当前位置:文档之家› 浅谈机械振动在机械工业中的危害与应用

浅谈机械振动在机械工业中的危害与应用

浅谈机械振动在机械工业中的危害与应用
浅谈机械振动在机械工业中的危害与应用

浅谈机械振动在机械工业中的危害与应用

摘要:本文对机械振动的含义、类型、组成要素、研究内容及其危害与应用进行了阐述。机械振动广泛存在于机械运动中,它对于我们既有有利的一面,同时,也有着有害的一面。对于有利部分我们要加以利用,对于有害部分我们要加以避免。

关键词:机械振动机械工业危害应用

1 机械振动

机械振动是一种特殊形式的运动,在这种运动过程中,机械系统将围绕平衡位置作往复运动。

从运动学观点看,机械振动就是机械系统的位移、速度与加速度在某一数值附近随时间的变化关系。如果这种关系是确定的,那么我们可以用函数关系表示为机械振动学是在力学模型的基础上,应用数学分析、实验测量和数值计算等方法研究结构振动的一般规律,解决实践中的振动问题,它是材料力学在动力学方面的扩展。

2 机械振动的类型

根据研究侧重点的不同,可以从不同角度对振动现象进行分类。

按系统的输入(激励)类型分为三种:自由振动、强迫振动、自激振动。按系统的输出(响应)或者振动规律分为四种:简谐振动、周期性振动、瞬态振动、随机振动。按系统的自由度分为三种:单自由度系统的振动、多自由度系统的振动。按描述系统的微分方程可分为二种:线性振动、非线性振动。

3振动系统的组成要素

质量

在力学模型中,质量被抽象为不变形的刚体。根据牛顿第二运动定律,若对质量作用一力,则此力与质量在与相同方向获得的加速度成正比。表示为

弹性

在力学模型中,弹簧被抽象为无质量而具有线性弹性的元件。弹性元件在振动系统中提供使系统恢复到平衡位置的弹性力,又称恢复力。恢复力与弹性元件两端的相对位移的大小成正比。

阻尼

在力学模型中,阻尼器被抽象为无质量而具有线性阻尼系数的元件。在振动系统中,阻尼元件提供系统运动的阻尼力,其大小与阻尼器两端相对速度成正比

4 机械振动的研究内容

随着机械工业和科学技术的发展,产品愈加复杂化,精度要求更高,性能要求更加稳定与高效,因此,振动问题已经成为必须解决的重要课题。

机械振动常见的主要内容是:提高机械系统的抗振能力,防止系统发生共振的方法,避免系统发生自振,减振与隔振,噪声控制等等。

5 机械振动的危害与应用

机械振动在机械行业既有有利的一面,同时,也有着有害的一面。对于有利的一面,我们要予以利用;对于对人类有害的部分,我们要尽量减小,甚至避免。

在机械工业和其它工业部门存在着难以计数的有害振动问题,这些问题常会引起巨大的损失,给人类的生产、生活带来难以想象的问题。以振动工程的理论、技术和方法来研究与解决这些问题,是当务之急。

当振动量超过允许的范围,振动会加剧,影响机器零件的工作性能,使机器的零部件产生附加动载荷,减小零件的寿命。

对于大型、高速回转的机械,因动态失稳而造成的重大恶性事故,已经发生数次。大型发电机机组由于急剧上升的振动可在几十秒钟之造成彻底解体,造成大量损失。甚至国外某些核电站发生事故就是由于这种原因造成的。

在生产制造过程中,由于机械振动现象的存在,使生产出来的产品无法达到所要求的精度,造成大量的经济损失。

大型工程结构因振动而引起的事故也时有发生。历史上发生过由于正步行进造成共振现象使桥发生坍塌现象。近代还发生过大型桥梁或冷却塔因“风激振动”而断裂、倒塌的事故。油轮由于在海上发生振动造成船体断裂,究其原因,也是机械振动问题所致。

此外,由于机械振动所产生的噪音也会对人的身心健康造成极大的影响。事实上,可以说振动问题普遍地存在于工业生产和工程的各个领域。科学技术发展到今天,对许多工程项目来说,振动分析与控制,已经是一个项目成功与否的重要因素。

同时,机械振动又有着有利的一面,大家日常听到的音乐就是各种乐器振动所产生的。工程中利用振动原理设计出了许多振动机械,例如振动输送机、振动打桩机、振动筛分机、振动机床、振动造型机等等。

5 结语

机械振动问题广泛存在于机械工业领域。它所造成的危害是我们必须解决的问题,因此,机械振动的控制与研究已经成为整个行业必须重视的问题。与此同时,机械振动也有着对人类有用的一面,人类利用机械振动可以完成不同的工艺过程。因此,机械振动是一把双刃剑,对于有益的方面,我们加以利用,而对于危害我们日常生活的方面,我们要尽量加以避免。

参考文献

[1] 邵忍平.机械系统动力学[M].北京:机械工业出版社,2005

[2] 洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,2009

[3] 齐朝辉.多体系统动力学[M].北京:科学出版社,2008

机械振动发展史

公元前1000多年,中国商代铜铙已有十二音律中的九律,并有五度谐和音程的概念。在战国时期,《庄子·徐无鬼》中就记载了同频率共振现象。人们对与振动相关问题的研究起源于公元前6世纪毕达哥拉斯(Pythagoras)的工作,他通过试验观测得到弦线振动发出的声音与弦线的长度、直径和张力的关系。意大利天文学家、力学家、哲学家伽利略(Galileo Galilei)经过实验观察和数学推算,于 1 5 8 2年得到了单摆等时性定律。荷兰数学家、天文学家、物理学家惠更斯(c.Huygens)于1 6 7 3年著《关于钟摆的运动》,提出单摆大幅度摆动时并不具有等时性这一非线性现象,并研究了一种周期与振幅无关的等时摆。法国自然哲学家和科学家梅森(M.Mersenne)于1623年建立了弦振动的频率公式,梅森还比伽利略早一年发现单摆频率与摆长平方成反比的关系。英国物理学家胡克(R. Hooke)于1 6 7 8年发表的弹性定律和英国伟大的物理学家、数学家、天文学家牛顿(I. Newton)于1 6 8 7年发表的运动定律为振动力学的发 展奠定了基础。 在下面对振动发展史的简述中,主要是针对线性振动、非线性振动、随机振动以及振动信号采集和处理这三个方面进行的。而关于线性振动和非线性振动发展史的简介中,又分为理论研究和近似分析方法两个方面。

