以保证在线路本身出现故障的情况下,能将告警信息和测试结果数据及时地传送到监测中心。在监测中心,配备有大型数据库系统、OT DR 测试数据分析软件和GIS ,通过

结合这些技术,可以实时、直观、系统地向管理人员提供所管辖地区光缆的运行状况。图3中所示为一条被监测光纤的测试曲线以及相关的测试参数和事件、详细曲线分析报告。通过试运行和随后的正式运行,本系统体

现出了较好的实时性、可靠性和先进性。

图3 测试曲线及相关测试参数、事件和详细曲线分析报告

5 结 语

利用小波变换对信号进行多尺度分析,在信号出现突变时,其小波变换后的系数具有模量极大值,因而可通过对模量极大值点的检测来确定故障发生的事件点。根据这一理论,可以在OT DR 的事件分析算法中运用小波分析对光纤断点及反射事件进行定位。理论分析和实例计算表明,这种方法对OTDR 曲线中的反射事件尤其是断点的定位非常准确,是一种行之有效的方法。在实际应用中,对光纤事件分析判断的准确性除了起决定性作用的分析算法外,由于理论分析结果是光距离而非地理距离,理论分析值与实际故障点之间还存在着一定的误差。因此在实际应用中可以运用人工智能系统和专家系统对测试结果进行评估、分析,最终由系统向用户做出光纤劣化趋势报告和提出维护可行性方案。

参 考 文 献

[1] 赵梓森,等.光纤通信工程[M ].北京:人民邮电出版社,2002.

[2] 白崇恩,刘有信.光纤测试[M ].北京:人民

邮电出版社,2001.[3] 杨祥林,张德明,等.光纤传输系统[M ].南

京:东南大学出版社,2000.[4] 张盛武.光缆测试仪器的新进展[D].全国第

九次光纤通信暨第十届集成光学学术会议论文集.1999,(8):521522.

[5] 马正先,熊建文,等.OT DR 在光纤测量中应用

[J].激光杂志,1999,20(2):17.[6] 陈钰,支敬敬.OT DR 技术的目前进展[J].光

纤通信技术,1996,(3):53,62.

陕西省2003年“三优”评审工作圆满结束

为树立陕西省优秀软件企业的品牌形象,培育一批技术水平高,产品质量好,应用前景广阔的优秀

软件产品,立足陕西,走出国门,进军国内外软件市场,为鼓励和表彰陕西省软件人才,为陕西省软件产业发展作出的贡献,陕西省软件行业协会组织了《2003年度陕西省优秀软件企业》、《2003年度推荐陕西省优秀软件产品》和《2003年度陕西省优秀软件人才》的评选活动。根据各单位的申报材料,协会组织专家评审组,对各企业进行了考察,进行了审核

和初评,评选出13家优秀软件企业、21项推荐优秀软件产品和23名优秀软件人才。评选结果在媒体上刊登公告,在公告期满无争议后,经陕西省软件协会常务理事会审查批准,协会下发文件,并在协会一届三次会员大会上颁发奖牌、证书和奖金。

108

朱 磊:一种基于小波变换的OTDR 事件分析算法的研究

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

连续小波变换的概念

连续小波变换的概念swt,cwt,dwt 1。连续小波的概念。就是把一个可以称作小波的函数(从负无穷到正无穷积分为零)在某个尺度下与待处理信号卷积。改变小波函数的尺度,也就改变了滤波器的带通范围,相应每一尺度下的小波系数也就反映了对应通带的信息。本质上,连续小波也就是一组可控制通带范围的多尺度滤波器。 2。连续小波是尺度可连续取值的小波,里面的a一般取整数,而不像二进小波a取2的整数幂。从连续小波到二进小波再到正交离散小波,其实就是a、b都连续,a不连续、b连续,a、b都不连续的过程。操作他们的快速算法也就是卷积(快速傅里叶),多孔(a trous),MALLAT。在MATLAB里,也就是CWT,SWT,DWT。SWT称平稳小波变换、二进小波变换、或者非抽取小波变换。3。从冗余性上:CWT>SWT>DWT,前面两个都冗余,后面的离散小波变换不冗余。 4。从应用上:CWT适合相似性检测、奇异性分析;SWT适合消噪,模极大值分析;DWT适合压缩。 5。操作。就是在某个尺度上得到小波的离散值和原信号卷积,再改变尺度重新得到小波的离散值和原信号卷积。每一个尺度得到一个行向量存储这个尺度下的小波系数,多个尺度就是一个矩阵,这个矩阵就是我们要显示的时间-尺度图。 6。显示。“不要认为工程很简单”。我的一个老师说过的话。小波系数的显示还是有技巧的。很多人画出的图形“一片乌黑”就是个例子。第一步,一般将所有尺度下的小波系数取模;第二步,将每个尺度下的小波系数范围作映射,映射到你指定MAP的范围,比如如果是GRAY,你就映射到0-255;第三步,用IMAGE命令画图;第四步,设置时间和尺度坐标。MATLAB是个很专业的软件,它把这些做的很好,但也就使我们懒惰和糊涂,我是个好奇心重的人就研究了下。里面有个巧妙的函数把我说的(1,2)两个步骤封装在了一起,就是WCODEMAT,有兴趣的同学可以看看。 希望大家深入研究小波。 这里,还有要说的是,小波目前理论的热点: 1。不可分的小波或者具有可分性质的方向性小波; 2。XLET: CONTOURLET, WEDGELET, SHEARLET, BANDELET, RIDGELET, CURVELET; PLATELET. 3。多分辨率分析+多尺度几何分析的结合,才真正是我们所需要的。比如小波域的WEDGELET等等。 最后,几点建议: 1。理论研究和实际应用不同,工程上很多问题小波并不是最好的,在做项目的时候大家要实际情况,实际对待。

