当前位置:文档之家› 大体积混凝土配合比试验

大体积混凝土配合比试验

大体积混凝土配合比试验
大体积混凝土配合比试验

探究大体积混凝土配合比的试验

摘要:随着我国经济的发展,大型建筑和高层建筑项目越来越多,混凝土已成为现代建筑工程主要结构方式。大体积混凝土一般被用于大型建筑工程的基础部分,其结构性能对建筑的稳定性及耐久性有很大影响,因此提高大体积混凝土的结构性能,对增强混凝土结构的稳定性和促进建筑行业的发展具有非常重要的意义。本文主要通过试验的方式,对如何提高大体积混凝土的结构性能进行探讨。关键词:大体积混凝土;试验;配合比

中图分类号:tu37 文献标识码:a 文章编号:

对于如何提高大体积混凝土的性能,在我国已经已经有不少学者和单位进行了相关研究,并且已经取得了一定的成效,比如机制砂对混凝土性能的影响,水灰比、混凝土级配等参数对混凝土的影响等等。本文通过混凝土配合比试验,探究提高混凝土性能的方法。1原材料的选用

本试验采用华润“平南”p·ⅱ42.5级水泥;矿物掺合料采用江苏谏壁电厂ⅰ级f类粉煤灰和首钢盾石磨细高炉矿渣粉;细骨料选用西江上游中砂;粗骨料选用新会自水带5~20mm碎石(两级配由

5~10mm占25%,10~20mm占75%比例混合而成);外加剂选用江苏博特聚羧酸高性能减水剂;水选用日常饮用水。

2配合比计算与调整

2.1计算初步配合比

本工程混凝土设计强度等级为c45,属于大体积混凝土;现场施

混凝土配合比计算方法

一、确定计算配合比 1. 确定砼配制强度(f cu,o) f cu,o =f cu,k+1.645σ 式中f cu,o—混凝土配制强度(MPa); f cu,k—混凝土立方体抗压强度标准值(MPa); σ—混凝土强度标准差(MPa)。 混凝土σ可按表6.8.1取值。 表6.8.1 混凝土σ取值 2.确定水灰比(W/C) αa、αb----回归系数,可按表6.8.2采用。

表6.8.2 回归系数αa和αb选用表 为了保证混凝土的耐久性,水灰比还不得大于表6.18中规定的最大水灰比值,如计算所得的水灰比大于规定的最大水灰比值时,应取规定的最大水灰比值。 3. 选定砼单位拌和用水量(m w0) (1)干硬性和塑性混凝土用水量的确定 根据所用骨料的种类、最大粒径及施工所要求的坍落度值,查表6.8.3、6.8.4选取1m3混凝土的用水量。 表6.8.3 干硬性混凝土的用水量

表6.8.4 塑性混凝土的用水量 (2)流动性和大流动性混凝土的用水量计算 a.以表6.8.4中坍落度90mm的用水量为基础,按坍落度每增大20mm,用水量增加5kg,计算出未掺外加剂时混凝土的用水量。 b.掺外加剂时的混凝土用水量按下式计算:

m wa=m w0(1-β) 式中m wa——掺外加剂时,每1m3混凝土的用水量(kg/m3 ) ; m w0——未掺外加剂时,每1m3混凝土的用水量(kg/m3) ; β——外加剂的减水率(%),应经试验确定。 4.确定单位水泥用量( m c0) 未保证混凝土的耐久性,由上式计算求得的 m c0还应满足表6.6.1规定的最小水泥用量,如计算所得的水泥用量小于规定的最小水泥用量时,应取规定的最小水泥用量值。 5. 确定砂率(?s) (1)查表法—根据骨料的种类、最大粒径、水灰比按表6.8.5选用。 表6.8.5 混凝土的砂率(%)

大体积混凝土配合比设计

南昌生米大桥 大体积混凝土 配合比设计、浇筑及养护 中铁一局南昌生米大桥 第三合同段项目经理部 2005.2.5

大体积混凝土的配合比设计首先要分析大体积混凝土问题所在,才能更好的进行下一步工作。 一、大体积混凝土最大的难题是开裂,即贯穿开裂和表面开裂,治标先要治本,所以首先要谈混凝土的开裂。 混凝土的开裂有三种,自身收缩、干燥收缩和塑性收缩。自身收缩和干燥收缩都是水的迁移造成的,但自身收缩不是水份蒸发了,是水泥水化时消耗了水份,产生自干燥作用,混凝土的相对湿度降低,体积减小。水灰比对自身收缩和干燥收缩的影响正相反,水灰比减小干燥收缩减小,自身收缩增大,但水灰比减小到一定程度时,对干燥收缩和自身收缩的影响就各半了。 自身收缩和干燥收缩在混凝土内部是均匀发生的,低水灰比的混凝土自身收缩集中发生在混凝土浇注后的初龄期,因为在这以后,由于混凝土体内的自干燥作用,水化就基本停止,也就是说在拆模前,混凝土的自身收缩就已经大部分完成,不象干燥收缩,除了未覆盖且暴露面积很大的地方外,许多构件干缩都发生在拆模以后。 塑性收缩是混凝土水灰比较小,外界环境温度较高,混凝土表面蒸发的水分得不到补充,受到外力的情况下,产生裂缝,混凝土内部水份蒸发加快,于是裂缝迅速扩展。 从以上可以得知混凝土的养护很关键,尤其是干燥收缩和塑性,养护是关键。

这三种收缩中干燥收缩和自身收缩是混凝土开裂的主要因素。但在大体积混凝土的施工中,自身收缩和干燥收缩,它们和温度叠加时就会产生温度应力和约束应力,它才是产生裂缝的元凶。 大体积混凝土的最高温度是由水泥水化热、混凝土浇注温度和混凝土的散热速度决定的。在这三部分中水泥水化热而引起的的绝热温升是主要因素,我们要降低绝热温生,实际就是降减小大体积混凝土内胀外缩的应力,我们所要做的只能是降低绝热温升,并且控制内外温差不大于25度。 而控制温度又有不利因素存在,㈠混凝土超厚;㈡因承台标号高,不得不采用42.5级水泥。在这些不利因素综合作用下,存在产生裂缝的危险,我们就要降低温度应力和提高混凝土早期抗拉强度入手,以下各项措施都围绕这两点来完成的。 二、大体积混凝土配合比的设计及材料的选择及设计 在进行配合比时应以以下几个方面考虑:①用中低热水泥。②尽量减低水泥用量/③降低水灰比及单位用水量④降低砂率⑤选用优质缓凝减水剂⑥掺入粉煤灰⑦尽可能选择粒径大一些的骨料。 水泥水化热虽然可以迅速提高混凝土早期的强度,但它是造成大体积混凝土绝热温升和温度应力的主要因素,所以我们要推迟温峰的出现,并且要降低水化热。