线性振动理论在1 8世纪迅速发展并趋于成熟。瑞士数学家、力学家欧拉(L. Euler)于1728年建立并求解了单摆在有阻尼介质中运动的微分方程;1 7 3 9年研究了无阻尼简谐受迫振动,并从理论上解释了共振现象;1 7 4 7年对九个等质量质点由等刚度弹簧连接的系统列出微分方程组并求出精确解,从而发现线性系统的振动是各阶简谐振动的叠加。法国数学家、力学家拉格朗日.Lagrange)于1 7 6 2年建立了离散系统振动的一般理论。最早被研究的连续系统是弦线,法国数学家、力学家、哲学家达朗伯(J. le R.d,Alembert)于1 7 4 6年发表的《弦振系统是弦线,法国数学家、力学家、哲学家达朗伯(J.1e R.d,Alem bert)于1 7 4 6年发表的《弦振动研究》将他发展的偏微分方程用于弦振动研究,得到了弦的波动方程并求出行波解。瑞士数 学家约翰第一·伯努利(J.Bernoulli)于1 7 2 8年对弦的振动进行了研究,认为弦的基本振型是正弦型的,但还不知道高阶振型的性质。与约翰第一·伯努利为同一家族的瑞士数学家、力学家丹尼尔第一·伯努利.Bernoulli)于1 7 3 5年得到了悬臂梁的振动方程,1 7 4 2年提出了弹性振动理论中的叠加原理,并用具体的振动实验进行验证。

机械振动的概念

第一章绪论 1-1 机械振动的概念 振动是一种特殊形式的运动,它是指物体在其平衡位置附近所做的往复运动。如果振动物体是机械零件、部件、整个机器或机械结构,这种运动称为机械振动。 振动在大多数情况下是有害的。由于振动,影响了仪器设备的工作性能;降低了机械加工的精度和粗糙度;机器在使用中承受交变载荷而导致构件的疲劳和磨损,以至破坏。此外,由于振动而产生的环境噪声形成令人厌恶的公害,交通运载工具的振动恶化了乘载条件,这些都直接影响了人体的健康等等。但机械振动也有可利用的一面,在很多工艺过程中,随着不同的工艺要求,出现了各种类型利用振动原理工作的机械设备,被用来完成各种工艺过程,如振动输送、振动筛选、振动研磨、振动抛光、振动沉桩等等。这些都在生产实践中为改善劳动条件、提高劳动生产率等方面发挥了积极作用。研究机械振动的目的就是要研究产生振动的原因和它的运动规律,振动对机器及人体的影响,进而防止与限制其危害,同时发挥其有益作用。 任何机器或结构物,由于具有弹性与质量,都可能发生振动。研究振动问题时,通常把振动的机械或结构称为振动系统(简称振系)。实际的振系往往是复杂的,影响振动的因素较多。为了便于分析研究,根据问题的实际情况抓住主要因素,略去次要因素,将复杂的振系简化为一个力学模型,针对力学模型来处理问题。振系的模型可分为两大类:离散系统(或称集中参数系统)与连续系统(或称分布参数系统),离散系统是由集中参数元件组成的,基本的集中参数元件有三种:质量、弹簧与阻尼器。其中质量(包括转动惯量)只具有惯性;弹簧只具有弹性,其本身质量略去不计,弹性力只与变形的一次方成正比的弹簧称为线性弹簧;在振动问题中,各种阻力统称阻尼,阻尼器既不具有惯性,也不具有弹性,它是耗能元件,在有相对运动时产生阻力,其阻力与相对速度的一次方成正比的阻尼器称为线性阻尼器。连续系统是由弹性元件组成的,典型的弹性元件有杆、梁、轴、板、壳等,弹性体的惯性、弹性与阻尼是连续分布的。严格的说,实际系统都是连续系统,所谓离散系统仅是实际连续系统经简化而得的力学模型。例如将质量较大、弹性较小的构件简化为不计弹性的集中质量;将振动过程中产生较大弹性变形而质量较小的构件,简化为不计质量的弹性元件;将构件中阻尼较大而惯性、弹性小的弹性体也可看成刚体。这样就把分布参数的连续系统简化为集中参数的离散系统。 例如图1-1(a)所示的安装在混凝土 基础上的机器,为了隔振的目的,在基础下 面一般还有弹性衬垫,如果仅研究这一系统 在铅垂方向的振动,在振动过程中弹性衬垫 起着弹簧作用,机器与基础可看作一个刚体, 起着质量的作用,衬垫本身的内摩擦以及基 础与周围约束之间的摩擦起着阻尼的作用 (阻尼用阻尼器表示,阻尼器由一个油缸和 活塞、油液组成。活塞上下运动时,油液从 间隙中挤过,从而造成一定的阻尼)。这样图1-1(a)所示的系统可简化为1-1(b)所示的