事件树分析法

事件树分析法 ETA的理论基础就是系统工程的决策论。与FTA恰好相反,该方法就是从原因到结果的归纳分析法。其分析方法就是:从一个初因事件开始,按照事故发展过程中事件出现与不出现,交替考虑成功与失败两种可能性,然后再把这两种可能性又分别作为新的初因事件进行分析,直到分析最后结果为止。其特点就是能够瞧到事故发生的动态发展过程。在进行定量分析时,各事件都要按条件概率来考虑,即后一事件就是在前一事件出现的情况下出现的条件概率。 事件树分析(Event Tree Analysis)法就是一种逻辑的演绎法,它在给定一个初因事件的情况下,分析此初因事件可能导致的各种事件序列的结果,从而定性与定量地评价系统的特性,并帮助分析人员获得正确的决策,它常用于安全系统的事故分析与系统的可靠性分析,由于事件序列就是以图形表示,并且呈扇状,故称事件树。 事件树也就是一种决策树,但就是它的结果仅仅依赖于系统的内在客观规律,而在决策树中结果取决于决策者的主观控制与影响。 事件树可以描述系统中可能发生的事件,特别就是在安全分析中,在寻找系统可能导致的严重事故时,就是一种有效方法。事件树与决策树都强调获得事件序列的最后结果。事件树的初因事件可能来自系统内的失效或者外部事件,在初因事件发生后相继引发的事件仅仅由系统的设计功能所决定,它们投入的次序就是一定的。 事件树分析的步骤如下: 1.确定或寻找可能导致系统严重后果的初因事件,并进行分类,对

于那些可能导致相同事件树的初因事件可划分为一类; 2.构造事件树,先构造功能事件树,然后构造系统事件树; 3.进行事件树的简化; 4.进行事件序列的定量化。 在进行事件树分析时,应首先了解系统构成与功能,特别要注意以下几点: 1.在确定与寻找可能导致系统严重事故的初因事件与系统事件时,要有效地利用平时的安全检查表、巡视结果、未遂事件与故障信息,以及相关领域、类似系统与相似系统的数据资料。 2.选择初因事件时,重点应放在对系统安全影响大、发生频率高的事件上。 3.对开始阶段选择的初因事件应进行分类整理,对于可能导致相同事件树的初因事件要划分为一类,然后分析各类初因事件对系统影响的严重性,应优先做出严重性最大的初因事件的事件树。 4.在根据事件树分析结果制定对策时,要优先考虑事故发生概率高、事故影响大的项目。 5.当系统的事故发生概率就是由组成系统的作业过程中各阶段安全措施的程序错误或失败概率的逻辑积表示时,其对应的措施就是使发生事故的各阶段中任何一项安全措施成功即可,并且对策的时机越早越好。 6.系统中事故发生概率就是由构成系统的作业过程中各事故发生的逻辑与表示时,须采取的对策就是使可能发生事故的所有阶段中