大体积混凝土配合比设计

xx生米xx 大体积混凝土 配合比设计、浇筑及养护 中铁一局xx生米xx 第三合同段项目经理部 2005.2.5 大体积混凝土的配合比设计首先要分析大体积混凝土问题所在,才能更好的进行下一步工作。 一、大体积混凝土最大的难题是开裂,即贯穿开裂和表面开裂,治标先要治本,所以首先要谈混凝土的开裂。 混凝土的开裂有三种,自身收缩、干燥收缩和塑性收缩。 自身收缩和干燥收缩都是水的迁移造成的,但自身收缩不是水份蒸发了,是水泥水化时消耗了水份,产生自干燥作用,混凝土的相对湿度降低,体积减小。水灰比对自身收缩和干燥收缩的影响正相反,水灰比减小干燥收缩减小,自身收缩增大,但水灰比减小到一定程度时,对干燥收缩和自身收缩的影响就各半了。 自身收缩和干燥收缩在混凝土内部是均匀发生的,低水灰比的混凝土自身收缩集中发生在混凝土浇注后的初龄期,因为在这以后,由于混凝土体内的自干燥作用,水化就基本停止,也就是说在拆模前,混凝土的自身收缩就已经大部分完成,不象干燥收缩,除了未覆盖且暴露面积很大的地方外,许多构件干缩都发生在拆模以后。 塑性收缩是混凝土水灰比较小,外界环境温度较高,混凝土表面蒸发的水分得不到补充,受到外力的情况下,产生裂缝,混凝土内部水份蒸发加快,于是裂缝迅速扩展。

从以上可以得知混凝土的养护很关键,尤其是干燥收缩和塑性,养护是关键。这三种收缩中干燥收缩和自身收缩是混凝土开裂的主要因素。但在大体积混凝土的施工中,自身收缩和干燥收缩,它们和温度叠加时就会产生温度应力和约束应力,它才是产生裂缝的元凶。 大体积混凝土的最高温度是由水泥水化热、混凝土浇注温度和混凝土的散热速度决定的。在这三部分中水泥水化热而引起的的绝热温升是主要因素,我们要降低绝热温生,实际就是降减小大体积混凝土内胀外缩的应力,我们所要做的只能是降低绝热温升,并且控制内外温差不大于25度。 而控制温度又有不利因素存在,㈠混凝土超厚;㈡因承台标号高,不得不采用42.5级水泥。在这些不利因素综合作用下,存在产生裂缝的危险,我们就要降低温度应力和提高混凝土早期抗拉强度入手,以下各项措施都围绕这两点来完成的。 二、大体积混凝土配合比的设计及材料的选择及设计 在进行配合比时应以以下几个方面考虑: ①用中低热水泥。②尽量减低水泥用量/③降低水灰比及单位用水量④降低砂率⑤选用优质缓凝减水剂⑥掺入粉煤灰⑦尽可能选择粒径大一些的骨料。 水泥水化热虽然可以迅速提高混凝土早期的强度,但它是造成大体积混凝土绝热温升和温度应力的主要因素,所以我们要推迟温峰的出现,并且要降低水化热。配合比的设计首先要考虑的是降低温度,所以首先要有一个较低的水灰比,降低水灰比最佳途径就是一个好的减水剂,考虑推迟温峰的出现,应该采用缓凝高效减水剂。 水泥要采用低热水泥,首选无疑是矿渣水泥。为了最大限度的降低水泥水化热影响,在合理的范围内,最大限度的掺入粉煤灰。 考虑混凝土的可泵性、保证强度还有提高混凝土的抗拉强度,粗集料应该采用碎石。

《普通混凝土配合比设计规程》(JGJ55-)简介

《普通混凝土配合比设计规程》(JGJ 55-2011)简介 配合比设计是混凝土设计、生产和应用中的最重要环节之一,配合比设计成功与否,决定了混凝土的技术先进性、成本可控性和发展可持续性等问题。早在上世纪70年代末、针对原建设部下达的“使用新标准水泥配制混凝土”研究 课题,中国建筑科学研究院组织有关单位进行了混凝土配制技术研究,该研究成果经建设部组织全国性验证,对科学合理地在全国范围内解决水泥新标准使用起到重要作用。为统一我国混凝土配制的方法和步骤,并为混凝土配合比设计者提供基础技术参数,在上述研究成果基础上,中国建筑科学研究院主编了《普通混凝土配合比设计规程》(JGJ55)(以下简称《规程》)。为配合比设计者提供了易于操作、程序简单的快捷配制技术。自《规程》颁布实施以来,被广泛用于基础建设、轨道交通、市政环卫、工业与民用建筑、海港工程、铁路工程等领域。对我国混凝土的推广、应用和发展起到基础性作用。随着现代混凝土技术的快速发展,配合比设计面临新的挑战,例如:以耐久性能为设计指标、矿物掺合料的种类和掺量不断增多、普遍应用外加剂、特殊性能要求增多等。因此,《普通混凝土配合比设计规程》(JGJ55)需修订完善。经中国建筑科学研究院申请,《规程》被列入原建设部《2005年度工程建设标准规范制订、修订计划(第一