机械振动在生活生产中的实际应用以及共振的危害

机械振动在生活生产中的实际应用以及共振的危害 (一)、机械振动在生活生产中的实际应用 机械振动,也简称为振动,物理学上是这样给它定义的:物体在平衡位置附近做往复运动的运动。在现实生活中我们能看到很多机械都是运用机械振动这一学说理论来建造出来的。比如筛分设备、输送设备、给料设备、粉碎设备等等机械设备都是将理论运用到现实生活中的结果。以下我就举些例子来加以说明机械振动具体得在哪些产品中运用到了。 先说说筛分设备,筛分设备是机械振动在现实生活中运用的最多的产品。比如热矿筛、旋振筛、脱水筛等各种各样的筛分设备。顾名思义,筛分设备就是运用振动的知识和筛分部件将不同大小不同类型的物品区分开来,以减少劳动力和提到生产效率。例如:热矿筛采用带偏心块的双轴激振器,双轴振动器两根轴上的偏心块由两台电动机分别带动做反向自同步旋转,使筛箱产生直线振动,筛体沿直线方向作周期性往复运动,从而达到筛分目的。又如南方用的小型水稻落谷机,机箱里有一块筛网,由发动机带动连杆做往复运动,当水稻连同稻草落入筛网的时候,不停的振动会让稻谷通过筛网落入机箱存谷槽,以实现稻谷与稻草的分离,减少人力资源,提高了农业效率。 输送设备运用到机械振动也是很多的。比如:螺旋输送机、往复式给料机、振动输送机、买刮板输送机等输送设备。输送设备就是将物体从一个地方通过输送管道输送到另一个地方的设备,以节约人力资源,提高生产效率。例如:广泛用于冶金、煤炭、建材、化工等行业中粉末状及颗粒状物料输送的振动输送机,采用电动机作为优质动源,使物料被抛起的同时通过输送管道做向前运动,达到输送的目的。 给料设备在某种程度上与输送设备有共同之处,例如:振动给料机、单管螺旋喂料机、振动料斗等设备。就拿振动料斗来说吧,振动料斗是一种新型给料设备,安装在各种料仓下部,通过振动使物料活化,能够有效消除物料的起拱,堵塞和粘仓现象,解决料仓排料难的问题。 总而言之,机械振动在现实生活生产中的应用是多种多样的,有的是直接应用,有的是间接应用。总之,科学的力量是强大的,只有把科学转变为科技才能造化人类,造福社会。当然振动也是会带来灾害的,尤其是共振时,其灾害是最危险的,以下我就举例来说明下。 (二)、共振的危害 古希腊的学者阿基米德曾豪情万丈地宣称:给我一个支点,我能撬动地球。而现代的美国发明家特斯拉更是“牛气”,他说:用一件共振器,我就

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 丄、八 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体, 甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 旋转机械分类: I类:为固定的小机器或固定在整机上的小电机,功率小于15KW U类:为没有专用基础的中型机器,功率为15~75KW刚性安装在专用基础上功率小于300KW的机器。 川类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 W类:为轻型结构基础上的大型旋转机械,如透平发电机组。 机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采 取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1 转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2 旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2 旋转机械振动模糊诊断法的实现 隶属函数的确定

高中物理《机械振动》知识梳理

《机械振动》知识梳理 【简谐振动】 1.机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。 机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。 回复力:使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2.简谐振动: 在机械振动中最简单的一种理想化的振动。 对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 【简谐运动的描述】 位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。 周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 频率f:振动物体单位时间内完成全振动的次数。 角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。【简谐运动的处理】 用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 【单摆】 单摆周期公式简谐振动物体的周期和频率是由振动系统本身的条件决定的。 单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。【外力作用下的振动】 物体在周期性外力作用下的振动叫受迫振动。受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。 当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。共振是受迫振动的一种特殊情况。 1

机械振动知识点

简谐运动及其图象 知识点一:弹簧振子 (一)弹簧振子 如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。小球滑动时的摩擦力可以,弹簧的质量比小球的质量得多,也可忽略。这样就成了一个弹簧振子。 注意: (1)小球原来的位置就是平衡位置。小球在平衡位置附近所做的往复运动,是一种机械振动。 (2)小球的运动是平动,可以看作质点。 (3)弹簧振子是一个不考虑阻力,不考虑弹簧的,不考虑振子(金属小球)的的化的物理模型。 (二)弹簧振子的位移——时间图象 (1)振动物体的位移是指由位置指向_的有向线段,可以说某时刻的位移。 说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于位置而言的,即初位置是位置,末位置是振子所在的位置。 (2)振子位移的变化规律 曲线。 知识点二:简谐运动 (一)简谐运动 如果质点的位移与时间的关系遵从函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。 简谐运动是机械振动中最简单、最基本的振动。弹簧振子的运动就是简谐运动。 (二)描述简谐运动的物理量 (1)振幅(A) 振幅是指振动物体离开位置的距离,是表征振动强弱的物理量。 一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是变的,而位移是时刻在变的。 (2)周期(T)和频率(f) 振动物体完成一次所需的时间称为周期,单位是秒(s);单位时间内完成的次数称为频率,单位是赫兹(H Z)。 周期和频率都是描述振动快慢的物理量。周期越小,频率越大,表示振动得越快。 周期和频率的关系是:

(3)相位(φ) 相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。 (三)固有周期、固有频率 任何简谐运动都有共同的周期公式:2 T=m是振动物体的,k是回复力系数,对弹簧振子来说k为弹簧的系数。 对一个确定的简谐运动系统来说,m和k都是恒量,所以T和f也是恒量,也就是说简谐运动的周期只由本身的特性决定,与振幅关,只由振子质量和回复力系数决定。T叫系统的周期,f叫频率。 可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是2 T=。这个结论可以直接使用。 (四)简谐运动的表达式 y=Asin(ωt+φ),其中A是,f ω==,φ是t=0时的相位,即初相位或初相。 T 知识点三:简谐运动的回复力和能量 (一)回复力:使振动物体回到平衡位置的力。 (1)回复力是以命名的力。性质上回复力可以是重力、弹力、摩擦力、电场力、磁场力等,它可能是几个力的合力,也可能是某个力或某个力的分力。 如在水平方向上振动的弹簧振子的回复力是弹簧在伸长和压缩时产生的 力;在竖直方向上振动的弹簧振子的回复力是弹簧力和力的合力。 (2)回复力的作用是使振动物体回到平衡位置。回复力的方向总是“平衡位置”。 (3)回复力是是振动物体在方向上的合外力,但不一定是物体受到的合外力。 (二)对平衡位置的理解 (1)平衡位置是振动物体最终振动后振子所在的位置。 (2)平衡位置是回复力为的位置,但平衡位置是合力为零的位置。 (3)不同振动系统平衡位置不同。竖直方向的弹簧振子,平衡位置是其弹力 于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。(三)简谐运动的动力学特征 F回=,a回=-kx/m,其中k为比例系数,对于弹簧振子来说,就等于弹簧的系数。负号表示回复力的方向与位移的方向。 也就是说简谐运动是在跟对平衡位置的位移大小成正比、方向总是指向平衡位置的力作用下的振动。 = 。当振子振动过程中,位移为x时,由胡克定律(弹簧不超出弹簧振子在平衡位置时F 回 = ,k为弹簧的劲度系数,所以弹弹性限度),考虑到回复力的方向跟位移的方向相反,有F 回 簧振子做简谐运动。 (四)简谐运动的能量特征 振动过程是一个动能和势能不断转化的过程,总的机械能。 振动物体总的机械能的大小与振幅有关,振幅越大,振动的能量越。 知识点四:简谐运动过程中各物理量大小、方向变化情况 (一)全振动 振动物体连续两次运动状态(位移和速度)完全相同所经历的的过程,即物体运动完成一次规律性变化。 (二)弹簧振子振动过程中各物理量大小、方向变化情况 过程:物体从A由静止释放,从A→O→B→O→,经历一次全振动, 图中O为平衡位置,A、B为最大位移处: 取OB方向为正:

机械振动及其在机械工程中的应用

机械振动及其在机械工程中的应用 杨杰 (江苏师范大学海洋港口学院江苏连云港 222000) 摘要:本文主要讲的是机械振动在机械工程中的应用.首先讲述机械振动的发展史;然后对机械振动的种类进行了详细的叙述;接着写了机械振动的危害和应用;最后对机械振动在机械工程中的应用进行了阐述,如振动筛,冷却及烘干振动机和振动清理及时效处理,并对它的发展加入个人看法。 关键词:机械振动,机械振动的应用,机械工程 Mechanical vibration and Application in Mechanical Engineering Yang Jie (Jiangsu Normal University ,Jiangsu, Lianyungang 222000) Abstract:This article is primarily concerned with mechanical vibration applications in mechanical engineering starts by describing the history of mechanical vibration; then on the type of mechanical vibration were described in detail; then write a hazard and the application of mechanical vibrations; Finally, the mechanical vibration in machinery Engineering are described, such as vibrating screen, cooling and drying machine vibration and vibration cleaning and aging treatment, and added personal views of its development. Keywords: Mechanical vibration, application of mechanical vibrations, mechanical engineering 1.引言 随着机械工业和科学技术的发展,产品愈加复杂化,精度要求更高,性能要求更加稳定与高效,因此,振动问题已经成为必须解决的重要课题。振动是在日常生活和工程实际中普遍存在的一中现象,也是整个力学中

机械振动的各种应用

机械振动的利用 机械振动,也简称为振动,物理学上是这样给它定义的:物体在平衡位置附近做往复运动的运动。在现实生活中我们能看到很多机械都是运用机械振动这一学说理论来建造出来的。比如筛分设备、输送设备、给料设备、粉碎设备等等机械设备都是将理论运用到现实生活中的结果。以下我就举些例子来加以说明机械振动具体得在哪些产品中运用到了。 先说说筛分设备,筛分设备是机械振动在现实生活中运用的最多的产品。比如热矿筛、旋振筛、脱水筛等各种各样的筛分设备。顾名思义,筛分设备就是运用振动的知识和筛分部件将不同大小不同类型的物品区分开来,以减少劳动力和提到生产效率。例如:热矿筛采用带偏心块的双轴激振器,双轴振动器两根轴上的偏心块由两台电动机分别带动做反向自同步旋转,使筛箱产生直线振动,筛体沿直线方向作周期性往复运动,从而达到筛分目的。又如南方用的小型水稻落谷机,机箱里有一块筛网,由发动机带动连杆做往复运动,当水稻连同稻草落入筛网的时候,不停的振动会让稻谷通过筛网落入机箱存谷槽,以实现稻谷与稻草的分离,减少人力资源,提高了农业效率。 输送设备运用到机械振动也是很多的。比如:螺旋输送机、往复式给料机、振动输送机、买刮板输送机等输送设备。输送设备就是将物体从一个地方通过输送管道输送到另一个地方的设备,以节约人力资源,提高生产效率。例如:广泛用于冶金、煤炭、建材、化工等行业中粉末状及颗粒状物料输送的振动输送机,采用电动机作为优质动源,使物料被抛起的同时通过输送管道做向前运动,达到输送的目的。 给料设备在某种程度上与输送设备有共同之处,例如:振动给料机、单管螺旋喂料机、振动料斗等设备。就拿振动料斗来说吧,振动料斗是一种新型给料设备,安装在各种料仓下部,通过振动使物料活化,能够有效消除物料的起拱,堵塞和粘仓现象,解决料仓排料难的问题。以下我就举例来说明下。 一、机械震动在铸造生产中的利用 1)分选及混合振动机 由于振动筛分在筛分过程中各个物料颗粒均处于运动状态,且在筛面上作抛掷运动,因而筛分效率高,故在砂处理系统中基本上都采用振动筛。但目前所用的振动筛基本上只有直线振动筛和单轴圆振动两种机型,这两种筛子适用于新砂和水分不高的旧砂筛分。振动筛是一种多行业、用途广泛的筛分设备,在一定的条件下它在砂处理中的应用更显示出其优越性。目前国内砂处理线上应用的多是中小型振动筛,国外已有每小时处理旧砂能力达700吨的直线振动筛。 2)冷却及烘干振动机 以对流传热方式为主的冷却和烘干机的工作原理是相同的,即促进物料与气流的充分接触而进行热交换。仅以热交换的条件来看,搅拌式冷却器内运转时只有部分物料处于动态,且搅拌摩擦所产生的部分热量又会传给物料。且在振动过