图像处理中的小波变换算法原理及其应用

图像处理中的小波变换算法原理及其应用 摘要:小波分析是近年来迅速发展起来的一个数学分支,由于它在时间域和频率域里同时具有良好的局部化性质,因而在图像处理领域有着日益广泛的应用。随着数字图像处理需求的不断增长,相关应用也不断的增长,文章以一例图像处理过程为例,阐述了基于小波二维变换的图像处理方法在图像处理过程中的应用。 关键词:小波变换;图像;分解 1小波变换的基本概念及特点 小波定义:(t)∈L2(R),其傅里叶变换为(),当满足允许条件,即完全重构条件或恒等分条件。 C=∞-∞d<∞时,我们称(t)为一个基本小波,或者母小波。将母函数(t)经伸缩和平移后,得: a,b(t)=(),a,b∈R,a≠0 我们称其为一个小波序列。其中a为伸缩因子,b为平移因子。 小波变换是一种信号的时间-尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状可变,时间窗和频率窗都可变的时频局部化分析方法。在低频部分具有较高的频率分辨率和时间分辨率,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,因此被誉为分析信号的显微镜。 小波分析是把信号分解成低频A1和高频D1两部分,在分解中,低频A1失去的部分由高频D1捕获。而在下一层分解过程中,又将A1部分分解为低频A2和高频D2两部分,如此类推,可以进行多层分解。 2二维离散小波变换 在图像分解过程中,图像的小波分解就是二维小波的离散化分解。在此可取a=a0j,b=b0j,这里,j∈z,取a0>1,则离散小波函数可写为j,k(t)。 j,k(t)=()=(a0-jt-kb0) 离散化变换系数可表示为: Cj,k +∞-∞ f(t)j,k(t)dt=(f,Cj,k)

事故树分析法

事故树分析法(FTA) 事故树分析法就是一种既能定性又能定量的逻辑演绎评价方法,就是从结果到原因描绘事故发生的有向逻辑树,在逻辑树中相关原因事件之间用逻辑门连接,构成逻辑树图,为判明事故发生的途径及损害间关系提供一种最形象、最简洁的表达方式。 事故树法又称为故障树分析法,就是一种逻辑演绎的系统评价方法,就是安全系统工程中重要的分析方法之一。它能对各种系统的危险性进行识别评估,既适用于定性分析,又能进行定量分析。具有简明、形象的特点。其分析方法就是从要分析的特定事故或故障顶上事件开始,层层分析其发生原因(中间事件),一直分析到不能再分解或没有必要分析时为止,即分析至基本原因事件为止,用逻辑门符号将各层中间事件与基本原因事件连接起来,得到形象、简洁地表达其因果关系的逻辑树图形即故障树。通过对其简化计算得到分析评价目的的方法。 故障树分析法的主要功能 1、对导致事故的各种因素及其逻辑关系作出全面的描述 2、便于发现与查明系统内固有的或者潜在的危险因素,为安全设计、制定技术措施及 采取管理对策提供依据 3、使作业人员全面了解与掌握各项防灾要点 4、对已发生的事故进行原因分析 故障树的分析步骤 1、确定所分析的系统 2、熟悉所分析的系统 3、调查系统发生的事故 4、确定事故的顶上事件 5、调查与顶上事件有关的所有原因事件 6、故障树作图 7、故障树的定性分析 8、故障树的定量分析 9、安全性评价

事故树的主要符号 事件符号 逻辑符号 顶上事件、中间事件符号,需要进一步的分析 基本事件符号,不能进一步往下分析 正常事件,正常情况下存在的事件 省略事件,不能或者不需要分析

小波分析算法资料整理总结

一、小波分析基本原理: 信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。相关原理详见附件资料和系统设计书。 注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。本人找到了相对好理解些的两个外文的资料: Tutorial on Continuous Wavelet Analysis of Experimental Data.doc Ten.Lectures.of.Wavelets.pdf 二、搜索到的小波分析源码简介 (仅谈大体印象,还待继续研读): 1、83421119WaveletVCppRes.rar 源码类型:VC++程序 功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。 说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。但这是为专业应用写的算法,通用性差。 2、WA.FOR(南京气象学院常用气象程序中的小波分析程序) 源码类型:fortran程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。 3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份 功能是:气象应用。用小波分析方法对太平洋温度的南方涛动指数进行分析。 说明:用的是Morlet和墨西哥帽小波。程序编写规范,思路清晰,但这是为专业应用写的算法,通用性差。 4、Morlet小波变换源程序.rar 源码类型:matlab程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