批)》,并于2010年11月完成编制和通过审查。住房和城乡建设部于2011年4月22日发布公告,批准本《规程》为行业标准,编号为JGJ55-2011,自2011年12月1日起实施。其中,第6.2.5条为强制性条文。原《普通混凝土配合比设计规程》(JGJ55-2000)同时废止。2 主要修订内容《规程》共分7章,主要内容如下:(1)总则提出《规程》的编制目的和适用范围。《规程》适用于工业与民用建筑及一般构筑 物所采用的普通混凝土配合比设计。(2)术语、符号增加了胶凝材料、胶凝材料用量、水胶比、矿物掺合料掺量和外加剂掺量等5个术语,上述术语在混凝土工程技术领域已被普遍接受。修订了相关符号,使计算过程更加清晰。(3)基本规定依据我国混凝土实际应用情况与技术条件,本《规程》新增“基本规定”一章,详细规定了混凝土配合比设计原则、原材料要求、最大水胶比、矿物掺合料限值、氯离子最大含量、最小含气量和最大碱含量等技术指标。本章重点强调混凝土配合比设计应满足耐久性能要求,即混凝土配合比设计不仅应满足配制强度要求,还应满足施工性能、其他力学性能、长期性能和耐久性能的要求,并规定配合比设计所用原材料应采用工程实际使用的原材料。宜采用干燥状态骨料进行配合比设计,也可选用饱和面干状态骨料,两者均为过程控制的一种手段。混凝土的最大水胶比应符合现行国家标准《混凝土结构设计规范》(GB 50010)的规定。水胶比和最

混凝土配合比试验设计方案

混凝土配合比试验设计方案

混凝土配合比设计试验报告 一、配合比设计理论依据 1、《民航机场场道工程施工技术要求》1996—10 2、《广州白云国际机场迁建工程——场道道面工程补充施工技术要求》 3、《水泥胶砂强度检测方法(ISO)法》GBT17671—1999 4、《公路集料试验规程》JTJ058—2000 5、《水泥混凝土路面施工及验收规范》GB97—87 6、《公路工程水泥混凝土试验规程》JTJ053—94 7、《普通混凝土配合比设计规程》JGJ55—2000 J64—2000 8、《硅酸盐水泥、普通硅酸盐水泥》GB175 9、《混凝土外加剂一等品规定指标》(GB8076-1997) 10、《混凝土外加剂应用技术规范》(GBJ119-88) 二、道面混凝土设计要求如下: 2.1、强度:28天抗折强度5.0Mpa; 2.2、和易性要求:维勃稠度20-40s,或塌落度小于10mm; 2.3、耐久性要求:水泥用量不少于300Kg/m3,也不宜大于330Kg/m3; 水灰比不宜大于0.44; 2.4、水泥混凝土所用原材料应符合《民航机场场道工程施工技术要求》1996—10中的有关要求外,尚应符合以下规定: 2.4.1水泥道面及道肩面层混凝土可采用标号为525的硅酸盐水泥。水泥中氧化镁含量不宜大于3%,碱含量不大于0.6%。水泥的其他质量应符合《硅酸盐水泥、普通硅酸盐水泥》GB175的有关规定。

2.4.2砂宜采用细度模数为2.65~ 3.20的中粗河砂。砂的含泥量不得大于3%,含泥量超过规定时应冲洗。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的砂不得使用。 2.4.3碎石圆孔筛最大粒径为40mm。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的碎石不得使用。碎石应按圆孔筛5~20mm、20~40mm两级级配分别备料,两种碎石混合后的颗粒级配应符合下表要求: 项目技术要求 颗粒尺寸筛孔尺寸mm(圆孔筛)40 20 10 5 累积筛余(%)0~5 50~70 70~90 90~100 2.4.4水冲洗集料、拌和混凝土及混凝土养生可采用一般饮用水。使用河水、池水或其他水应符合下列要求:①水中不得含有影响水泥正常凝结和硬化的有害杂质,如油、糖、酸、碱、盐等;②硫酸盐含量(按SO2-1计)不超过2.7mg/cm3;③pH值大于4;含盐总量不得超过5mg/cm3。 2.4.5外加剂水泥混凝土中需要掺用外加剂时,必须根据工程要求,通过试验选定外加剂的种类和用量。外加剂的质量应符合《混凝土外加剂一等品规定指标》(GB8076-1997)的规定要求,其使用应符合《混凝土外加剂应用技术规范》(GBJ119-88)的规定要求。不得使用pH值大于8的碱性外加剂。施工过程中应严格控制外加剂剂量,现场有专人配制。 三、确定原材料 我们根据招标文件、投标书、与业主签订的施工合同及施工图纸的要求确定使用下列材料:

混凝土配合比原始记录

共3页第1页 校核: 主检: 配比名称 (设计、施工要求) 抗渗混凝土(泵送) C30及P6,坍落度100~120mm 委托编号 HP0700001 样品编号 HP0701001 试验环境条件 温度20±5℃ 湿度>50% 检验类别 委托检验 施工方法 机械振捣 收样日期 2007.01.06 检测依据 JGJ55-2000 试配日期 2007.01.08 材料情况 水泥 砂 石子 外加剂 水 膨胀剂 粉煤灰 山东水泥厂 P.O32.5R 安定性合格 预测强度合格 泰安 中砂 μx=2.7 含泥量0.5% 泥块含量0.3% 济南 碎石 符合5~25mm 含泥量0.5% 泥块含量0.3% 针片状0.7% 省建科院 NC -4泵送剂 液状 掺量2.5% 饮用水 省建科院 PNC 膨胀剂 粉状 掺量8% 黃台电厂 Ⅱ级 配合比 计算式 1、计算配制强度f cu ,o =f cu ,k +1.645σ=30.0+1.645×4.0=36.6 (MPa) 2、确定水泥28d 抗压强度实测值ce f =32.5×1.10 ≈36 (MPa) 3、计算水灰比W/C=a α.ce f /(f cu ,o +a α.b αce f )=0.46×36/(36.6+0.07×0.46×36)=0.44 4、确定用水量m wa =180(kg/m 3) 5、计算水泥用量1c m =180/0.44=409( kg/m 3 ) 6、确定粉煤灰用量:取代率f =15%,超量系数K =1.3 mf =409×15%×1.3=80( kg/m 3 ) 7、计算膨胀剂用量p m =409(1-15%)×8.0%=28( kg/m 3 ); 8、计算外加剂用量j m =[409(1-15%)+409×15%×1.3] ×2.5%=11( kg/m 3 ) 9、实际水泥用量1co m =409(1-15%)×(1-8%)=320 ( kg/m 3 ) 10、确定砂率βs=35% 11、假定混凝土的重量2420 kg/m3得:mg=1171 ( kg/m 3 ) ms=631-(409×15%×1.3/2.2-409×15%/3.1)×2.6=588( kg/m 3 ) 试件尺寸 100×100×100 (mm ) 试配体积 25L/35 L 试配方法 机械搅拌、振实 计 算 配合比 材料名称 水泥 砂 石子 外加剂 水 膨胀剂 粉煤灰 每m 3 砼材料用量(kg) 320 588 1171 11 180 28 80 重量配合比 1 1.84 3.66 0.03 0.56 0.09 0.25 试配重量(kg) 8.00 14.70 29.28 0.28 4.50 0.70 2.00 拌合物 性 能 坍落度 105 mm 保水性 良好 粘聚性 良好 表观密度 2410 kg/m 3 / / / / 调整情况 不需调整(若调整,写明如何调整?调整后拌合物性能?) 备 注:此计算配合比可作为强度试验用基准配合比。(若经调整,写明调整后配合比) 主要设备 名称、型号 搅拌机 振动台 / / / 设备编号 SB/H-01 SB/H-02 设备状态 正常 正常