浅谈机械振动在机械工业中的危害与应用

编号:AQ-Lw-06235 ( 安全论文) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 浅谈机械振动在机械工业中的 危害与应用 The harm and application of mechanical vibration in mechanical industry

浅谈机械振动在机械工业中的危害 与应用 备注:加强安全教育培训,是确保企业生产安全的重要举措,也是培育安全生产文化之路。安全事故的发生,除了员工安全意识淡薄是其根源外,还有一个重要的原因是员工的自觉安全行为规范缺失、自我防范能力不强。 摘要:在工业生产过程中,尤其是机械工业中,机械使用必然导致各种损耗和故障问题的方式,机械振动作为一种常见的机械危害,有关部门必须予以严格的控制和预防,并且要善于运用其积极的一面。 关键词:机械振动机械工业危害应用 1机械振动的基本含义和概念 在机械使用的过程中,造成的机械振动是一种机械俄特殊运行状态,在机械的振动过程中,机械设备的整个系统是根据现有的整体平衡位置也就是平衡核心进行循环往复运行的,所以,从本质上看机械的振动并不是物理学上讲的振动,而是一种位移。 从运动学的角度出发,机械在使用过程中产生的振动是在一定

的时间内,机械的位移和速度的变化,也就是说根据一定的函数关系形成的位移和往复。机械振动学是基于机械振动的相关数学测量和数学实验产生的一种规律性的总结,也就是说对现有的机械材料的运动方式的拓展。 所以,要想实现对机械振动的有效研究和利用,即必须对现有的各种相关的机械数据进行详细的分析,以更好的实现机械计算和相关的材料之间的关系的协调。 2常见的机械振动类型 一般来说,在机械振动的研究过程中,振动类型和现象是各有侧重的,即根据不同飞机械振动需要对现有的机械振动的形式进行分类和整理,从而形成不同的机械振动类型的划分。 首先,在分类过程中,如果按照系统的输入方式的不同,可以将现有的机械振动分为以下三种类型:即机械的自由振动、机械的强迫振动和机械的自激振动。不同的振动类型在运行过程中产生的振动强度和幅度都是有所区别的。另外,还可以按照振动的规律的不同,将其分为四种不同的类型:即机械的简谐振动方式和机械的

精选-机械振动公式

弹簧串并联 单自由度无阻尼自由振动 单自由度有阻尼自由振动 单自由度有阻尼强迫振动 简谐力直接激励 2 1212 121,111k k k k k k k k k k k +=+=+=并联 串联),(,)3(;,1,2)2(; 0)()1()(,)(),sin(, sin cos ,,0,0002012 020 0022x x A g T f T m k dt E E d x x tg x x A t A x t x t x x m k x x kx x m st n n n p k n n n n n n n n &&&&&&&&θδωωπωωθωθωωωωωω求响应:静变形法,求固有频率:定义法能量法求微分方程:定理法,=====+=+=+=+===+=+-2 0012002 020 00212ln 1) (,)(),sin(,1,sin cos )1(,2,2,02,0ζπζζωδζωωθωζωθωωζωωωζωωζωωζωζωζω-= ==+=++=+=-=++=====++=+++--d n j i i n d d n d t n d d d n d n cr cr n n n T A A j x x x tg x x x A t Ae x t x x t x x m c c c m c x x x kx x c x m n &&&π&&&&&&λβζλλβλωω λλζλαζλλαωω-=+-==-= =-=+-=-==++-,,) 2()1(11,,12,)2()1(),sin(,sin 2 22221222k F x x x k F B tg k F B t B x t F kx x c x m st st n 无阻尼时,&&&

李峰机械振动作业

2013-2014学年第二学期研究生课程考核 (读书报告,研究报告) 考核科目:机械振动理论 学生所在院(系):机电学院 学生所在学科:机械工程 姓名:李峰 学号:1302210115 题目:机械振动理论作业

1. 请指出弹簧的串、并联组合方式的计算方法。确定弹性元件的组合方式是串联还是并联的方法是什么?对两种组合方式分别加以说明。 答:,由此推出n 个并联弹簧组合的等效刚度∑==n i i eq k K 1 。由此推 出n 个弹簧并联等效刚度 ∑ ==n i i eq k k 1 11 。并联弹簧刚度较各组成弹簧 “硬”,串联弹簧较各组成弹簧“软”。 确定弹性元件的组合方式是串联还是并联的方法:若弹性元件共位移——端部位移相等,则并联关系;若弹性元件共力——受力相等,则为串联关系。 2.阻尼元件的意义与性质是什么?对于线性阻尼器,所受到的外力与振动速度的关系是什么?非粘性阻尼包括哪几种?它们的定义及计算公式分别是什么? 答:(1)阻尼元件的意义与性质:阻尼元件对外力作用的相应表现为端点的一定的移动速度。阻尼系统所受外力为F d ,是振动速度x 的函数,)(x f F d =。通常假定阻尼器元件的质量是可以忽略不计的,