小波变换快速算法及应用小结

离散小波变换的快速算法 Mallat算法[经典算法] 在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号,可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是S.Mallat在构造正交小波基的时候提出的,并同时给出了著名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。 MALLAT算法的原理 在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得到第一级的离散平滑逼近和离散细节逼近x k1和d k1,再采用同样的结构对d k1进行滤波和二抽取得到第二级的离散平滑逼近和离散细节逼近x k2和d k2,再依次进行下去从而得到各级的离散细节逼近对x k1,x k2,x k3…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二抽取装置换成二插入装置才行。 多孔算法 [小波变换快速算法及其硬件实现的研究毛建华] 多孔算法是由M.shen于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低通滤波器h0(k)和高通滤波器h1(k)中插入适当数目的零点而得名。它适用于a=2j的二分树结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下变形。令h0k和h1(k)的z变换为H0(z)与H1(z),下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat算法非常相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。 基干FFT的小波快速算法 [小波变换快速算法及其硬件实现的研究毛建华] Mallat算法是由法国科学家StephaneG.Mallat提出的计算小波分解与重构的快速算法,能大大降低小波分解与重构的计算量,因此在数字信号处理和数字通信领域中得到了广泛的应用。但是如果直接采用该算法计算信号的分解和重构,其运算量还是比较大。主要体现在信号长度较大时,与小波滤波器组作卷积和相关的乘加法的计算量很大,不利于信号的实时处理。

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进

小波变换算法应用

《软件开发》 课程设计 题目:小波算法的设计 【题目要求:将小波算法在MATLAB中实现,并将其应用于数字图像处理中。】 学院:数学学院 专业班级:应用数学09-2班 姓名:李明 学号:20096312 指导教师:邢燕、何蕾 2013.3.5

小波算法的设计 一、小波变换背景 小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力 工具。它是以局部化函数所形成的小波基作为基底而展开的,具有许多特殊的性能和优点。 小波分析是一种更合理的时频表示和子带多分辨分析,对它的研究开始于20世纪80年代, 理论基础奠基于20世纪80年代末。经过十几年的发展,它已在信号处理与分析、地震信号处理、信号奇异性监测和谱古迹、计算机视觉、语音信号处理、图像处理与分析,尤其是图像编码等领域取得了突破性进展,成为一个研究开发的前沿热点。 二、小波变换概念 小波变换是一窗口大小固定不变但其形状可改变的时频局部化分析方法。小波变换在信号的高频部分,可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号〔语音、图像等)中提取信息。 设)(t f 是平方可积分函数,即)()(2R L t f ∈,则该连续函数的小波变换定义为: dt a b t t f a b a WT f )()(1 ),(*-=?+∞ ∞-ψ 0≠a 式中)()(1 ,*t a b t a b a ψψ=-称为母小波)(t ψ(基本小波)生成的位移和尺度伸缩,其中a 为尺度参数,b 为平移参数。 连续小波变换有明确的物理意义,尺度参数a 越大,则)(a t ψ越宽,该函数的时间分辨 率越低。)(t ab ψ前增加因子 a 1是为了使不同的a 下的)(t a b ψ能量相同。而),(b a WT f 在频域可以表示为ωωψωπωd e F a b a WT b j f )()(2),(*?=。)(ωψ是幅频特性比较集中的带通 函数,小波变换具有表征分析信号)(ωF 频域上局部性质的能力。采用不同的a 值做处理时,)(ωψ的中心频率和带宽都不同,但品质因数(中心频率/带宽)却不变。

事件树分析方法详细版

文件编号:GD/FS-2424 (安全管理范本系列) 事件树分析方法详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

事件树分析方法详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 一、基本概念 事件树分析起源于决策树分析,它是一种按事故发展的时间顺序由初始事件开始推论可能的后果,从而进行危险源辨识的方法。 一起事故的发生,是许多原因事件相继发生的结果,其中,一些事件的发生是以另一些事件首先发生为条件的,而一事件的出现,又会引起另一些事件的出现。在事件发生的顺序上,存在着因果的逻辑关系。事件树分析法是一种时序逻辑的事故分析方法,它以一初始事件为起点,按照事故的发展顺序,分成阶段,一步一步地进行分析,每一事件可能的后续事件只能取完全对立的两种状态(成功或失败,正常或

故障,安全或危险等)之一的原则,逐步向结果方面发展,直到达到系统故障或事故为止。所分析的情况用树枝状图表示,故叫事件树。它既可以定性地了解整个事件的动态变化过程,又可以定量计算出各阶段的概率,最终了解事故发展过程中各种状态的发生概率。 二、事件树分析法的作用 1.ETA可以事前预测事故及不安全因素,估计事故的可能后果,寻求最经济的预防手段和方法。 2.事后用ETA分析事故原因,十分方便明确。 3.ETA的分析资料既可作为直观的安全教育资料,也有助于推测类似事故的预防对策。 4.当积累了大量事故资料时,可采用计算机模拟,使ETA对事故的预测更为有效。 5.在安全管理上用ETA对重大问题进行决策,