当前混凝土配合比设计与试验研究探讨

当前混凝土配合比设计与试验研究探讨 发表时间:2019-11-22T10:15:06.080Z 来源:《基层建设》2019年第24期作者:樊晓曦 [导读] 摘要:混凝土是重要的建筑材料之一,具有高耐久性、高工作性、高强度、具有可持续发展特性。 鄂尔多斯市神东检测有限责任公司内蒙古鄂尔多斯市 017209 摘要:混凝土是重要的建筑材料之一,具有高耐久性、高工作性、高强度、具有可持续发展特性。对建筑施工的混凝土配合比进行科学、合理地设计,有助于更好地保障建筑工程的质量,同时在建筑施工中对混凝土配合比进行标准化的规范,还可以大大提高施工的效率。 关键词:混凝土配合比设计;试验研究探讨 目前的生产应用面对的是原材料性能的快速随机变化,又不知正负变量,而且往往来不及系统测试就要投入生产,这时你就无所适从,若要保证质量的底线,只有加大标准差或变异系数的设定。 一、混凝土配合比设计方法研究进展 1.传统的普通混凝土配合比设计方法。传统的配合比设计方法是计算—试配法,其计算准则基于逐级填充原理,即水与胶材组成水泥浆,水泥浆填充砂的空隙组成砂浆,砂浆填充石子的空隙组成混凝土,设计原则基于假定容重法或绝对体积法。计算得到粗略配合比,再按照所确定的材料用量,制备混凝土试件标准养护到28d龄期,测试试件的有关性能;试件的性能若符合要求,即采用这组配合比;若不满足要求,进一步调整配合比。绝对体积法认为混凝土材料的1m 3体积等于水泥、砂、石和水四种材料的绝对体积和含空气体积之和。假定容重法的原理基于绝对体积法,所不同的是不以各种原材料的比重为依据,而完全借助于混凝土拌成物经振捣密实后测定的湿容重为依据。前者较繁,但适用范围广,理论较完整,有实用价值。后者简便易行,但要有充分的经验数据,需测定大量的混凝土湿容重。这两种方法都是以经验为基础的半定量设计方法,主要以满足强度和工作性能为主,配合比设计相对简单,也比较成熟。 2.特种性能混凝土配合比设计方法。随着建筑业的高速发展,对建筑工程的质量和性能的要求也不断提高。而普通混凝土则存在着这样那样的不足,为了克服这些不足开发出了许多特种性能混凝土,如高性能混凝土、轻骨料混凝土、纤维混凝土、防水混凝土、再生骨料混凝土、加气混凝土、低温混凝土、泵送混凝土和喷射混凝土,每种混凝土都与传统混凝土相比,其拌合物的配合比设计,都有其自身的特点。主要介绍一下被称为“21世纪混凝土”的高性能混凝土的配合比设计方法,因为高性能混凝土的配合比设计方法非常具有代表性,许多其他类型的特性混凝土也有借鉴高性能混凝土的配合比设计方法。(1)高性能混凝土配合比设计方法。早期混凝土结构对材料性能提出的要求比较简单,配制混凝土的原材料种类也比较少,因此传统的配合比设计方法就可以满足混凝土工程的需要。美国混凝土协会(ACI)211委员会制定的配合比设计程序和其他许多程序都是基于满足相当窄的规范要求:28d抗压强度(15~40MPa)和稠度(坍落度25~100mm),而目前由于混凝土技术不断发展以及工程的需要,使用的混凝土强度在不断提高,越来越多的大跨桥梁、高层建筑、地下水下建筑等工程的使用和修建,高性能混凝土(简称HPC)的需求量越来越大,因而国际混凝土联合会(FIP)与欧洲混凝土委员会(CEB)在提出的混凝土材料方面有待进一步深入研究的课题中,首要问题就是高性能混凝土配合比设计的优化问题。(2)其他特种混凝土配合比设计方法。上述高性能混凝土的配合比设计方法也会被其他特性混凝土的配合比所借鉴,其他特种混凝土配合比设计方法许多还是参照的传统的普通混凝土配合比设计方法,例如补偿收缩混凝土,就可以采用传统的普通混凝土配合比设计方法,除了一点,为了达到相同的强度等级,补偿收缩混凝土的水灰比可以比普通硅酸盐水泥混凝土稍高一点。当然也有针对原材料的特点而需要特殊考虑的配合比设计方法,例如再生骨料混凝土,以废混凝土加工破碎成的骨料与普通骨料相比具有视密度低、吸水率高、压碎值大的显著特点。针对废混凝土骨料的特点等研究了C20、C30、C40三个系列的再生混凝土,对再生混凝土配合比进行了初探。提出了再生骨料预吸水法,这种方法针对再生骨料吸水率较大而建议的基于自由水灰比之上的配合比设计方法是一致的。钢纤维混凝土中由于原材料中掺加了钢纤维,二次合成法的配合比设计方法,把钢纤维混凝土看成是由水泥钢纤维浆与基准混凝土两部分组成的,分别确定水泥钢纤维浆与基准混凝土中各种材料的用量,最后合成钢纤维混凝土的配合比。 3.优化设计方法在混凝土配合比中的应用。一般情况下往往有许多种混凝土的组成都能够满足人们对混凝土性能的要求。这就产生了应该选用哪一种组成的问题。对于给定的设计性能,从这些都符合要求的组成方案中选用一种在技术上和经济上最佳的方案,这种确定“最佳”组成的过程,就称作混凝土组成的最优化。对配合比设计进行优化,不仅可以节约混凝土生产中所消耗的大量资源和能源,减少环境的污染,还可降低成本、提高经济效益。线性规划的单纯形法已广泛应用于混凝土配合比的优化设计,这种方法不论有多少变量和有多少约束条件都可以使用,它要求在混凝土的组成与混凝土的性能之间建立起线性的预测方程。 二、关于混凝土的试验研究问题 1.被指数化。混凝土的强度与弹性模量的关系,并不完全线性化,那是因为原材料不同、配合比不同、成型养护方式不同等原因导致的,对同一原材料、同一配合比设计方法、相同的成型养护方式而言,混凝土强度与弹性模量在一定范围内呈现线性关系是非常正常的。且看图1的分析(以免不必要的争议,权作举例),是指数关系,不应该是线性关系。这种被固化的思维,至少缺了点创新意识。当然还有图中密集整齐的“试验数据”真实性问题,显然缺少了点“科学研究”意识。 2.被线性化。图2的含气量与强度关系试验结果虽然缺少些规律性,除了试验误差及方法严谨性等原因外,更可认为是真实的试验数据,这一实事求是的精神还是要肯定的。但强行线性化其规律,显然又缺少一点“科学研究”精神。