阻尼元件与弹性元件不同的是,它是消耗能量的,它以热能、声能等方式耗散系统的机械能。 (2)线形系统受到的外力为F d ,阻尼系数为C ,振动速x c F d =。 在角振动系统中,阻尼力矩M ,单位角速度为θ ,则M=θ c (3)非粘性阻尼包括:库伦阻尼,流体阻尼和结构阻尼。库伦阻尼计算公式: )sgn(x umg Fe *-=,其中sgn 为符号函数这里定义) ()()sgn(t x t x x = ,需注意当0)(=t x 时。库伦阻力是不定的,它取决于合力的大小,而方向与之相反; 流体阻尼:当物体以较大速度在粘性较小的流体(如空气)中运动时,由流体介质产生的阻尼,)sgn(2 x Fn x *-=γ;结构阻尼:材料内部产生摩擦所产生的阻尼,计算公式X Es 2 α=?。 3.单自由度无阻尼系统的自由振动的运动微分方程是什么?其自然频率、振幅、初相角的计算公式分别是什么? 答:单自由度无阻尼系统的自由振动的微分方程;0)(=+t kx x m 自然频率 m k f w n ∏= ∏= 212;振幅:)( 02 20 w v x n X += ; 初相角: x w v n arctan =φ 。 4. 对于单自由度无阻尼系统自由振动,确定自然频率的方法有哪几种?具体过程是什么? 答:单自由度无阻尼系统自由振动,确定自然频率的方法: ((1)静变形法:该方法不需要到处系统的运动微分方程,只需根据

机械振动在生活中的应用与发展

机械振动在生活中的应用与发展 王力平 (中国石油大学(北京)机械研13-4 学号2013214511) 摘要:现实生活中机械振动现象很多,本文简述了振动在人类生活工作中起到了非常重要的作用。详细介绍了振动利用中的若干新工艺理论与技术,振动机械及其相关技术的应用与发展。 关键词:机械振动;振动设备;振动测试工艺;非线性振动系统 Abstract:In real life, there are many mechanical vibration phenomenon,This paper describes the vibration has played a very important role in human life and work. It details the development course of study of mechanical vibration and the utilization of some new technology theory and technology. Keywords:mechanical vibration; vibration equipment; vibration testing technology; nonlinear vibration system 一、引言 振动是日常生活和工程实际中普遍存在的一种现象。实际上,人类就生活在振动的世界里,地面上的车辆、空气中的飞行器、海洋中的船舶等都在不断振动着。房屋建筑、桥梁水坝等在受到激励后也会发生振动。就连茫茫的宇宙中,也到处存在着各种形式的振动,如风、雨、雷、电等随时间不断变化,从广义的角度来解释,就是特殊形式的振动(或波动),而电磁波不停地在以振动的方式发射和传播。就人类的身体来说,心脏的跳动、肺叶的摆动、血液的循环、胃肠的蠕动、脑电的波动、肌肉的搐动、耳膜的振动和声带的振动等,在某种意义上来说也是一种振动,就连组成人类自身的原子,也都在振动着。 所谓机械振动,是指物体(或物体系)在平衡位置(或平均位置)附近来回往复运动。在机械振动过程中,表示物体运动特征的某些物理量(如位移,速度,加速度等)将时而增大、时而减小地反复变化。在工程实际中,机械振动是非常

MATLAB在机械振动信号中的应用

MATLAB在机械振动信号中的应用 申振 (山东理工大学交通与车辆工程学院) 摘要:综述了现代信号分析处理理论、方法如时域分析(包括时域参数识别、相关分析等)、频域分析(包括傅立叶变换、功率谱分解等),并结合MATLAB中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明。 关键词:时域分析频域分析 MATLAB 信号是信息的载体,采用合适的信号分析处理方法以获取隐藏于传感观测信号中的重要信息(包括时域与频域信息等),对于许多工程应用领域均具有重要意义。对获取振动噪声信号的分析处理,是进行状态监测、故障诊断、质量检查、源识别、机器产品的动态性能测试与优化设计等工作的重要环节,它可以预先发现机械部件的磨损和缺陷等故障,从而可以提高产品的质量,降低维护费用。随着测试技术的迅速发展,各种信号分析方法也随之涌现,并广泛应用在各个领域[1]。 时域描述简单直观,只能反映信号的幅值随时间的变化,而不能明确的揭示信号随时间的变化关系。为了研究信号的频率组成和各频率成分的幅值大小、相位关系,应对信号进行频谱分析,即把时域信号通过适当的数学方法处理变成频率f(或角频率 )为独立变量,相应的幅值或相位为因变量的频域描述。频域分析法将时域分析法中的微分或差分方程转换为代数方程,有利于问题的分析[2]。 MATLAB是MathWorks公司于1982年推出的一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、矩阵运算、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面良好的操作环境。随着其自身版本的不断提高,MATLAB的功能越来越强大,应用范围也越来越广,如广泛应用于信号处理、数字图像处理、仿真、自动化控制、小波分析及神经网络等领域[3]。 本文主要运用了MATLAB R2014a对机械振动信号进行分析。分析过程包括时域分析和频域分析两大部分,时域分析的指标包括随机信号的均值、方差以及均方值。频域分析的性能指标包括对功率谱分析、倒频谱分析。在进行上述分析之前先要对振动信号进