事件树分析法

事件树分析法 ETA的理论基础是系统工程的决策论。与FTA恰好相反,该方法是从原因到结果的归纳分析法。其分析方法是:从一个初因事件开始,按照事故发展过程中事件出现与不出现,交替考虑成功与失败两种可能性,然后再把这两种可能性又分别作为新的初因事件进行分析,直到分析最后结果为止。其特点是能够看到事故发生的动态发展过程。在进行定量分析时,各事件都要按条件概率来考虑,即后一事件是在前一事件出现的情况下出现的条件概率。 事件树分析(Event Tree Analysis)法是一种逻辑的演绎法,它在给定一个初因事件的情况下,分析此初因事件可能导致的各种事件序列的结果,从而定性与定量地评价系统的特性,并帮助分析人员获得正确的决策,它常用于安全系统的事故分析和系统的可靠性分析,由于事件序列是以图形表示,并且呈扇状,故称事件树。 事件树也是一种决策树,但是它的结果仅仅依赖于系统的内在客观规律,而在决策树中结果取决于决策者的主观控制和影响。 事件树可以描述系统中可能发生的事件,特别是在安全分析中,在寻找系统可能导致的严重事故时,是一种有效方法。事件树和决策树都强调获得事件序列的最后结果。事件树的初因事件可能来自系统内的失效或者外部事件,在初因事件发生后相继引发的事件仅仅由系统的设计功能所决定,它们投入的次序是一定的。 事件树分析的步骤如下: 1.确定或寻找可能导致系统严重后果的初因事件,并进行分类,

对于那些可能导致相同事件树的初因事件可划分为一类; 2.构造事件树,先构造功能事件树,然后构造系统事件树; 3.进行事件树的简化; 4.进行事件序列的定量化。 在进行事件树分析时,应首先了解系统构成和功能,特别要注意以下几点: 1.在确定和寻找可能导致系统严重事故的初因事件和系统事件时,要有效地利用平时的安全检查表、巡视结果、未遂事件和故障信息,以及相关领域、类似系统和相似系统的数据资料。 2.选择初因事件时,重点应放在对系统安全影响大、发生频率高的事件上。 3.对开始阶段选择的初因事件应进行分类整理,对于可能导致相同事件树的初因事件要划分为一类,然后分析各类初因事件对系统影响的严重性,应优先做出严重性最大的初因事件的事件树。 4.在根据事件树分析结果制定对策时,要优先考虑事故发生概率高、事故影响大的项目。 5.当系统的事故发生概率是由组成系统的作业过程中各阶段安全措施的程序错误或失败概率的逻辑积表示时,其对应的措施是使发生事故的各阶段中任何一项安全措施成功即可,并且对策的时机越早越好。 6.系统中事故发生概率是由构成系统的作业过程中各事故发生的逻辑和表示时,须采取的对策是使可能发生事故的所有阶段中的安

第五章 小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑ ∑∑∑+∞ -∞=+∞-∞ =+∞ -∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

一维连续小波变换的matlab基础程序实现

小波变换实验二 连续小波变换 1、实验目的 本实验的目的在于充分理解连续小波变换的算法和作用,利用matlab程序实现对一维信号进行连续小波变换,进而在程序的编辑过程理解一位连续小波变换的小波系数矩阵的含义。 同时通过对预算的到的小波系数矩阵进行分析解释,得到原始信号的频谱分布以及了解小波系数在尺度和位移两个分量上的意义。 2、实验原理、实验编程思路 1、根据书本的理论知识,知道一维连续小波变换的公式为: 实际在编程过程当中,对于上式中积分的求解可以采用将积分函数离散化,通过求和来实现求积分,离散的过程如下式: 本实验中,根据题目可以知道采样的时间间隔为0.03s,即上式中Δt,在实际编程当中为了计算方便可以省略掉这个时间常数,所以在编程过程当中使用的公式实际为: 2、小波函数的选取:使用墨西哥草帽(mexhat)小波来进行小波变换,墨西哥草帽的函数为(支撑区间为-5—5): 对于连续小波函数的采样间隔,根据不同的尺度参量来进行采样,

比如尺度为i,实际对应小波的采样间隔取k/i,以保持和原信号在不同尺度上的同步。 3、程序运算简化: 在程序设计过程当中,如果对于小波系数的每一个系数都按照公式来计算,算法的时间复杂度应当为o(n3)。但通过对公式的分析,不难看出,对于同意尺度a,相邻的两个小波系数之间的求和项,只有第一项或者最后一项或者二者都不同,所以在下一个系数求解的时候可以减少一次循环,从而将时间复杂度降到o(n2),运算效率大大提高。 4、在程序设计的过程当中,还分别对原信号进行傅里叶分析和直接的cwt变换,将得到的结果与设计的连续小波变换程序进行比对分析。 3、实验程序和结果 墨西哥草帽小波参数获取函数:mexh.m 连续小波变换主函数:mexh-cwt.m 傅里叶分析和cwt分析:fft cwt result.m 1、利用mexh-cwt.m对源数据进行分析得到的结果:

小波变换算法应用

小波变换算法应用

《软件开发》 课程设计 题目:小波算法的设计 【题目要求:将小波算法在MATLAB中实现,并将其应用于数字图像处理中。】 学院:数学学院 专业班级:应用数学09-2班 姓名:李明 学号:20096312 指导教师:邢燕、何蕾 2013.3.5

小波算法的设计 一、小波变换背景 小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力 工具。它是以局部化函数所形成的小波基作为基底而展开的,具有许多特殊的性能和优点。 小波分析是一种更合理的时频表示和子带多分辨分析,对它的研究开始于20世纪80年代, 理论基础奠基于20世纪80年代末。经过十几年的发展,它已在信号处理与分析、地震信号处理、信号奇异性监测和谱古迹、计算机视觉、语音信号处理、图像处理与分析,尤其是图像编码等领域取得了突破性进展,成为一个研究开发的前沿热点。 二、小波变换概念 小波变换是一窗口大小固定不变但其形状可改变的时频局部化分析方法。小波变换在信号的高频部分,可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号〔语音、图像等)中提取信息。 设)(t f是平方可积分函数,即)( f ,则该 t (2R ) L

连续函数的小波变换定义为: dt a b t t f a b a WT f )()(1),(*-=?+∞ ∞-ψ 0≠a 式中)()(1 ,*t a b t a b a ψψ=-称为母小波)(t ψ(基本小波)生 成的位移和尺度伸缩,其中a 为尺度参数,b 为平移参数。 连续小波变换有明确的物理意义,尺度参数a 越大,则 )(a t ψ越宽,该函数的时间分辨率越低。)(t ab ψ前增加因子 a 1是为了使不同的a 下的)(t a b ψ能量相同。而),(b a WT f 在频域可以表示为ωωψωπωd e F a b a WT b j f )()(2),(*?=。)(ωψ是幅频特性比较集中 的带通函数,小波变换具有表征分析信号)(ωF 频域上局部性质的能力。采用不同的a 值做处理时,)(ωψ的中心频率和带宽都不同,但品质因数(中心频率/带宽)却不变。 三、小波变换需求分析

小波变换的理解

由于小波变换的知识涵盖了调和分析,实变函数论,泛函分析及矩阵论,所以没有一定的数学基础很难学好小波变换.但是对于我们工科学生来说,重要的是能利用这门知识来分析所遇到的问题.所以个人认为并不需要去详细学习调和分析,实变函数论,泛函分析及矩阵论等数学知识.最重要是的理解小波变换的思想!从这个意义上说付立叶变换这一关必需得过!因为小波变换的基础知识在付立叶变换中均有提及,我觉得这也就是很多小波变换的书都将付立叶分析作为其重要内容的原因.所以我认为学习小波应从<数字信号处理>中的付立叶分析开始.当然也可从<信号与系统>这本书开始.然后再看杨福生老师的小波变换书.个人觉得他的书最能为工科学生所接受. 2信号的分解 付立叶级数将周期信号分解为了一个个倍频分量的叠加,基函数是正交的,也就是通常所说的标准正交基.通过分解我们就能将特定的频率成分提取出来而实现特定的各种需要,如滤波,消噪等.付立叶变换则将倍频谱转换为了连续谱,其意义差不多.小波变换也是一种信号分解思想:只不过它是将信号分解为一个个频带信号的叠加.其中的低频部分作为信号的近似,高频部分作为信号的细节.所谓的细节部分就是一组组小波分量的叠加,也就是常说的小波级数. 3小波变换的时频分析思想 付立叶变换将信号从时域变换到了频域,从整体上看待信号所包含的频率成分.对于某个局部时间点或时间段上信号的频谱分析就无能为力了,对于我们从事信号的奇异性检测的人来说,付立叶变换就失去了意义(包括加窗付立叶变换).因为我们要找的是信号的奇异点(时域方面)和奇异点处所包含的频带(频域方面)也就是说需要一种时频分析方法.当然能有纯时域的分析方法更好!(据说数学形态学能达到这种效果).小波变换之所以可以检测信号的奇异点,正在于它的"小".因为用小的波去近似奇异信号要比正弦波要好的多. 4小波变换的实质 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的.它要求的就是一个个小波分量的系数也就是"权".其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地"量"信号,也就是去比较信号与小波的相似程度.信号局部与小波越相似,则小波变换的值越大,否则越小!当一步比较完成后,再将尺子拉长一倍,又去一步步地比