碾压混凝土配合比设计试验

碾压混凝土实验室配合比设计试验 1 试验目的 测定碾压混凝土配合比设计试验所用原材料的物理力学性能指标,然后进行碾压混凝土实验室的配合比设计。 2 试验方案 本试验根据配合比设计所需的技术资料,首先对选定的材料进行物理力学性能指标的测定试验,再依据配合比设计规程及原则来进行配合比的设计,对于碾压混凝土,设计时主要考虑其三大参数的要求。本试验流程图如图2.1所示。

图2.1 试验流程图 3 试验方法 3.1 原材料的物理力学性能试验 本试验配合比设计所用的原材料主要有:水泥、粉煤灰、石灰、粗细集料、

水及外加剂等。 3.1.1水泥试验 水泥试验主要包括:水泥细度试验、水泥标准稠度用水量试验、水泥凝结时间试验、水泥体积安定性试验、水泥胶砂强度试验等。 水泥细度试验采用手工干筛法来检验水泥细度;水泥标准稠度用水量试验、水泥凝结时间试验及水泥体积安定性试验(雷氏夹法)按GB/T 1346-1989《水泥标准稠度用水量、凝结时间、安定性检验方法》,用沸煮法,对该水泥进行了安定性试验;水泥胶砂强度试验通过ISO法来测定水泥的强度等级。 通过试验,得到本试验所用水泥的物理性能见表1.1。 表1.1 水泥的物理性能表 水泥品种 初凝 (h:min) 终凝 (h:min) 安定性 (mm) 筛余量 (%) 标准稠 度(%) 抗压 (Mpa) 抗折 (Mpa) 3d 28d 3d 28d P.C32.5R 2.1 3.1.2 粉煤灰试验 根据《用于水泥和混凝土中的粉煤灰》GB1596—91以及国家标准GB175—1999,GB1344—1999,GB12958—1999中的规定,需对粉煤灰的细度、密度、凝结时间、体积安定性和强度及强度等级等主要技术性质经行测定。 通过试验,该粉煤灰的物理性能见表1.2。 表1.2 粉煤灰的物理性能表 粉煤灰等级 密度 (g/cm3) 堆积密度 (g/cm3) 细度 (%) 比表面积 (g/cm2) 需水量 (%) 28d抗压 强度比 (%) Ⅱ级 2.302 26 3.1.3集料试验 集料试验主要包括测定砂、石的近似密度试验、砂、石的堆积密度试验、砂、石的空隙率计算和砂、石的筛分析试验等。 通过试验,测得所用砂子、石子的物理性能见表1.3、表1.4。 表1.3 砂子的物理性能表

大体积混凝土配合比设计

大体积混凝土配合比设计及施工 大体积混凝土施工中的质量控制 摘要:大体积混凝土的施工技术要求较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝。因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证大体积混凝土顺利施工。 关键词:大体积混凝土施工方案高温条件 一:混凝土配合比 (1)混凝土根据施工单位提出的技术要求,提前做好混凝土试配。 (2)混凝土配合比应提高试配确定。按照国家现行《混凝土结构工程施工及验收规范》、《普通混凝土配合比设计规程》及《粉煤灰混凝土应用技术规范》《用于水泥和混凝土中的粒化高炉矿渣》中的有关技术要求进行设计。 二:原材料的选用 (1)水泥:选用水化热较低的水泥,并尽可能减少水泥用量。 (2)粗骨料:采用碎石,粒径5-25mm,含泥量不大于1%。选用粒径较大、级配良好的石子配制的混凝土,和易性较好,抗压强度较高,同时可以减少用水量及水泥用量,从而使水泥水化热减少,降低混凝土温升。 (3)细骨料:采用Ⅱ区中砂,含泥量不大于3%。选用平均粒径较大的中、粗砂拌制的混凝土比采用细砂拌制的混凝土可减少用水量10%左右,同时相应减少水泥用量,使水泥水化热减少,降低混凝土温升,并可减少混凝土收缩。 (4)粉煤灰:应用粉煤灰技术。在混凝土中参用粉煤灰不仅能节约水泥,降低水化热,增加混凝土的和易性,能提高混凝土后期强度。 (5)矿渣微粉:在高温季节选用矿粉,于普通混凝土相比,矿渣微粉混凝土后期强度增长效率较高、干燥收缩和徐变值较低。矿渣微粉嫩能优化混凝土孔结构,提高抗渗性能。新拌矿渣微粉混凝土工作度良好,坍落度经时损失有所减少,易振捣,泌水性小。大参量矿渣微粉混凝土可降低水化热峰值,延迟峰温发生时间。 (6)外加剂:选用缓凝高减水率的外加剂,用量厂家推荐用量经过试配确定 三、连续浇捣混凝土时在拌合及运输方面应采取的措施 大体积混凝土的施工技术要求比较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝。因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证大体积混凝土顺利施工。