机械振动理论中的一些原理问答

1.请指出弹簧的串、并联组合方式的计算方法。确定弹性元件的组合方式是串联还是并联的方法是什么?对两种组合方式分别加以说明。 答:n 个刚度为i k 的弹簧串联,等效刚度∑==n i i eq k k 11 1;n 个刚度为i k 的弹簧 并联的等效刚度为∑==n i i eq k k 1 ;并联弹簧的刚度较各组成弹簧“硬”,串联弹簧较 其任何一个组成弹“簧软”。 确定弹性元件是串联还是并联的方法:若弹性元件是共位移——端部位移相等,则为并联关系;若弹性元件是共力——受力相等,则为串联关系。 2.非粘性阻尼包括哪几种?它们的计算公式分别是什么? 答:非粘性阻尼包括: (1)库仑阻尼计算公式?? ? ???=.sgn -x mg F e μ,其中,sgn 为符号函数,这里 定义为) ()()(sgn t x t x x ? ? ? = ,须注意,当0)(x =? t 时,库仑阻尼力是不定的,它取决 于合外力的大小,而方向与之相反; (2)流体阻尼计算公式:是当物体以较大速度在粘性较小的流体(如空气、 液体)中运动是,由流体介质所产生的阻尼,计算公式为?? ? ??-=??x x F n sgn 2 γ; (3)结构阻尼:由材料内部摩擦所产生的阻尼,计算公式为2 X E s α=? 3.单自由度无阻尼系统的自由振动的运动微分方程是什么?其自然频率、振幅、初相角的计算公式分别是什么? 答:单自由度无阻尼系统的自由振动的运动微分方程()0=+? ?t kx x m ; 自然频率:m k f n n ππω21 2== ; 振幅:2 02 ??? ? ??+=n v x X ω;

浅谈机械振动在机械工业中的危害与应用

浅谈机械振动在机械工业中的危害与应用 摘要:本文对机械振动的含义、类型、组成要素、研究内容及其危害与应用进行了阐述。机械振动广泛存在于机械运动中,它对于我们既有有利的一面,同时,也有着有害的一面。对于有利部分我们要加以利用,对于有害部分我们要加以避免。 关键词:机械振动机械工业危害应用 1 机械振动 机械振动是一种特殊形式的运动,在这种运动过程中,机械系统将围绕平衡位置作往复运动。 从运动学观点看,机械振动就是机械系统的位移、速度与加速度在某一数值附近随时间的变化关系。如果这种关系是确定的,那么我们可以用函数关系表示为机械振动学是在力学模型的基础上,应用数学分析、实验测量和数值计算等方法研究结构振动的一般规律,解决实践中的振动问题,它是材料力学在动力学方面的扩展。 2 机械振动的类型 根据研究侧重点的不同,可以从不同角度对振动现象进行分类。 按系统的输入(激励)类型分为三种:自由振动、强迫振动、自激振动。按系统的输出(响应)或者振动规律分为四种:简谐振动、周期性振动、瞬态振动、随机振动。按系统的自由度分为三种:单自由度系统的振动、多自由度系统的振动。按描述系统的微分方程可分为二种:线性振动、非线性振动。 3振动系统的组成要素 质量 在力学模型中,质量被抽象为不变形的刚体。根据牛顿第二运动定律,若对质量作用一力,则此力与质量在与相同方向获得的加速度成正比。表示为 弹性 在力学模型中,弹簧被抽象为无质量而具有线性弹性的元件。弹性元件在振动系统中提供使系统恢复到平衡位置的弹性力,又称恢复力。恢复力与弹性元件两端的相对位移的大小成正比。 阻尼 在力学模型中,阻尼器被抽象为无质量而具有线性阻尼系数的元件。在振动系统中,阻尼元件提供系统运动的阻尼力,其大小与阻尼器两端相对速度成正比 4 机械振动的研究内容 随着机械工业和科学技术的发展,产品愈加复杂化,精度要求更高,性能要求更加稳定与高效,因此,振动问题已经成为必须解决的重要课题。 机械振动常见的主要内容是:提高机械系统的抗振能力,防止系统发生共振的方法,避免系统发生自振,减振与隔振,噪声控制等等。 5 机械振动的危害与应用 机械振动在机械行业既有有利的一面,同时,也有着有害的一面。对于有利的一面,我们要予以利用;对于对人类有害的部分,我们要尽量减小,甚至避免。 在机械工业和其它工业部门存在着难以计数的有害振动问题,这些问题常会引起巨大的损失,给人类的生产、生活带来难以想象的问题。以振动工程的理论、技术和方法来研究与解决这些问题,是当务之急。 当振动量超过允许的范围,振动会加剧,影响机器零件的工作性能,使机器的零部件产生附加动载荷,减小零件的寿命。

机械振动状态分析仪VIB07 简介与案例应用

机械振动状态分析仪VIB07 简介与案例应用 之前,VIB07机械振动分析仪在新疆克拉玛依石化得到了有效的应用,并在中国石油网发布过相关推荐报导。此次湖北荆门石化的成功应用即再一次证实了VIB07机械振动分析仪的性能与使用功效。在前期现场演示的过程中,KM工程师对厂里几台泵与离心机进行了抽样巡检与分析,检测的结果与厂里同类型的全进口仪器检测结果完全一致,用不到1/3的价格就能取得完全一样的检测效果,还同时拥有轴承包络谱显示的功能,厂里的技术人员对VIB07的检测效果十分满意。在随后招标投标中直接是指定型号,购进两台VIB07机械振动分析仪,实现对厂里1000多台设备进行巡检,对设备轴承的状态进行测量报警。 中国石油化工股份有限公司荆门分公司(以下简称荆门石化)是从原荆门石化总厂中以优良资产组成的国有企业,同时也是湖北省最大的石油化工企业及中南地区最大的润滑油、石蜡生产基地。荆门石