小波变换mallat

实验目的:通过编程实现离散快速小波变换Mallat 算法,从而加深理解二维 小波变换的分解与合成,同时,提高编程能力和matlab 的应用,为以后的学习打下基础。 实验原理: 1、Mallat 快速算法 本实验使用离散快速小波变换快速算法Mallat 算法,算法原理如下 1(2)j j k n n c h n k c -=-∑ (1) 1(2)j j k n n d g n k c -=-∑ (2) 重构算法: 1 (2)(2)j j j n k k n n c h n k c g n k d -=-+-∑∑ (3) 对于(1)、(2)等效于1 j n c -经过冲击响应为[]h n -和[]g n -的数字滤波器,然后再分别进行“二抽取”,Mallat 分解算法的滤波器表示形式如下图 C j-1 d j (k) C j (k) 用滤波器表示如下图 d j C j C j-1(k) 2、 255*255 10lg PSNR MSE = '2 11 ()*M N ij ij i j f f MSE M N ==-= ∑∑ {}ij f '{}ij f 分别表示原始图像和重建后的图像,1,1i M j N ≤≤≤≤。

3、边界延拓方法有零延拓、周期延拓、对称周期延拓、常数连续延拓等,本实验采用以上四种方法进行原图像的1/8延拓,并进行重构,各种延拓方法所对应的函数为yan0(x)、yancir (x )、yan(x)、yanc(x),在主程序中,需要某种延拓,便调用某种函数。 实验编程思路: 为使程序易于理解,在不考虑算法复杂度的情况下,分解程序采用简洁的循环计算出下一级的分解系数,程序采用的编程思想如下 [][][]11100[0][1][2][3][4][5] 001[1]00[0][1][2][3]00[1][2][3][4][5]00[0][1]12j j j j j j c c h h h h h h c c h h h h n c n h h h h h h c ---?? ??????????????? ???=??? ???????????--????????????? ? 以上矩阵等式左面是进行二抽样的结果,[0][1]2 j j n c c -是j 分解的低频部分。同理,对 于j 分解的高频部分有如下矩阵形式: [][][]11 100[0][1][2][3][4][5]0 01[1]00[0][1][2][3]0 0[1][2][3][4][5]00[0][1]12j j j j j d d g g g g g g d d g g g g n d n g g g g g g d ---???? ????????????????=? ?? ???? ???????--????? ????????? 分解程序: lenx=size(x,2);%x 为一维向量 lenh=size(h,2); h=[h,zeros(1,(lenx-lenh))]; g=[g,zeros(1,(lenx-lenh))]; r1(1)=sum(h.*x); r2(1)=sum(g.*x); for k=1:1:(lenx/2-1) %循环求出下一级低频和高频分量 h=[h(end-1:end),h(1:(end-2))]; r1(k+1)=sum(h.*x); g=[g(end-1:end),g(1:1:(end-2))];

小波变换快速算法及应用小结

Mallat算法[经典算法] 在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分 解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些 频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号, 可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是在构造正交小波基的时候提出的,并同时给出了着名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。 MALLAT算法的原理 在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得 到第一级的离散平滑逼近和离散细节逼近価和.,再采用同样的结构对网进行滤波和二抽取 得到第二级的离散平滑逼近和离散细节逼近杠沈恋,再依次进行下去从而得到各级的离散细 节逼近对?丿品…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二 抽取装置换成二插入装置才行。 多孔算法 [小波变换快速算法及其硬件实现的研究毛建华] 多孔算法是由于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低 通滤波器I加⑹和高通滤波器山(4中插入适当数目的零点而得名。它适用于&二刃的二分树 结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下 变形。令孔(k)和的z变换为血⑺与止,下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方 法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原 Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat算法非常 相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。 基干FFT的小波快速算法 [小波变换快速算法及其硬件实现的研究毛建华]