混凝土配合比实验报告

实验报告混凝土配合比实验 包工头队(10级土木9 班) 邬文锋、天楚、祖军、雄

(一) 砂的筛分析检验试验 (1) 试验法:(1)秤取烘干试佯500g,精确到1g。 (2) 将径9.5、4.75、2.36、1.18、0.6、0.3、0.15mm 的筛子按筛大小顺序叠置,径大的放上层。加底盘后,将试样倒入最上层9.5mm筛,加盖置摇筛机上筛lOmin(如无摇筛机可用手筛)。 (3) 将整套筛自摇筛机上取下,按径从大至小逐个在洁净瓷盘上进行手 筛。各号筛均须筛至每分钟通过量不超过试样总质量0.1%时为止,将通过的颗 粒并入下一号筛中一起过筛。按此顺序进行,至各号筛筛完为止。 (4) 试样在各号筛上的筛余量不得超过下式的规定: 生产控制检验时m r = A.d1/2/200 式中m r -------------------- 筛余量(g); d -------- 筛尺寸(mm); A -------- 筛的面积(mm2)。 否则应将筛余试样分成两份,并以其筛余量之和作为该号筛的筛余量。 (5) 称量各号筛筛余试样的质量,精确至 1g。所有各号筛的筛余质量和底盘 中剩余试样质量的总和与筛分前的试样总质量相比,其差值不得超过l%。 (2) 试验结果 试样种类: 试样重________ (g)

筛余累计重____________ (g) 试验重量误差 ____________ g) (3) 细度模数计算: (4)结果评定(级配、细度) (二) 的筛分析检验试验 (1) 试验法:(1)秤取烘干试佯500g,精确到1g。 (2) 将径9.5、4.75、2.36、1.18、0.6、0.3、0.15mm 的筛子按筛大小顺序叠置,径大的放上层。加底盘后,将试样倒入最上层9.5mm筛,加盖置摇筛机上筛lOmin(如无摇筛机可用手筛)。

混凝土配合比设计的详细步骤

混凝土配合比设计的步骤 1.计算配合比的确定 (1)计算配制强度 当具有近期同一品种混凝土资料时,σ可计算获得。并且当混凝土强度等级为C20或C25,计算值<时,应取σ=;当强度等级≥C30,计算值低于<时,应取用σ=。否则,按规定取值。 (2)初步确定水灰比(W/C) (混凝土强度等级小于C60) a α、 b α回归系数,应由试验确定或根据规定选取: ce f 水泥28d 抗压强度实测值,若无实测值,则 ce f ,g 为水泥强度等级值,c γ为水泥强度等级值的富余系数。 ce b a cu ce a f f f C W ααα+= 0,

若水灰比计算值大于表4-24中规定的最大水灰比值时,应取表中规定的最大水灰比值 (3)选取1m3混凝土的用水量(0w m ) 干硬性和塑性混凝土用水量: ①根据施工条件按表4-25选用适宜的坍落度。 ②水灰比在~时,根据坍落度值及骨料种类、粒径,按表4-26选定1m3混凝土用水量。 流动性和大流动性混凝土的用水量: 以表4-26中坍落度90mm 的用水量为基础,按坍落度每增大20mm 用水量增加5kg 计算出未掺外加剂时的混凝土的用水量; 掺外加剂时的混凝土用水量: wa m 是掺外加剂混凝土每立方米混凝土的用水量;0w m 未掺外加剂 混凝土每立方米混凝土的用水量;β外加剂的减水率。 (4)计算混凝土的单位水泥用量() 如水泥用量计算值小于表4-24中规定量,则应取规定的最小水泥用量。 (5)选用合理的砂率值(βs) 坍落度为10~60mm 的混凝土:如无使用经验,砂率可按骨料种 () β-=10w wa m m 0c m

大体积混凝土施工规范

大体积混凝土施工规范 大体积混凝土:混凝土结构物实体最小尺寸不小于1m得大体量混凝土,或预计会因混凝土中胶凝材料水化引起得温度变化与收缩而导致有害裂缝产生得混凝土。 一.基本规定 1、大体积混凝土施工应编制施工组织设计或施工技术方案。 2、大体积混凝土工程施工除应满足设计规范及生产工艺得要求外,尚应符合下列要求: ⑴大体积混凝土得设计强度等级宜为C25~C40,并可采用混凝土60d或90d得强度作为混凝土配合比设计、混凝土强度评定及工程验收得依据; ⑵大体积混凝土得结构配筋除应满足结构强度与构造要求外,还应结合大体积混凝土得施工方法配置控制温度与收缩得构造钢筋; ⑶大体积混凝土置于岩石类地基上时,宜在混凝土垫层上设置滑动层; ⑷设计中宜采取减少大体积混凝土外部约束得技术措施; ⑸设计中宜根据工程情况提出温度场与应变得相关测试要求。 3、大体积混凝土工程施工前,宜对施工阶段大体积混凝土浇筑体得温度、温度应力及收缩应力进行试算,并确定施工阶段大体积混凝土浇筑体得温升峰值、里表温差及降温速率得控制指标、制定相应得温控技术措施。

4、温控指标宜符合下列规定: ⑴混凝土浇筑体在入模温度基础上得温升值不宜大于50摄氏度; ⑵混凝土浇筑体得里表温差(不含混凝土收缩得当量温度)不宜大于25摄氏度; ⑶混凝土浇筑体得降温速率不宜大于2、0摄氏度/d; ⑷混凝土浇筑体表面与大气温差不宜大于20摄氏度。 5、大体积混凝土施工前,应做好各项施工前准备工作,并与当地气象台、站联系,掌握近期气象情况。必要时,应增添相应得技术措施,在冬期施工时,尚应符合国家现行有关混凝土冬期施工得标准。 二.原材料、配合比、制备及运输 ⑴一般规定 1、1大体积混凝土配合比得设计除应符合工程设计所规定得强度等级、耐久性、抗渗性、体积稳定性等要求外,尚应符合大体积混凝土施工工艺特性得要求,并应符合合理使用材料、降低混凝土绝热温升值得要求。 1、2大体积混凝土得制备与运输,除应符合设计混凝土强度等级得要求外,尚应根据预拌混凝土供应运输距离、运输设备、供应能力、材料批次、环境温度等调整预拌混凝土得有关参数。 ⑵原材料