化曾先后被国家有关部委授予:全国500家最优工业企业,石油开采及加工工业第一名,全国行业十强企业,全国最佳信誉企业,全国最佳工业企业,全国最佳形象AAA级等荣誉。 VIB07 FFT机械状态分析仪 Route Based Data Collection & Trending 设备状态巡检和趋势分析 VIB07多功能型机械振动分析 仪是检修人员开展工厂设备状 态监测(CBM),实现设备预测维 修(PdM)最可靠的点检采集仪器, 是设备可靠性管理和TPM的利 器。它操作简单,特别适合于设备点检和检维修人员,同样也适合现场生产操作者用于测量、记录和跟踪设备状态,发现异常,并能够对常见的机器振动故障进行诊断和趋势监测。 Create the Value of Maintenance 创造维修的价值 VIB07多功能型机械振动分析仪是一款具有极高性价比的“傻瓜型”仪器,它基于专家经验,满足现实的需要,在确保状态信息完整有效的

机械振动(总复习)

机械振动基础 目录 第一章导论 §1.1 引言 §1.2 振动的分类 §1.3 离散系统各元件的特征 §1.4 简谐振动及其表示方法 §1.5 叠加原理 §1.6 振动的幅值度量 第二章单自由度系统 §2.1 引言 §2.2 无阻尼自由振动 §2.3 阻尼自由振动 §2.4 单自由度系统的简谐强迫振动§2.5 简谐强迫振动理论的应用 §2.6 周期强迫振动 §2.7 非周期强迫振动 第三章二自由度系统 §3.1 引言 §3.2 运动微分方程 §3.3 不同坐标系下的运动微分方程

§3.4 无阻尼自由振动 第四章多自由度系统 §4.1 运动微分方程 §4.2 固有频率与振型 §4.3 动力响应分析 §4.4 动力响应分析中的变换方法 第五章随机振动 §5.1 随机过程 §5.2 随机过程的数字特征 §5.3 平稳过程和各态历经过程 §5.4 正态随机过程 §5.5 相关函数 §5.6 功率谱密度函数 §5.7 线性振动系统在单——随机激励下的响应§5.8 线性系统在两个随机激励下的响应

第一章导论 §1.1 引言 振动:指一个物理量在它的平均值附近不停地经过极大值和极小值而往复变化。 机械振动:机械或结构在它的静平衡位置附近的往复弹性运动。 机械振动研究对象:机械或结构,在理论分析中要将实际的机械或结构抽象为力学模型,即形成一个力学系统。 激励或输入:外界对振动系统的激励或作用。 响应或输出:系统对外界影响的反应,如振动系统某部位产生的位移、速度、加速度及应力等。 机械振动研究内容:研究激励、响应和系统三者之间的关系。 激励、系统和响应三者知其二可求出第三者。 常见的振动问题的三种基本课题: 1.振动设计已知外界激励的条件下设计系统的振动特性,使其响应满足预期的要求。 2.系统识别根据已知的激励与响应的特性分析系统的性质,得到振动系统的全部参数。

15.机械振动故障诊断-2017

《机械振动与故障诊断》课程教学大纲 课程代码:010132013 课程英文名称:Mechanical Vibration and Fault Diagnosis 课程总学时:32 讲课:32 实验:0 上机:0 适用专业:机械设计制造及其自动化专业 大纲编写(修订)时间:2017.7 一、大纲使用说明 (一)课程的地位及教学目标 机械振动与故障诊断是机械设计制造及其自动化专业机械设计方向的专业基础课,是设备现代化管理的重要内容之一。通过本课程的学习,使学生掌握机械振动与故障诊断的基础知识、基础理论、基本方法以及机械振动与故障诊断在工程领域的应用。同时,通过一些工程实例的研究,培养学生分析和解决工程实际问题的能力,并具备从事机械设备状态监测与故障诊断的基本技能。 (二)知识、能力及技能方面的基本要求 1.要求掌握机械振动的基本理论知识和分析方法。 2.具有建立典型机械结构的力学模型的能力,并能够确定其边界条件和初始条件。 3.掌握用解决工程实际问题机械振动的能力。 4.掌握机械设备故障诊断技术的基础理论、诊断方法和手段以及旋转机械设备的振动的监诊断技术。 (三)实施说明 1.本课程主要内容:对于单自由度系统,主要研究各种类型振动的特性和响应求解及其参数的确定,并通过一些例子说明振动的应用。多自由度系统是机械振动的重点,必须给予充分的重视,对于影响系数法,着重于应用其定义建立系统的运动方程。通过实例讲清计算固有频率的数值方法。振型正交性要给出完整的证明,要振型叠加法的解题步骤,并通过例子加以说明。故障诊断技术主要讲述机械设备振动监测以及信号处理的基础理论、诊断方法和手段以及旋转机械设备的振动的监诊断技术。在教学过程中注意理论与工程实际的相结合,在讲清基本理论的基础上突出工程实际问题应用。 2.教学方法和教学手段:积极开展多媒体教学和实际工程案例教学,充分利用幻灯、投影仪、音像、CAI等现代化教学手段,将该领域的一些科研成果作为案例,在课堂上为学生演示。以提高课堂效率和教学效果,激发学生的学习兴趣。 3.课外作业,布置一定课外作业,让学生巩固、加深对课堂所学内容的理解,掌握机械振动方法。 4.对学生的要求:基于学业规范的要求(道德行为规范、作业规范、实验规范等),学生应遵守《沈阳理工大学学生手册(本科生)》中的有关条例,上课时认真听讲,下课有一定时间复习,独立完成作业,做到不迟到、不早退。 5.教师执行本大纲时,应着眼于基本概念和设计方法的讲解,至于各章节的教学顺序,教学环节和教学手段等不完全拘泥于大纲所限,充分发挥教师的能动性、创造性。 (四)对先修课的要求 在学习本课程之前,必须先修完高等数学、线性代数、工程力学、机械设计课程,并达到这

相关主题
文本预览
相关文档 最新文档