事件树分析方法

事件树分析方法 一、基本概念 事件树分析起源于决策树分析,它是一种按事故发展的时间顺序由初始事件开始推论可能的后果,从而进行危险源辨识的方法。 一起事故的发生,是许多原因事件相继发生的结果,其中,一些事件的发生是以另一些事件首先发生为条件的,而一事件的出现,又会引起另一些事件的出现。在事件发生的顺序上,存在着因果的逻辑关系。事件树分析法是一种时序逻辑的事故分析方法,它以一初始事件为起点,按照事故的发展顺序,分成阶段,一步一步地进行分析,每一事件可能的后续事件只能取完全对立的两种状态(成功或失败,正常或故障,安全或危险等)之一的原则,逐步向结果方面发展,直到达到系统故障或事故为止。所分析的情况用树枝状图表示,故叫事件树。它既可以定性地了解整个事件的动态变化过程,又可以定量计算出各阶段的概率,最终了解事故发展过程中各种状态的发生概率。 二、事件树分析法的作用 1.ETA可以事前预测事故及不安全因素,估计事故的可能后果,寻求最经济的预防手段和方法。 2.事后用ETA分析事故原因,十分方便明确。 3.ETA的分析资料既可作为直观的安全教育资料,也有助于推测类似事故的预防对策。 4.当积累了大量事故资料时,可采用计算机模拟,使ETA对事故的预测更为有效。 5.在安全管理上用ETA对重大问题进行决策,具有其他方法所不具备的优势。

三、事件树的编制程序 (一)确定初始事件 事件树分析是一种系统地研究作为危险源的初始事件如何与后续事件形成时序逻辑关系而最终导致事故的方法。正确选择初始事件十分重要。初始事件是事故在未发生时,其发展过程中的危害事件或危险事件,可以用两种方法确定初始事件: 根据系统设计、系统危险性评价、系统运行经验或事故经验等确定; 根据系统重大故障或事故树分析,从其中间事件或初始事件中选择。 (二)判定安全功能 系统中包含许多安全功能,在初始事件发生时消除或减轻其影响以维持系统安全运行。 (三)绘制事件树 从初始事件开始,按事件发展过程自左向右绘制事件树,用树枝代表事件发展途径。首先考察初始事件一旦发生时最先起作用的安全功能,把可以发挥功能的状态画在上面的分枝,不能发挥功能的状态画在下面的分枝。然后依次考察各种安全功能的两种可能状态,把发挥功能的状态(又称成功状态)画在上面的分枝,把不能发挥功能的状态(又称失败状态)画在下面的分枝,直到到达系统故障或事故为止。事件树编制过程如图5-3-1所示。 (四)简化事件树 在绘制事件树的过程中,可能会遇到一些与初始事件或与事故无关的安全功能,或者其功能关系相互矛盾、不协调的情况,需用工程

基于小波分析的故障诊断算法

基于小波分析的故障诊断算法 前言: 小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间 -频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引起人们的重视,其应用领域来越来越广泛。 在实际的信号处理过程中,尤其是对非平稳信号的处理中,信号在任一时刻附近的频域特征都很重要。如在故障诊断中,故障点(机械故障、控制系统故障、电力系统故障等)一般都对应于测试信号的突变点。对于这些时变信号进行分析,通常需要提取某一时间段(或瞬间)的频率信息或某一频率段所对应的时间信息。 因此,需要寻求一种具有一定的时间和频率分辨率的基函数来分析时变信号。小波变换继承和发展了短时傅里叶变换的局部化思想,并且克服了其窗口大小和形状固定不变的缺点。它不但可以同时从时域和频域观测信号的局部特征,而且时间分辨率和频率分辨率都是可以变化的,是一种比较理想的信号处理方法。 小波分析被广泛应用于信号处理、图像处理、语音识别、模式识别、数据压缩、故障诊断、量子物理等应用领域中。 小波分析在故障诊断中应用进展 1)基于小波信号分析的故障诊断方法 基于小波分析直接进行故障诊断是属于故障诊断方法中的信号处理法。这一方法的优点是可以回避被诊断对象的数学模型 , 这对于那些难以建立解析数学模型的诊断对象是非常有用的。 具体可分为以下 4种方法 : ①利用小波变换检测信号突变的故障方法连续小波变换能够通过多尺度分析提取信号的奇异点。基本原理是当信号在奇异点附近的Lipschitz指数a >0时,其连续小波变换的模极大值随尺度的增大而增大;当a <0时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0, 而信号边沿对应的 Lipschitz 指数大于或等于 0。因此 , 利用小波变换可以区分噪声和信号边沿 , 有效地检测出强噪声背景下的信号边沿(奇变)。动态系统的故障通常会导致系统的观测信号发生奇异变化 , 可以直接利用小波变换检测观测信号的奇异点 , 从而实现对系统故障的检测。比如根据输油管泄漏造成的压力信号突变的特点 , 用小波变换检测这些突变点 , 实现输油管道的泄漏点诊断。 ②观测信号频率结构变化的故障诊断方法小波多分辨率分析能够描述信号的频谱随 时间变化情况或信号在某时刻附近的频率分布。系统故障由于产生原因不同 , 通常具有不同的频率特征。利用小波变换尺度与频率的对应关系 , 分析观测信号的

相关主题
文本预览
相关文档 最新文档