绿化混凝土配合比研究与设计

绿化混凝土配合比研究和设计 我国由于近年来城市建设加快,城区被大量的建筑物和混凝土的道路所覆盖,绿色面积明显减少。随着人们对环境和生态平衡的重视,混凝土结构的美化、绿化、人造景观与自然景观的协调成为了行业的一个重要课题,对绿化混凝土的研究越来越受到人们的关注。所谓绿化混凝土是指能够适应绿色植物生长、进行绿色植被的混凝土及其制品。 20世纪90年代,日本学者开始开发研究绿化混凝土,主要针对大型土木工程,目 前已取得了一定的成果。绿化混凝土用于城市的道路两侧及中央隔离带,水边护坡、楼顶、 停车场等部位,可以增加城市的绿色空间,调节人们的生活情趣,同时能吸收噪音和粉尘, 对城市气候的生态平衡也起到了积极的作用,符合可持续发展的原则。本文通过对多孔混凝土的研究,设计出一种适合于植物生长的绿化混凝土。 1 原材料和试验方法 1.1原材料 水泥:亚东水泥厂生产的PO42.5水泥。 粉煤灰:信阳I级粉煤灰。 矿粉:本公司粉磨站生产的矿粉 石头:普通石灰石碎石,粒径为19~26.5mm。 外加剂:公司外加剂厂生产的高效萘系减水剂,固含量为32%。 1.2试验方法 1.2.1设计参数确定 ①孔隙率 适合于植物生长的多孔混凝土为了便于植物生根,胶凝材料的连通孔隙率一般在25%~30%。研究显示:不仅孔隙率大小对植物正常生长有影响,而且孔隙容积对植物生长也有比 较大的影响,同是25%孔隙率的多孔混凝土,粒径小的骨料配制的多孔混凝土孔隙数量多, 但每个孔隙的容积小,这样单个孔蓄含的水分和营养成分相对就少,如果少到一定程度就可能危害植物的生长。因此,多孔植被混凝土的最小孔隙率应大于25%,且在保证强度的前提下,选择粒径大的集料配制混凝土。考虑到配制过程中的不确定因素,如可能存在少许胶结材堵塞孔隙,养护期孔隙被杂物填充等,设计多孔混凝土的孔隙率为30%。 ②强度

混凝土配合比试验

吉林省天达水利水电工程质量检测有限公司 编号:TDJ C—SYBG—04 200807013R 试验报告 报告名称混凝土配合比试验 委托单位白城市众信水利水电建筑有限责任公司 工程名称白城市洮儿河灌区2008年度节水改造与续建配套工程(二期)(第二标段) (公章) 报告完成日期 201 年月日

试验报告:共10页 委托编号:TD2010-016-01 试验编号:TDD10029、030 试验依据:SL 352-2006 批准: 审核: 试验:

一、概述 2010年2月2日,吉林省天达水利水电工程质量检测有限公司受白城市众信水利水电建筑有限责任公司委托,于2010年2月2日至4月2日,承担了白城市洮儿河灌区2008年度节水改造与续建配套工程(二期)(第二标段)的混凝土配合比设计任务。试验所用水泥、砂、石和外加剂等材料均由委托单位现场抽样提供,拌和用水均为试验室所在地饮用水。 二、委托要求 具体委托要求见表1. 三、原材料品质检验 (1)水泥:四平金隅水泥有限公司生产的《金隅》牌普通硅盐酸泥,强度等级42.5.主要物理性能符合GB175-2007的要求,见表2. (2)细骨料:砂为粗砂(产地:白城镇西)。颗粒级配合格。所检各项指

标符合SL38-92和GB/T14684-2001要求,见表3和表4. (3)粗骨料:二级配卵石。所检各项指标符合 SL38-92、GB/T14685-2001、SL352-2006和DL/T5144-2001,见表5。

(四)外加剂:TNA高效减水剂和SJC引气剂(产地:吉林省化学建

筑材料公司)。所检各项指标符合GB8076-2008和DL5100-1999的要求,见表6和表7。

论混凝土配合比试验研究 黄南忠

论混凝土配合比试验研究黄南忠 发表时间:2019-07-26T17:10:08.803Z 来源:《建筑细部》2018年第27期作者:黄南忠 [导读] 通过结合施工图纸设计的条件要素,从混凝土配合比设计、试配、调整三个方面,阐述混凝土配合比设计的全过程,突出强调了试配应注意的问题和重要性,进一步明确混凝土配合比调配是在经验、理论指导下的实践性过程。 珠海市成基商品混凝土有限公司519000 摘要:通过结合施工图纸设计的条件要素,从混凝土配合比设计、试配、调整三个方面,阐述混凝土配合比设计的全过程,突出强调了试配应注意的问题和重要性,进一步明确混凝土配合比调配是在经验、理论指导下的实践性过程。 关键词:混凝土;设计;试配;调整;配合比设计 引言:混凝土一般是由水泥、砂、石和水组成。为改善混凝土的某些性能,还常加入适量的外加剂和掺合料。混凝土中各种材料之间的比例关系称为混凝土的配合比。主要的参数为水胶比,砂率,用水量。混凝土随着科学的不断发展,其用途也越来越广泛。 一、混凝土配合比简介 混凝土是由水泥、细骨料砂子、粗骨料石子及水等构成,混凝土中各种材料之间的比例关系称为混凝土的配合比。混凝土配合比是决定混凝土强度的一项重要技术指标,需要具体的设计试配等工作才能确定合适的混凝土配合比应用到工程当中去。 (1)选用合适的材料 ①水泥 水泥是决定混凝土成本的主要材料,同时又起到粘结、填充等重要作用,所以水泥的选用格外重要。水泥的选用主要是考虑到水泥的品种和强度等级。水泥的品种繁多。选择水泥应根据工程的特点和所处的环境气候条件等因素进行分析,并考虑当地水泥的供应情况作出选择。其中以硅酸盐系列水泥生产量最大、应用最为广泛。 ②粗骨料 粗骨料是指粒径大于4.75mm的岩石颗粒。人工破碎而形成的石子成为碎石。天然形成的石子称为卵石。施工中一般采用碎石,粒径4.75-37.5mm,选用粒径较大、级配良好的石子配制的混凝土,和易性较好,抗压强度较高,同时可以减少用水量及水泥用量,从而使水泥水化热减少,降低混凝土温度。混凝土用的粗骨料,其最大粒径不得超过构件截面最小尺寸的1/4,且不得超过钢筋最小净间距的3/4。对混凝土的实心板,粗料的最大粒径不宜超过板厚的1/3,且不得超过40mm。 ③细骨料 细骨料是指粒径小于4.75mm的岩石颗粒,通常称为砂。施工中一般采用中砂。 ④粉煤灰 由于混凝土的浇筑方式为泵送,为了改善混凝土的和易性便于泵送,考虑掺加适量的粉煤灰。按照规范要求,采用矿渣硅酸盐水泥拌制大体积粉煤灰混凝土时,其粉煤灰取代水泥的最大限量为25%.粉煤灰对水化热、改善混凝土和易性有利,但掺加粉煤灰的混凝土早期极限抗拉值均有所降低,对混凝土抗渗抗裂不利,因此粉煤灰的掺量应经试验室多次试配确定其最佳掺量。 ⑤混凝土外加剂 混凝土外加剂可分为四类:改善混凝土拌合物流变性的外加剂。包括(减水剂、引气剂、调节混凝土凝结时间、硬化性能的外加剂;缓凝剂,改善混凝土耐久性的外加剂;引气剂,改善混凝土其它性能的外加剂;膨胀剂,一般在梁板管道压浆使用,能让管道内的水泥浆饱满)。 (2)按JGJ 55-2011《普通混凝土配合比设计规程》计算混凝土的配制强度、水胶比、选定每立方米混凝土拌合物的用水量、砂率;假定每立方米混凝土拌合物的质量,计算出每立方米的胶凝材料、砂、石用量。 二、混凝土配合比设计参数 进行混凝土配合比设计,是对混凝土抗压性、抗折性等基本性能的保障,合理设计混凝土的配合比同时也对施工路面的质量提供了质量保证,由此可知,进行混凝土配合比的合理设计是进行路面施工的主要环节。其中,混凝土的配合比设计主要涵盖了明确弯拉强度、选择混凝土坍落度、确定水灰比以及选择砂率等几方面内容。 (一)明确配制弯拉强度混凝土的配置强度是能够影响混凝土质量的主要因素,受设计强度、施工单位的施工技术两方面影响,传统的强度配置是在设计强度数值乘1.10~1.15之间富余系数,选择系数时以大数值为宜,通常情况下施工企业很难达到规定系数。计算配置强度时要立足于施工设备的性能、人员的水平,强度不宜过低。 (二)明确碎石级配根据调查研究得知,碎石级配对混凝土强度形成的影响比较大,同时在选择碎石级配时也能够以混凝土的类型与施工具体操作位置为主进行选择,如果调配钢筋混凝土,那么适宜选择4.75~19mm或4.75~26.5mm的连续级配碎石;除此之外,也能够在配制前度的基础上进行碎石选择,通常配制强度为3.5~5.0MPa的混凝土,适宜选择4.75~26.5mm或4.75~31.5mm的连续级配碎石。(三)确定水灰比能够对混凝土强度造成影响的因素主要是水灰比,然而影响水灰比的和主要因素包括混凝土工作性要求与减水剂的减水率两点,经过相关调查研究得知,当水灰比增加到0.44时,这时混凝土的抗折强度将减小9%左右,所以,在保证混凝土强度与耐久性的前提下,水灰比尽量较小,据相关规定要求,水灰比最好小于0.44。 (四)确定单位水泥用量单位水泥用量也十分重要,其大小是否合理对耐久性能以及施工成本造成影响,在水灰比相同的情况下,水

普通混凝土配合比试验方法

普通混凝土配合比试验方法 1、目的 确保混凝土工程质量且达到经济合理,满足设计和施工要求。 2、范围 本规程适用于工业与民用建筑及一般构筑物所采用的普通 混凝土的配合比设计。 2.1普通混凝土的配合比应根据原材料性能及对混凝土的技 术要求进行计算,并经试验试配、调整后确定。 2.2进行普通混凝土配合比设计时,除应遵守本规程的规定外,尚应符合国家现行有关强制性标准的规定。 3、本标准名称及引用标准 JGJ55—2011 普通混凝土配合比设计规程 GB/T50080—2002 普通混凝土拌合物性能试验方法普通 混凝土力学性能试验方—GB/T500812002 法混凝土强度检验评定标准GBJl07—87 GB50204—2002 混凝土结构工程施工质量验收规范 4、混凝土配制强度的确定 4.1混凝土配制强度应按下式计算: 设计强度等计算;(1)配制强度按时,C60强度等级小于 级不小于C60时,配制强度按式(2)计算 f≥f+1.645σ…………(1) cu,kcu,0f≥1.15f…………(2) cu,kcu,0

式中f——混凝土配制强度(MPa):cu,0 f——混凝土立方体抗压强度标准值(MPa);cu,k 4.2混凝土强度标准差应按下列确定: 混凝土强度标准差,当具有近1~3个月的同一种,同一强度等级混凝土的强度资料时,强度标准差σ应按下式计算: n?22f?nm,cuifcu?1i??1?nσ—混凝土强度标准差; f—第i组的试件强度(MPa);uc,i m—n组试件的强度平均值(MPa);fcu n —试件组数。 当混凝土强度标准的混凝土,C30对于强度等级不大于 差计算值不小于3.0MPa时,应按式(4.0.2)计算结果取值;当混凝土强度标准差计算值小于3.0MPa时,应取3.0MPa。对于强度等级大于C30且小于C60的混凝土,当混凝土强度标准差计算值不小于4.0MPa时,应按式(4.0.2)计算结果取值;

相关主题
文本预览
相关文档 最新文档